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I.  INTRODUCTION 
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recognition problem researchers have prop
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parametric model. For instance, canonical correlation analysis 
[9], which analyzes the principal angles and canonical 
correlations between linear subspaces, is widely used in 
[4][19][26][27][28][30][31]. Besides, Wang et al. [6] 
represented each image set with its natural second-order 
statistical covariance matrix, and formulated the image-set 
based classification as classifying points lying on a Riemannian 
manifold. 

Very recently, Hu et al. [2] proposed an interesting image-
set-based face recognition method, namely sparse 
approximated nearest points (SANP). By modeling each image 
set as an affine hull, Hu et al. selected two points (one point in 
each image set) with the closest distance as the sparse 
approximated nearest points (SANP), where SANPs are 
required to be sparsely represented by the original samples. The 
final between-set distance is the distance between the SANPs 
multiplied by the dimension of the affine hull. SANP achieves 
state-of-the-art performance compared to previous methods. 
However, SANP does not model the image set well although it 
utilizes both affine hull representation and sparse regularization 
in a brute-force way. The complex model (e.g., three 
representation terms and four unknown variables) makes SANP 
somewhat confusing, and the sparse constraint and many 
unknown variables also increase the difficulty and complexity 
to solve SANP. 

This paper presents an efficient and effective regularized 
nearest points (RNP) method for image-set based face 
recognition. We will show that the complex formulation and 
the sparse constraint on the representation coefficients in SANP 
are not necessary. By modeling an image set as a regularized 
affine hull (RAH), two regularized nearest points (RNP), one 
on each RAH, are automatically computed, as shown in Fig. 1. 
Then the between-set distance is defined as the modulated 
distance between RNPs by the structure of image sets. 
Compared to SANP, RNP models the image set better and has 
a concise formulation with less number of parameters and 
unknown variables. An efficient algorithm is proposed to solve 
the proposed RNP with very low time complexity. Our 
experiments on benchmark image set databases clearly show 
that RNP leads to higher recognition accuracy than the 
previous methods, including SANP. And more importantly, the 
proposed RNP has a very fast speed, e.g., it is over 20 times 
faster than SANP on the CMU Mobo database [15]. 

The rest of this paper is organized as follows. Section II 
briefly reviews the SANP method in [2]. Section III presents 
the proposed RNP. Section IV conducts experiments and 
Section V concludes the paper. 

 

II. SPARSE APPROXIMATED NEAREST POINTS (SANP) 

Based on the work in [3] where each image set is modeled 
as an affine/convex hull, recently Hu et al. [2] proposed the 
sparse approximated nearest points (SANP) to combine the 
affine hull representation [3] and sparse representation [5]. 
SANP has two objectives. One is that the affine-hull 
regularized distance between two point sets should be small by 
minimizing 

     ( ) ( )
2

,i j i i i j j j
F

F = + − +ν ν µ ν µ νU U                       (1) 

where µk is the sample mean of the k
th

 class data matrix Xk, the 

columns of Uk are the orthonormal bases obtained from the 

singular value decomposition (SVD) of the centered data 

matrix of class k. It can be seen that this part is similar to the 

affine hull method in [3]. After minimizing Eq. (1), µi+Uiνi 

and  µj+Ujνj are called the nearest points between the i
th

 and j
th

 

classes, where νi and νj are the coding coefficients. 

The other objective of SANP is that each of the two 

nearest points should be sparsely represented by the original 

data matrix, i.e.,  

( )
2

, 1 11 1i i i i i F
G λ λ+ = + − +ν α α µ ν α αU X

,

( )
2

, 1 21 1j j j j j
F

Q λ λ+ = + − +ν β β µ ν β βU X , 

where λ1 and λ2 are the parameters to tune the effect of sparse 

constraint.  

The final model of SANP is  

( ) ( )( ), , , 1 21 1, , ,
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i j i j

i j
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F G Qγ λ λ= + + + +ν ν ν α ν β
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and the final classification of a testing image set is conducted 

to find which class has the minimal between-set distance, 

which is defined as 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ, , ˆ ,
,

i j i j
i j i j

D c c d d F G Qγ⎡ ⎤= + + +⎢ ⎥⎣ ⎦ν ν ν α ν β
       (3) 

where di and dj are the dimension of the affine hulls (i.e., Ui 

and Uj) of i
th

 class (i.e, ci) and j
th

 class (i.e., cj), respectively. 

