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Abstract

This paper summarizes the main concepts of Morphable

Models of 3D faces, and describes two algorithms for 3D

surface reconstruction and face recognition. The first al-

gorithm is based on an analysis-by-synthesis technique that

estimates shape and pose by fully reproducing the appear-

ance of the face in the image. The second algorithm is

based on a set of feature point locations, producing high-

resolution shape estimates in computation times of 0.25

seconds. A variety of different application paradigms for

model-based face recognition are discussed.

1 Introduction

Looking back at the development of vision research, sig-

nificant progress has been initiated by the insight that most

recognition tasks, such as face identification, do not nec-

essarily require a full reconstruction of the geometry and

the optical properties of the objects that are to be recog-

nized. Instead, many successful approaches have identified

invariant features or quantities in the images that reliably

characterize individual objects. For frontal views and con-

stant lighting conditions, a number of different algorithms

have achieved very impressive results (for an overview, see

[14]).

With the focus of research in face recognition shifting

more and more towards uncontrolled imaging conditions, it

has turned out to be surprisingly difficult to find features

or quantities in images of faces that remain invariant with

respect to changes in pose and illumination. In the image

domain, the changes induced by 3D rotations of faces and

by changes in illumination are notoriously complex, despite

the relatively simple nature of the underlying transforma-

tions in three-dimensional space. 3D rotation and hidden

surface removal are captured by a simple matrix equation

and a depth buffer operation, and illumination effects of

specular non-metallic surfaces are easy to approximate by

models such as the Phong illumination model [8]. More so-

phisticated models would be involved only if subtle effects,

such as subsurface light scattering in facial tissue, were to

be simulated, which does not seem to be relevant for face

recognition.

An obvious invariant feature in different images of a

rigid object is the 3D surface geometry with the local reflec-

tion properties of the material. The strategy pursued with

3D Morphable Models [5], therefore, has been to extract

complete shape and texture estimates as invariant features,

and to exploit the fact that changes in pose and illumination

are much less complex in the 3D domain than in images. In

other words, the approach transfers the invariance problem

to a simple, intuitive, explicit and precise formalism for the

pose and illumination transformations, at the price of possi-

bly recovering more information from the image than nec-

essary for a pure recognition task, and facing a challenging

shape reconstruction problem.

For shape reconstruction, image analysis has to deal with

pose and illumination changes in image space. In contrast,

image synthesis may perform these transformations both in

image space, for example in image based rendering, or in

3D, as it is done in standard computer graphics. Again, the

Morphable Model approach uses the fact that these trans-

formations are simpler in 3D, by performing an iterative

analysis-by-synthesis with 3D transformations. The non

face-specific parameters such as head pose, focal length of

the camera, illumination and color contrast are modeled ex-

plicitly, and they are estimated automatically. Unlike other

approaches, such as Shape-From-Shading, there is no re-

striction with respect to illumination models or reflectivity

functions: Any model from computer graphics can be used

in the synthesis iterations, and it affects only the computa-

tional complexity of the fitting algorithm.

In order to solve the ill-posed problem of reconstructing

an unknown shape with unknown texture from a single im-

age, the Morphable Model approach uses prior knowledge

about the class of solutions. In the case of face reconstruc-

tion, this prior knowledge is represented by a parameter-

ized manifold of face-like shapes embedded in the high-

dimensional space of general textured surfaces of a given

topology. More specifically, the Morphable Model captures

the variations observed within a dataset of 3d scans of ex-

amples by converting them to a vector space representation.

For surface reconstruction, the search is restricted to the lin-

ear span of these examples.



In the following three sections, we summarize the con-

cept of Morphable Models and describe two algorithms for

shape reconstruction. For further details, see [5, 6, 3]. Sec-

tion 5 will then discuss the advantages and disadvantages of

several different paradigms for using the Morphable Model

in face recognition.

