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Abstract—There has been significant progress in improving the performance of

computer-based face recognition algorithms over the last decade. Although

algorithms have been tested and compared extensively with each other, there has

been remarkably little work comparing the accuracy of computer-based face

recognition systems with humans. We compared seven state-of-the-art face

recognition algorithms with humans on a face-matching task. Humans and

algorithms determined whether pairs of face images, taken under different

illumination conditions, were pictures of the same person or of different people.

Three algorithms surpassed human performance matching face pairs prescreened

to be “difficult” and six algorithms surpassed humans on “easy” face pairs. Although

illumination variation continues to challenge face recognition algorithms, current

algorithms compete favorably with humans. The superior performance of the best

algorithms over humans, in light of the absolute performance levels of the

algorithms, underscores the need to compare algorithms with the best current

control—humans.

Index Terms—Face and gesture recognition, performance evaluation of

algorithms and systems, human information processing.
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1 INTRODUCTION

AN increase in security concerns worldwide has focused public
attention on the accuracy of computer-based face recognition
systems for security applications. How accurate must a face
recognition algorithm be to contribute to these applications? Over
the last decade, academic computer vision researchers and
commercial product developers have improved the performance
of automated face recognition algorithms on a variety of challenging
face recognition tasks. Information about the performance of
automated face recognition systems is available to the public in
the form of scholarly journal articles (for a review, see [1]),
commercially disseminated product information, and US govern-
ment sponsored evaluations (e.g., [2], [3], [4], [5]). There is
remarkably little information available, however, about the accu-
racy of face recognition algorithms relative to humans, although
some previous work shows that automatic recognition of face
sketches can surpass human recognition [6], [7]. Because humans
currently perform face recognition tasks in most real-world security
situations, it is unclear whether the use of algorithms improves
security or puts it at greater risk.

Notwithstanding, the issue of human performance, it is difficult

even to make direct comparisons among algorithms in a way that

gives an accurate idea of the current state of the art [8]. This is

because most journal articles and product pamphlets consider only
one or two systems at a time and report results that are based on
facial image sets that vary widely in number and quality. US
government funded competitions allow for direct comparisons
among multiple recognition algorithms. Performance is measured
in these competitions using standardized evaluation procedures
applied to large sets of facial images (e.g., FERET, [4], Face
Recognition Vendor Test 2000, [2], Face Recognition Vendor Test
2002, [5], and Face Recognition Grand Challenge, FRGC, [3]).

The present work builds on the most recent of these large-scale
tests of face recognition algorithms—the FRGC. The evaluation
procedures used in this test provide a unique opportunity to
benchmark human performance against current face recognition
algorithms. This competition was conducted between 2004 and
2006 and was open to academic, industrial, and research lab
competitors. The developers of computer-based face recognition
systems volunteered their algorithms for evaluation on one or
more face matching tasks varying in difficulty.

We carried out a direct comparison between humans and seven
face recognition algorithms1 participating in the most difficult
experiment of the FRGC: matching two-dimensional face images
taken under different illumination conditions (Fig. 1). The problem
of face recognition over changes in illumination is widely
recognized to be difficult for humans [9], [10], [11], [12], [13] and
for algorithms [14], [15]. Illumination changes can vary the overall
magnitude of light intensity reflected back from an object, as well
as the pattern of shading and shadows visible in an image [16].
Indeed, varying the illumination can result in larger image
differences than varying either the identity [17] or the viewpoint
[16] of a face. These illumination changes have well-documented,
detrimental effects on human accuracy recognizing faces (for a
review, see [18]).

For face recognition algorithms, the difficulty of the illumina-
tion problem is evident in comparing the FRGC experiments for
matching controlled versus uncontrolled-illumination image pairs.
In the controlled illumination experiment of the FRGC, algorithms
match the identity of faces in two pictures taken under similar,
controlled illumination conditions. The algorithms that partici-
pated in the controlled illumination experiment achieved a median
verification rate of 0.91 at the 0.001 false acceptance rate—where
verification rate is the proportion of matched pairs correctly
judged to be of the same person and false acceptance rate is the
proportion of mismatched pairs judged incorrectly to be of the
same person. By contrast, the algorithms that competed in the
uncontrolled illumination experiment achieved a median verifica-
tion rate of 0.42 at a false acceptance rate of 0.001. The difficulties
posed by variable illumination conditions, therefore, remain a
significant challenge for automatic face recognition systems.