For Xk, there is another parameter, ϕ, as a threshold of 

preserving energy (e.g., ϕ=85%) in determining Uk and dk. 

Although SANP has achieved very interesting results on 

image sets based face recognition, there are several issues 

needing to be further considered. 

a. The brute-force way to combine the affine hull 

representation and sparse representation makes the model 

of SANP rather complex (e.g., three representation terms 

in Eqs. (2) and (3), four parameters and four unknown 

variables), which increase the difficulty and complexity of 

solving SANP. 

b. The l1-norm sparse regularization on the representation 

coefficients α and β makes the solving of SANP time-

consuming, although the fast solver of Accelerated 

Proximal Gradient (APG) method was adopted in SANP.  

 

III. REGULARIZED NEAREST POINTS 

In this section, we first present the model of the proposed 
regularized nearest points (RNP). Then we describe the solving 
algorithm and classification of RNP. Finally the time 
complexity of the proposed RNP is discussed. 



A. Model of RNP 
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B. Algorithm of RNP 
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For the face recognition problem based on image sets, Eq. 
(8) could be solved very efficiently by alternatively calculating 

α and β. When α is fixed, β could be solved by 

( )i
−β = αP z X                                   (9) 

where ( )
1

2

T Tλ
−

= +P Y Y I Y . When β is fixed, we compute α 

by 

( )i
−α = βP z Y                                (10) 

where ( )
1

1

T T

i i i iλ
−

= +P X X I X . 

The algorithm of RNP with p=2 is summarized in 

Algorithm 1. Here we initialize α0=1/ni, where ni is the number 
of samples in the i

th
 class. It is easy to see that the cost function 

of Eq. (8) is lower bounded (≥0) and jointly convex to the 

variables α  and β. Because in each step of Algorithm 1 the 
cost function value will decrease, the proposed Algorithm will 
converge to the global optimal solution. 

 

Algorithm 1: Algorithm of Regularized Nearest Points (RNP) with p=2

Input: Projection matrices Pi and P, data matrices 
iX  and Y , a column vector 

z, and an initialization of α0. 

While not converged do 
Compute the representation coefficients: 

( )1t i t+ −β = αP z X ; 

( )1 1t i t+ +−α = βP z Y ; 

End while 

Output: representation coefficients α̂  and β̂  

 

C. Classifier of RNP 

With the solved coefficients α̂  and β̂ , the between-set 

distance of RNP is computed as follows 

( )
2

2

ˆˆ
i i ie

∗ ∗
= + ⋅ −α βX Y X Y

  
               (11) 

where 
*

X
 
(i.e., nuclear norm of X)  is the sum of the singular 

values: ( )
* kk

σ=∑X X , and 
2

2

ˆˆ
i −α βX Y

 
represents the 

Euclidean distance between the two regularized nearest points.  

The term ||Xi||*+||Y||* in Eq. (11) aims to remove the 
disturbance unrelated to the class information. For example, a 
wrong class which has much more samples than the correct 

class will have a lower value of 
2

2

ˆˆ
i −α βX Y . Term ||X||* is the 

convex relaxation of the rank of matrix X, which could reflect 
the representation ability of image set X (in our paper each 
column vector of X is normalized to have unit l2-norm energy). 
The proposed ei considers both the distance of RNPs and the 
structure of image sets, and it could well reflect the class 

information of Xi and Y. The term of di+dj in Eq. (3) of SANP 
also considers the structure of each image set, however, di+dj is 

sensitive to the threshold ϕ (i.e., energy preserving percent).  