2 A Morphable Models of 3D Faces

The Morphable Model of 3D faces[13, 5, 6] is a vector

space of 3D shapes and textures spanned by a set of ex-

amples. Derived from 200 textured Cyberware (TM) laser

scans, the Morphable Model captures the variations and the

common properties found within this set. Shape and tex-

ture vectors are defined such that any linear combination of

examples

S =

m
∑

i=1

aiSi, T =

m
∑

i=1

biTi. (1)

is a realistic face if S, T are within a few standard devi-

ations from their averages. In the conversion of the laser

scans into shape and texture vectors Si, Ti, it is essential to

establish dense point-to-point correspondence of all scans

with a reference face to make sure that vector dimensions in

S, T describe the same point, such as the tip of the nose, in

all faces. Dense correspondence is computed automatically

with an algorithm derived from optical flow [5].

Each vector Si is the 3D shape, stored in terms of x, y, z-

coordinates of all vertices k ∈ {1, . . . , n}, n = 75972 of a

3D mesh:

Si = (x1, y1, z1, x2, . . . , xn, yn, zn)T . (2)

In the same way, we form texture vectors from the red,

green, and blue values of all vertices’ surface colors:

Ti = (R1, G1, B1, R2, . . . , Rn, Gn, Bn)T . (3)

Finally, we perform a Principal Component Analysis

(PCA, see [7]) to estimate the probability distributions of

faces around their averages s and t, and we replace the ba-

sis vectors Si, Ti in Equation (1) by an orthogonal set of

eigenvectors si, ti:

S = s +
∑

i

αi · si, T = t +
∑

i

βi · ti. (4)

3 Estimation of 3D Shape, Texture, Pose and

Lighting

From a given set of model parameters α and β (4),

we can compute a color image Imodel(x,y) by standard

computer graphics procedures, including rigid transforma-

tion, perspective projection, computation of surface nor-

mals, Phong-Illumination, and rasterization. The image de-

pends on a number of rendering parameters ρ. In our sys-

tem, these are 22 variables: 3D rotation (3 angles), 3D

translation (3 dimensions), focal length of the camera (1

variable), angle of directed light (2 angles), intensity of di-

rected light (3 colors), intensity of ambient light (3 colors),

color contrast (1 variable), gain in each color channel (3

variables), offset in each color channel (3 variables).

All parameters are estimated simultaneously in an

analysis-by-synthesis loop. The main goal of the analysis

is to find the parameters α, β, ρ that make the synthetic

image Imodel as similar as possible to the original image

Iinput in terms of pixel-wise image difference

EI =
∑

x

∑

y

∑

c∈{r,g,b}

(Ic,input(x, y) − Ic,model(x, y))2.

(5)

All scene parameters are recovered automatically, start-

ing from a frontal pose in the center of the image, and at

frontal illumination. To initialize the optimization process,

we use a set of feature point coordinates [6]: The manually

defined 2D feature points (qx,j , qy,j) and the image posi-

tions (px,kj
, py,kj

) of the corresponding vertices kj define a

function

EF =
∑

j

‖

(

qx,j

qx,j

)

−

(

px,kj

py,kj

)

‖2. (6)

that is added to the image difference EI in the first itera-

tions.

In order to avoid overfitting effects that are well-known

from regression and other statistical problems (see [7]), we

add regularization terms to the cost function that penalize

solutions that are far from the average in terms of shape,

texture, or the rendering parameters. The full cost function

is

E =
1

σ2

I

EI+
1

σ2

F

EF +
∑

i

α2

i

σ2

S,i

+
∑

i

β2

i

σ2

T,i

+
∑

i

(ρi − ρi)
2

σ2

R,i

.

(7)

The standard deviations σS,i and σT,i are known from

PCA of shapes and textures. ρi are the standard starting

values for ρi, and σR,i are ad–hoc estimates of their stan-

dard deviations.