In the FRGC, algorithms determined if two faces in a pair of
images were of the same person or of different people. Algorithms
in the FRGC uncontrolled illumination experiment were required
to match identities in approximately 128 million pairs of faces.
Specifically, the test data for this experiment consisted of all
possible pairs of 16,028 “target” faces and 8,014 “probe” faces [15].
The target images were taken under controlled illumination
conditions typical of those used for passport photographs and
the probe images were taken under uncontrolled illumination
conditions (e.g., in a corridor) (Fig. 1).
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1. These algorithms comprised seven of the 12 submitted for evaluation
in the FRGC and were selected as follows: Beginning with the original 12,
two groups submitted results for two variations of the same algorithm.
These variations had nearly identical performance on the uncontrolled
illumination experiment and, so, only one algorithm from each group was
included. An additional three submitted algorithms differed only in the
preprocessing of images, using the control PCA algorithm for face
matching. These algorithms were excluded here, because of the role of
the PCA control in selecting easy and difficult face image pairs. Details on
the performance of the original 12 algorithms can be found elsewhere [3].
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Participating algorithms produced a 16; 028� 8; 014 matrix of
similarity scores for all possible face pairs. A similarity score
represents the end result of an algorithm’s computations to
establish the likelihood that the faces in the image pair are the
“same” person. A higher similarity score indicates a greater
likelihood that the two faces are the same person. The similarity
score matrix is used to compute the algorithms’ “same person”
versus “different person” judgments. Face pairs with similarity
scores greater than a set criterion c are judged to be of the “same”
person; pairs with similarity less than or equal to c are judged to be
of “different” people. By varying the criterion c over the full range
of similarity scores, a complete receiver operating characteristic
(ROC) curve is generated. An ROC curve indicates performance
level for all possible combinations of correct verification and false
acceptance rate. The use of an ROC curve for characterizing the
performance of algorithms makes it relatively straightforward to
compare human face matching data to the algorithm data.

Testing humans on 128 million pairs of facial images is
impossible. We focused, therefore, on a sample of the “easiest”
and “most difficult” face pairs with a sampling procedure defined
by a baseline algorithm. In three experiments, we tested human
performance on “easy” and “difficult” face pairs, varying the
exposure time of the face pairs from unlimited time to 500 ms.
Humans rated the likelihood that the two images were of the same
person. Next, we extracted similarity scores from the seven
algorithms on the same set of face pairs matched by the human
participants. Finally, ROC curves were generated for the algorithms
and humans. These form the primary basis of our comparisons
between humans and machines on the face-matching task.

2 EXPERIMENTS

2.1 Methods

2.1.1 Stimuli

Face stimuli were chosen from a large database developed for the
FRGC study [15]. As noted, the uncontrolled illumination experi-
ment from the FRGC used 8,014 probe faces and 16,028 target
faces. The uncontrolled illumination probe images had a resolution

of 2; 272� 1; 704 pixels. The controlled illumination target images
had a resolution of 1; 704� 2; 272 pixels. For these experiments, we
sampled face image pairs from 128,448,392 pairs available. Of
these, 407,352 (0.32 percent) were of the same people (match pairs)
and 128,041,040 (99.68 percent) were of different people (nonmatch
pairs, see Fig. 1 for an example pair).

To make the task as challenging as possible, we narrowed the
available pairs to include only Caucasian males and females.

Restriction to this relatively homogeneous set of faces eliminates
the possibility that algorithms or humans can base identity
comparisons on surface facial characteristics associated with race
or age. For the same reason, the face pairs presented to participants
were matched by sex.

Next, we divided the face pairs into “easy” and “difficult.” To
estimate pair difficulty, we used a control algorithm based on
principal components analysis (PCA) of the aligned and scaled

images. PCA algorithms are an appropriate baseline because they
have been available and widely tested since the early 1990s [19],
[20]. The FRGC version of this baseline was designed to optimize
performance [21]. We show that this algorithm reliably predicts
“easy” and “difficult” sets of face pairs for both humans and
algorithms. The algorithm itself, however, is not considered “state
of the art.”

The baseline algorithm generated a 16; 028� 8; 014 similarity

matrix. We defined difficult match pairs to be image pairs of the
same person with similarity scores less than two standard
deviations below the average similarity score for the same-person
match pairs (i.e., highly dissimilar images of the same person).
Easy match pairs were image pairs of the same person with
similarity scores greater than two standard deviations above the
mean similarity score for the same-person pairs (i.e., highly similar
images of the same person). Difficult nonmatch pairs and easy non-

match pairs were chosen analogously (e.g., image pairs of different
faces with similarity scores greater/less than two standard
deviations above/below the average similarity score for the
different-person pairs). The face pairs used in the experiments
were selected randomly from face pairs meeting the above criteria.