The identity of the probe image set Y is decided by 

( ) { }identity arg min
i i

e=Y                         (12) 

D. Complexity analysis 

In this section, we compare the time complexity of the 
proposed RNP and the state-of-the-art sparse approximated 
nearest points (SANP) [2]. Some empirical analysis of sparse 
coding is firstly presented since SANP involves the step of 
sparse representation. Some fast l1-norm minimization solvers 
have been recently reviewed in [11]. However, it is known that 
sparse coding with an m n× -sized dictionary has a 

computational complexity of O(m
2
n

ε
), where ε≥1.2[12][13], m 

is the dimensionality of signal feature, and n is the number of 
dictionary atoms.  

The sparse coding step of SANP has empirical complexity 

O(m
2
(ni+ny)

ε
) for computing the between-class distance of Xi 

and Y, where ni and ny are the numbers of samples belonging to 
ith

 gallery class and the probe image set, respectively. Besides, 
SANP needs additional calculations of SVD (e.g., Ui and Uy) 

and variables (e.g., νi, and νy), where Uy and νy are associated 
to Y. Considering Ui for the gallery image set could be offline 
computed, the total time complexity of SANP for classifying 

the probe image set Y is about Osvd+ ΣiO(m
2
(ni+ ny)

ε
). Here the 

summarization Σi(.) means all the between-set distance of Y 
and Xi, i=1,2,…, should be calculated, and Osvd denotes the 
time complexity of Y’s SVD. 

Let’s analyze the complexity of the proposed RNP. For the 
query image set Y, all the projection matrices of Pi and ||Xi||* for 
all gallery sets could be computed offline. The computing of P 
involves a matrix inverse, whose time complexity is roughly 
equal to the calculation of SVD of Y in SANP. Thus the step 1 
to calculate P in RNP has a complexity of Osvd. The next step 
of RNP, i.e., the online iteration coding for Xi has a time 
complexity of O(lm(ni+ny)), where l is the iteration number. 
Usually a small value of l (e.g., l=5) could already get a good 
solution. In classification, ||Y||* could be fast computed due to it 
only involves the singular values. Therefore, the total 
complexity of RNP for a probe image set has a complexity of 

Osvd+ ΣiO(lm(ni+ ny)) with l=5 in this paper. 

The overall time complexity of RNP and SANP are listed in 

Table 1. Because ε≥1.2 and the iteration number of RNP is 
much less than the feature dimension (e.g., l=5<<m=900 in 
YouTube), RNP has much lower time complexity than SANP. 

 

TABLE 1. Time complexities of RNP and SANP for classify one probe image 
set. 

Method Step1 Step2 

SANP Osvd for SVD Σi O(m2(ni+ny)
ε) for sparse coding 

RNP Osvd  for P Σi O(lm(ni+ny)) for iterative coding 

 



IV. EXPERIMENTAL RESULTS 

We perform experiments on benchmark image-set face 
databases to demonstrate the effectiveness of RNP. We first 
discuss the experimental setup in Section A. In Section B, we 
evaluate RNP on three benchmark datasets, followed by the 
running time comparison in Section C. In this paper, the 

parameters of RNP is fixed as λ1=1e-3, and λ2=1e-1 for all the 
experiments. 

A. Experimenal setup 

Three benchmark image set databases, including 
Honda/UCSD [1], CMU Mobo [15], and YouTube Celebrities 
[16] datasets, are used to evaluate the proposed RNP. All the 
face images in the three datasets were detected by using the 
Viola and Jone’s face detector [14]. For Honda/UCSD and 
YouTube datasets, after histogram equalization the face images 
are resized to 20 × 20 and 30 × 30, respectively; and the raw 
pixel values of each image were directly used as the feature in 
the data matrix. For CMU Mobo dataset, the histogram of LBP 
feature [18] was extracted as the facial feature. For each dataset, 
three kinds of experiments are conducted with the frame 
number 50, 100 and 200, respectively. It should be noted that 
all images are used for classification if the number of frames in 
a set is fewer than the given frame number. 