The cost function (7) can be derived from a Bayesian ap-

proach that maximizes the posterior probability of α, β and

ρ, given Iinput and the feature points [5, 6]. EI is related

to independent Gaussian noise with a standard deviation σI

in the pixel values, and the regularization terms are derived

from the prior probabilities. The system performs an opti-

mal tradeoff between minimizing EI and achieving a plau-

sible result.

The optimization is performed with a Stochastic Newton

Algorithm [6]. The fitting process takes 4.5 minutes on a

2GHz Pentium 4 processor.

Figure 1 shows a number of reconstructed test faces.

Note that, even though the training set of 3D scans con-

tained 199 Caucasian faces and only 1 Asian face, the sys-

tem can still be applied to a much wider ethnic variety of



Figure 1. Reconstructions of 3D shape and texture from FERET images [11] (top row). In the second
row, results are rendered into the original images with pose and illumination recovered by the

algorithm. The third row shows novel views.

faces. All shapes and textures in Figure 1 are linear combi-

nations of the 200 scanned faces.

Unlike Figure 1, we can also enhance the details of the

surface texture with a method presented in [5]. This will be-

come relevant in some of the face recognition paradigms de-

scribed in Section 5. The linear combination of textures Ti

cannot reproduce all local characteristics of the novel face,

such as moles or scars. We extract the person’s true texture

from the image, wherever it is visible, by an illumination-

corrected texture extraction algorithm [5]. At the bound-

ary between the extracted texture and the predicted regions,

we produce a smooth transition based on a reliability cri-

terion for texture extraction that depends on the angle be-

tween the viewing direction and the surface normal. Due to

facial symmetry, we reflect texture elements that are visible

on one and occluded on the other side of the face.

4 Fast 3D Reconstruction from Feature

Points

The most costly part of the fitting procedure, in terms

of computation time, is the high-quality reconstruction of

facial details, such as the shape of the nose and the lips.

While the relative position of these features in the face is

certainly relevant for most applications, it may sometimes

be acceptable not to reconstruct their individual shape in

detail. In previous work [3], we have presented an algorithm

that produces a coarse reconstruction from a given set of

facial feature points in 0.25 seconds (on a 1.7 GHz Pentium

Xeon processor).

In this algorithm, the reconstruction is based entirely on

the given 2D positions of feature points, with a cost function

as in Equation (6). Unlike Chapter 3, the problem is further

simplified by assuming orthographic projection, which is

well justified for human faces for camera distances larger

than 2 meters. Then, the 2D image positions of the vertices

kj are

(

px,kj

py,kj

)

= PR·s·









xkj

ykj

zkj



 +
∑

i

αi





xi,kj

yi,kj

zi,kj







+t

(8)

with an orthographic projection P, a known, fixed ro-

tation R, scaling s and translation t, an average position

(xkj
, ykj

, zkj
)T of the vertex kj and principal components

xi,k, yi,k, zi,k. In this setting, EF is a quadratic cost func-

tion in the shape parameters αi, and the solution can be

found directly using a Singular Value Decomposition.

In order to avoid overfitting, it is crucial in this approach

to add a regularization term η ·
∑

i

α2

i

σ2

S,i

to the overall cost



Figure 2. From an original image at unknown

pose (top, left) and a frontal starting position
(top, right), the algorithm estimates 3D shape
and pose from 17 feature coordinates, includ­

ing 7 directional constraints (second row).
We used 140 principal components and 7 vec­

tors for transformations. The third row shows
the texture­mapped result. Computation time
is 250ms.

function, as in Equation (7), with a regularization factor η

that can be estimated from the expected noise or uncertainty

in the feature point coordinates [3].

For most applications, the rotation matrix, scaling factor

and translation vector are unknown. We have developed an

algorithm that approximates the effect of these transforma-

tions in a linear way [3]. Residual errors due to this approxi-

mation are removed by a second pass of the same algorithm,

with updated variables R, s and t. After the second pass,

the result is stable and precise.