2.1.2 Participants

Undergraduate students from the School of Behavioral and Brain
Sciences at the University of Texas at Dallas volunteered to
participate in these experiments in exchange for a research credit
in a psychology course. A total of 91 students participated in the
experiments (Experiment 1, n ¼ 22, 10 females and 12 males,
Experiment 2, n ¼ 49, 25 females and 24 males, and Experiment 3,
n ¼ 20, 10 females and 10 males). Participants in the experiment
received no training or practice on the task.

2.1.3 Procedure

For all experiments, the task was to determine whether two face
images, which appeared side by side on a computer screen, were
pictures of the same person or of different people. Probe images
were displayed on the left and target images were displayed on the
right. The participants were asked to rate the image pairs using a 1
to 5 scale,

1. sure they are the same,
2. think they are the same,
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Fig. 1. A sample pair of face images from (a) a “match” trial and (b) a “ no match”
trial. Participants responded by rating the likelihood that the pictures were of the
same person using a five-point scale ranging from “1 sure they are the same
person” to “5 sure they are not the same people.” The face images were
presented to participants in color. (The original color images in this figure can be
found in the supplemental material, which can be found at http://computer.org/
tpami/archives.htm.)



3. don’t know,
4. think they are not the same, and
5. sure they are not the same.

In Experiment 1, 120 pairs of male faces served as stimuli. Half
of the pairs were prescreened to be “easy” and half were
prescreened to be “difficult.” Participants had unlimited time to
enter a response for each pair, with images remaining on the screen
until a response was entered.

Experiment 2 was similar to Experiment 1, but with exposure
time limited to two seconds and with unlimited time to enter a
response after the face pair disappeared from the screen. The next
trial was initiated, when the participant entered a response. In this
experiment, we included an equal number of male (120) and
female (120) face pairs and balanced the inclusion of male and
female human participants. Again, half of the pairs were
prescreened to be “easy” and half were prescreened to be
“difficult.” The exposure time was reduced to two seconds with
the purpose of increasing error rates. This exposure time reduction
did not diminish human performance significantly and, so,
Experiment 3 was conducted.

Experiment 3 was identical to Experiment 2, but with exposure
time set to 500 milliseconds. This reduced performance consider-
ably. A pilot study, not reported here, showed that the error rates
did not increase substantially from the unlimited time condition
when the exposure time was reduced to 1 second.

The algorithm-human comparisons we report in this study are
based on data from Experiment 2, (see the supplemental material,
which can be found at http://computer.org/tpami/archives.htm
for the results of Experiments 1 and 3). We chose Experiment 2 for
comparison with the algorithms, because we think that two
seconds is a “realistic” exposure time for many security applica-
tions, and because the experiment includes a balanced number of
male and female participants and male and female faces.

2.2 Results

2.2.1 Behavioral Data

For the purposes of conducting inferential statistical analyses on the
behavioral data, participant responses were transformed into
“same” or “different” judgments for individual pairs of faces, so
that d0 could be computed. Responses 1 and 2 were deemed “same”
judgments and responses 3, 4, and 5 were deemed “different”
judgments.2 The correct verification rate (i.e., hit rate) was computed
as the proportion of matched pairs correctly judged to be of the same
person. The false acceptance rate (i.e., false alarm rate) was
calculated as the proportion of non-match pairs judged incorrectly
to be of the same person. A d0 was then computed from the hit and
false alarm rates as Zhit rate � Zfalse alarm rate. ROC curves were
computed from the full range of response data that assigned
certainty values to each match/no-match judgment. These curves
provide analogous data to the ROCs computed from the algorithms,
across the range of verification and false acceptance rates. The
d0 values served as the dependent variable in the analysis of variance
(ANOVA) results reported for each experiment.

The difficulty level of face pairs (i.e., as defined by baseline
control algorithm) was evaluated as a within-subjects variable in all
three experiments. The effects of sex of the participant (between-
subjects variable) and sex of face pair (within-subjects variable) were
examined in Experiment 2, where both factors were closely

balanced. No significant differences or interactions were found for

these gender variables, and so we do not consider them further.
The PCA algorithm’s ability to predict accuracy for humans was

verified in all three face-matching experiments. Humans were

significantly more accurate on face pairs estimated by the PCA to be

easy than they were on the face pairs estimated to be difficult (Fig. 2).

This was true when people had unlimited time to match the pairs

(Experiment 1, F ð1; 20Þ ¼ 19:78, p < :0002), when the pairs were

presented for two-seconds (Experiment 2, F ð1; 48Þ ¼ 96:53,

p < :0001), and when the pairs were presented for 500 milliseconds

(Experiment 3, F ð1; 18Þ ¼ 62:65, p < :0001). Performance on the

face-matching task was good, but not perfect (see Fig. 2, for the

Experiment 2 results). In Experiment 2, average performance and

participant variability can be characterized as follows: For the

difficult face pairs, the average d0 was 2.34, (std: dev: ¼ 0:43;

minimum d0 ¼ 1:33; maximum d0 ¼ 3:53). For the easy face pairs,

the average d0 was 3.04, (std: dev: ¼ 0:42; minimum d0 ¼ 1:92;

maximum d0 ¼ 3:79).3

Remarkably, human participants performed no better with

unlimited time to examine each pair than with a 2 second time limit

ðF ð1; 176Þ ¼ 1:65; ns:Þ. Match accuracy declined, however, when

exposure time was limited to 500 milliseconds (F ð1; 176Þ ¼ 22:37,

p < :0001).
Combining across the three experiments, two findings are worth

noting. First, human face matching accuracy was roughly constant

for exposure times varying from two seconds to “unlimited” time.

Only in Experiment 3, where exposure time was reduced to 500 ms,

was there a substantial decline in performance. This suggests that

more time, or the use of a more analytic and time-consuming

strategy by humans, would not have pushed performance levels to

perfection. Whatever strategy humans employ to reach these

“good” to “excellent” levels of performance seems to operate

quickly and efficiently. The relatively stable performance of humans

across the exposure times supports the use of these data as

meaningful benchmark for algorithm performance.
A second result is that PCA can serve as an effective tool for

prescreening easy versus difficult face pairs for humans.
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2. Note that all key results in this paper are based on ROC curves (see
Figs. 2 and 3). The match versus nonmatch threshold, which is needed to
compute d0 for the inferential statistics, is not used in computing the ROC.
Rather, the ROC provides a complete picture of human accuracy at the
confidence threshold levels assessed (1 through 5). The ROC (Fig. 2) shows
that accuracy for the easy face pairs was higher than for difficult pairs at all
response ratings, indicating that a change in the match versus nonmatch
threshold for computing d0 would not affect the result.

3. The results of Experiments 1 and 3 are available in the supplemental
material, which can be found at http://computer.org/tpami/archives.htm.

Fig. 2. The accuracy of humans matching face identities for “easy” versus “difficult”

face pairs, with easy/difficult estimated by the baseline PCA algorithm. Face pairs

found to be more difficult for the PCA were likewise more difficult for humans.



2.2.2 Human-Algorithm Comparison

We compared human performance in Experiment 2 to the
performance of seven algorithms participating in the illumination
experiment of the FRGC. Three of these algorithms were
developed at academic institutions and four were developed by
commercial enterprises.

As noted, each participating algorithm produced a 16; 028�
8; 014 matrix of similarity scores for all the face pairs. The
similarity scores of the 240 (120 male and 120 female) face pairs
presented to participants in Experiment 2 were extracted from each
similarity matrix and analyzed as follows: A full ROC curve was
generated for each algorithm by sweeping a match criterion, c,
across the distributions of “match” and “no-match” similarity
scores and assigning same or different responses for individual
face pairs, (e.g., similarity score greater than c yielded “same” and
similarity score less than or equal to c yielded “different”). The
verification and the false acceptance rates were used to compute
ROC curves for the algorithms. For the human data, we used the
ROC curves in Fig. 2 for the comparison. The average human
performance in the easy and difficult conditions was used, because
it is the best estimate of how well a randomly selected human
participant would perform the task.

Fig. 3a shows the performance of the algorithms and humans
on the difficult face pairs. Three algorithms were more accurate
than humans at this task and four algorithms were less accurate
than humans. Two of the three algorithms that surpassed human
performance were developed at academic institutions [22], [23].
The third algorithm is from industry and is described partially in a
recent paper [24].

The performance of algorithms relative to humans for the easy
face pairs was even better. Six of the seven algorithms performed
more accurately than humans (Fig. 3b). The seventh algorithm
exceeded human performance only at low false acceptance rates.