Finally, the color values of the input image are texture

mapped on the surface. Unlike Chapter 3, it is not possible

to correct for illumination, since no estimate of illumination

is available in this reduced algorithm. Texture values from

the right and left side of the face can be mirror reflected to

obtain a fully texture face from a single side view, as shown

in Figure 2.

Some facial features, such as the lips or the eyebrows,

have a linear structure, so correspondence can be defined

only perpendicular to this line, but not along the line. For

these features, the norm ‖

(

qx,j

qx,j

)

−

(

px,kj

py,kj

)

‖2 in EF

is replaced by a squared scalar product

(n · (

(

qx,j

qx,j

)

−

(

px,kj

py,kj

)

))2 (9)

with a vector n perpendicular to the feature line.
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 Nearest Neighbour Identity

Figure 3. Coefficient­based recognition: The
representation of faces in terms of model co­

efficients αi, βi for 3D shape and texture is
independent of viewpoint. For recognition,

all probe and gallery images are processed
by the model fitting algorithm.

5 Model-based Face Recognition

In this section, we discuss a number of different ap-

proaches for face recognition across large changes in view-

point and illumination. For enrollment, the face recognition

system is provided with one gallery image of each individ-

ual person, and in testing, each trial is performed with a

single probe image. In an identification task, the system re-

ports the identity of the probe person, and in verification,

it checks the claimed identity of a person. The approaches

described below are easy to generalize to tasks with more

than one gallery or probe image per person available.

3D Shape- and Texture-Based Approach:

The reconstructed shape and texture vectors s and t form

a representation of 3D faces that can be estimated from im-

ages by the fitting algorithm described in Chapter 3 or, with

less precision, with the method in Chapter 4. There are a

number of options for distance measures between 3D faces

to rely on for face recognition.
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Figure 4. Viewpoint Normalization: From a
probe image (top left), the Morphable Model
generates a transformed front view. This is in­

put to a view­based face recognition system
for comparison with the set of frontal gallery
views.

With an ideal reconstruction algorithm, shape and tex-

ture would be viewpoint- and illumination-independent

However, for unknown camera parameters and an unknown

3D shape, there are a number of ambiguities in shape recon-

struction, such as overall size and the ratio of the scale along

the left-right and front-back axes. These would pose signif-

icant problems to 3D shape comparisons, which is why we

recommend the following approach.

Coefficient-Based Approach: The Morphable Model

provides a class-specific, low dimensional representation of

faces in terms of model coefficients, and this representation

is also adjusted to the probability distribution of faces in

face-space. The linear coefficients αi and βi of the Mor-

phable Model are obtained along with the 3D shape and

texture by fitting the model to the input image. It is straight-

forward to base face recognition on a distance measure de-

fined on these values αi and βi.

Due to ambiguities and residual errors in model fitting,

different images of the same person produce slightly dif-

ferent model coefficients, so the representation is not per-

fectly invariant to the imaging conditions. Therefore, the

ratio of variation within individuals and between individu-

als has to be considered by the distance measure. In [6], this

is achieved by a PCA of the coefficients estimated from an

arbitrary dataset of images (different from the test set used

in the evaluation). Then, the model coefficients αi and βi

are rescaled along the principal axes of within-subject vari-

ation.

Once the gallery images and the probe image are con-

verted into model coefficients, identification is a simple

nearest-neighbour search in this low-dimensional represen-

tation with the distance measure described above. This

search can be performed very efficiently.

On 1940 probe images (194 individuals) of the FERET

dataset [11], this approach gives an overall rate of 95.9%

correct identification [6]. The images contain large varia-

tions in pose and some variation in illumination. Figure 1

shows some of the input images and the reconstructed 3D

faces.

The images of the PIE database from CMU [12] cover

an even larger range in pose (frontal to profile) and large

variations in illumination, including harsh lighting from be-

hind. On 4488 test images (68 individuals), the algorithm

achieved 95.0% correct identification if the gallery image

was a side view [6]. For verification at a 1% false alarm rate,

correct verification (hit rate) is 77.5% for the CMU-PIE and

87.9% for the FERET dataset. The fitting algorithm was ini-

tialized with a set of six to eight manually defined feature

points.