In all cases, algorithm performance was better for the “easy”
face pairs than for the “difficult” face pairs, echoing the pattern for
humans.

Did human performance suffer from fatigue or waning
attention over the course of the experiment? To examine this
possibility, we assessed human performance over the sequence of
face pairs presented. Accuracy did not vary with trial number for
either the verification rate ðr ¼ 0:07; ns:Þ or for the false acceptance
rate ðr ¼ �0:04; ns:Þ. It is unlikely, therefore, that the compara-
tively lower performance of humans versus algorithms on the easy
face pairs was due to difficulties in maintaining attention for the
duration of the experiment.

3 GENERAL DISCUSSION

There is an implicit assumption among computer vision research-
ers, psychologists, and indeed much of the general public that
human abilities recognizing and matching faces are currently
beyond reach for machines. The present experiments challenge this
assumption by showing that some current face recognition
algorithms can compete with humans on a challenging task—
matching face identity between photographs that are taken under
different illumination conditions. Although algorithm perfor-
mance may not seem impressive in absolute terms, it nonetheless
compares favorably with humans. This is consistent with earlier
work indicating similar results for face sketch recognition [6], [7].

The comparisons we report may lead us to wonder if human
abilities with faces are overrated. Before concluding that they are,
we note that human participants in these experiments were asked
to match the faces of people previously unknown to them. This is
an appropriate task for testing the abilities of a human security
guard and/or algorithm, but may not show human face recogni-
tion skills at their best. The robust recognition abilities that

characterize human expertise for faces may be limited to the faces

of people we know well. Indeed, by contrast to performance with

unfamiliar faces, human face recognition abilities for familiar faces

are relatively robust to changes in viewing parameters such as

illumination and pose [25], [26].
The consistent advantage of the algorithms over humans on the

“easy” faces suggests that easy face pairs may simply be those in

which the image-based features for the two faces are well matched

and the illumination differences between images are minimal.

Because image-based matching is a task that face recognition

algorithms have done well for many years [1], it is perhaps not

surprising that algorithms can compete with humans on this task.

The algorithms might exploit useful, but subtle, image-based

information that give them a slight, but consistent, advantage over

humans.
An explanation for the better performance of algorithms on the

difficult face pairs is less clear and may await more information

and further tests of the algorithms that achieve this better

performance. Although a discussion of these algorithms is beyond
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Fig. 3. Performance of humans and seven algorithms on the difficult face pairs
(Fig. 3a) and easy face pairs (Fig. 3b) shown with ROC curves. Three algorithms
outperform humans on the difficult face pairs at most or all combinations of
verification rate and false accept rate (cf., [22] NJIT, [23] CMU for details on two of
the three algorithms). Humans outperform the other four algorithms on the difficult
face pairs. All but one algorithm performs more accurately than humans on the
easy face pairs. (A color version of this figure is provided in the supplemental
material, which can be found at http://computer.org/tpami/archives.htm.)



the scope of this paper, suffice to say that the Liu [22] and Xie et al.
[23] algorithms represent a departure from past approaches. Both
algorithms use kernel methods and both make efficient use of
multiple “training” images of individuals to create a face feature

space. The training images were made available to algorithm
developers for “optional use” and were not included in the target
or probe sets. The Liu [22] and Xie et al. [23] algorithms represent
faces in the derived face feature space before matching by identity.
It is possible that these algorithms work well because of
information they can exploit from training images about the
variability of individuals across changes in illumination. This may
be similar to information humans acquire in developing face
recognition skills and in becoming familiar with individuals.

The power of combining variable face images to improve face
recognition has been explored also by Burton et al. [27]. They used
a technique based on averaging multiple aligned face images of the
same person and found that it outperformed comparable systems
based on collections of instances. They demonstrated also that the
averaging procedure produced faces that humans recognized more
accurately than the original face images. Algorithms that make
coordinated use of multiple images, therefore, can potentially offer
insight into the question of how familiarity with multiple images of
individual faces may help to buffer human and machine
recognition against spurious changes in viewing parameters.

Finally, we tend to accept at “face” value, the pressing need to
evaluate the performance of any algorithm that is placed in the
field for a security application of importance. The tools and
techniques for evaluating human face matching and recognition
performance have been available for many years and make it
possible to test humans before assigning them to security tasks.
This is an important, even critical, step for evaluating the level of
security provided by human operators, by machine operators, and
by the human-machine partnerships that will likely become
commonplace in the near future for many security applications.
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