Viewpoint Normalization Approach: While the pre-

vious approach is applicable across large changes in view-

point, this comes at the price of a relatively high compu-

tational cost. In contrast, most face recognition algorithms

that are commercially available today are restricted to im-

ages with close-to-frontal views only, but they are more

computationally efficient. In a combined approach [10, 2],

we have used the Morphable Model as a preprocessing tool

for generating frontal views from non-frontal images which

are then input to the image-based recognition systems. This

approach pays off if some of the images, for example all

gallery or all probe images, are frontal views, so the fitting

algorithm is only run on the remaining subset.

For generating frontal views, the Morphable Model is

used to estimate 3D shape and texture of the face, and this

face is rendered in a frontal pose and at a standard size and

illumination. Restricted to the face, the model cannot rotate

the hairstyle and the shoulders of the individual in an image.

In order to obtain complete portraits that are suitable for the

commercial systems, the algorithm inserts the face into an

existing frontal portrait automatically (Figure 4). In other

words, the hairstyle and shoulders of all preprocessed im-

ages are those of a standard person, and the inner part of the

face is taken from the non-frontal input image. For details

on exchanging faces in images, see [4].

In the Face Recognition Vendor Test 2002, the viewpoint

normalization approach has improved recognition rates sig-

nificantly for nine out of ten commercial face recognition

systems tested [10]. In a comparison with coefficient-



based recognition, based on the same image data and the

same results of the fitting algorithm, recognition rates in

the coefficient-based approach were comparable to the best

results in the viewpoint-normalization approach [2]. This

indicates that not much diagnostic information on identity

is lost when the transformed image is rendered and subse-

quently analyzed in view-based recognition systems.

Synthetic Training Set Approach: Instead of generat-

ing a single standard view from each given input image,

3D face reconstruction can also help to build a large vari-

ety of different views, which are then used as a training set

for learning 2D features that are invariant with respect to

pose and illumination. This approach has been presented

in [9]. From a small number of images of an individual, a

3D face model was reconstructed, and 7700 images per in-

dividual were rendered at different poses and illuminations.

Along with the synthetic images, the rendering procedure

also provides the 2D positions of features, and image re-

gions around these features can be cropped automatically.

These subimages are used for training a support vector ma-

chine classifier for each feature type and each individual.

For each individual, all feature classifiers are combined to a

person-specific component-based recognition system which

is computationally efficient and robust at the same time.

6 Conclusions

Recent work in face recognition has demonstrated that

Morphable Models of 3D faces provide a promising tech-

nique for face recognition under uncontrolled imaging con-

ditions. The process of 3D shape reconstruction by fitting

the Morphable Model to an image gives a full solution of the

3D vision problem. For face recognition, however, a full

3D reconstruction may not always be necessary. In those

cases, the Morphable Model may help to improve existing

image-based classifier systems by preprocessing the gallery

or probe images. A comparison of the performance of

coefficient-based recognition and a combined approach has

demonstrated that both alternatives perform equally well,

and that a combination does not imply a loss of characteris-

tic information [2].

In addition to pose and viewpoint, facial expressions

pose an interesting and relevant challenge to current face

recognition systems. In the Morphable Model, facial ex-

pressions can, for example, be modeled by recording 3D

scans of a face at different expressions, establishing point-

to-point correspondence to the neutral reference face of

the Morphable Model, and adding the facial expressions as

new vectors to the dataset [1]. In this extended space, the

recorded set of facial expression can be applied to any other

individual face. If the extended Morphable Model is fit to an

image of an expressive face, the expression can be approx-

imately reconstructed, and by setting the coefficients of the

facial expression vectors to 0, the face can be brought to a

neutral expression automatically [1]. Similar to the view-

point normalization approach, this can be used for prepro-

cessing images and creating standard views from arbitrary

images.
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