The proposed RNP is compared with several state-of-the-

art and representative image set classification methods, among 

which the Discriminant Canonical Correlations (DCC) [19] 

and Mutual Subspace Method (MSM) [28] are linear subapce 

based methods; Manifold-Manifold Distance (MMD) [4] and 

Manifold Discriminant Analysis (MDA) [33] are nonlinear 

manifold based methods; and Affine Hull based Image Set 

Distance (AHISD) [3], Convex Hull based Image Set Distance 

(CHISD) [3], and Sparse Approximated Nearest Point (SANP) 

[2] are affine subspace based methods. All the competing 

methods are implemented by using the source codes provided 

by the authors, with the parameters tuned for their best results 

according to the recommendations in the original papers. For 

AHISD, CHISA and SANP, we used their linear versions 

since we didn’t consider the kernel version of RNP in this 

paper. In Honda/UCSD and CMU Mobo datasets, there is a 

single training image set for each class. Thus following the 

seting of [19], each single training image set for DCC was 

randomly divided into two subsets to construct the within-

class sets. 

B. Experimental results and analysis 

Honda/UCSD Dataset 

The Honda/UCSD dataset contains 59 video sequences of 
20 different subjects [1]. For each subject, different poses and 
expressions appear across different sequences, as shown in the 
face images in Figure 1. As the experimental setting of [1][2], 
we use 20 sequences for training, with the remaining sequences 
for testing.  

The recognition results using different number of training 
frames are reported in Table 2. We can clearly see that the 
proposed RNP achieves the best performance in all cases, 
especially when the frame number is 200 all the testing sets are 
correctly recognized. The linear RNP outperforms SANP and 

even has the same performance to the kernel version of SANP 
[2]. When there are enough image samples in each image set, 
good performance could be achieved by all the methods, except 
MSM, which usually gets the worst result.  When the number 
of image samples is not high (e.g., 50), the nonlinear manifold 
based methods (e.g., MMD) could not get a high recognition 
rate. However, the performance of the affine subspace based 
methods (e.g., AHISD, SANP) is still good.  

 

TABLE 2. Recognition rates on the Honda/UCSD Dataset 

Methods/Set Length 50 Frames 100 Frames 200 Frames 

DCC 76.92% 84.62% 94.87% 

MMD 69.23% 87.18% 94.87% 

MDA 82.05% 94.87% 97.44% 

AHISD 87.18% 84.62% 89.74% 

CHISD 82.05% 84.62% 92.31% 

MSM 74.36% 79.49% 76.92% 

SANP 84.62% 92.31% 94.87% 

RNP 87.18% 94.87% 100% 

 

CMU Mobo Dataset 

The CMU Mobo (Motion Boday) dataset [15] contains 96 
sequences of 24 subjects walking on a treadmill. For each 
subject, there are 4 video sequences (with significant pose 
variation) collected in four walking patterns, respectively. As 
[2], the employed sample features are the uniform LBP 
histograms using circular (8, 1) neighborhoods extracted from 
the 8× 8 squares of the gray-scale images. One image set per 
subject is randomly selected as the training data, with the 
remaining image sets as the testing data.  

 

TABLE 3. Recognition rates on the CMU Mobo Dataset 

Methods/Set Length 50 Frames 100 Frames 200 Frames 

DCC 82.1%±2.7% 85.5%±2.8% 91.6%±2.5% 

MMD 90.1%±2.3% 94.6±1.9% 96.4%±0.7% 

MDA 86.2%±2.9% 93.2%±2.8% 95.8%±2.3% 

AHISD 91.6%±2.8% 94.1%±2.0% 91.9%±2.6% 

CHISD 91.2%±3.1% 93.8%±2.5% 97.4%±1.9% 

MSM 84.3%±2.6% 86.6%±2.2% 89.9%±2.4% 

SANP 91.8%±3.1% 94.7%±1.7% 97.3%±1.3% 

RNP 91.9%±2.5% 94.7%±1.2% 97.4%±1.5% 

 

Ten experiments are conducted, with the average 
recognition rates and the standard deviations are summarized in 
Table 3. In all cases, RNP has the highest identification rates. 
Although SANP and CHISD have close recognition accuracy 
to RNP, we will see that the running time of RNP is much less 
than that of SANP and CHISD in the following Section of 
running time comparison. When there are 50 frames, DCC, 
MSM and MDA have recognition rates lower than 90%, which 



may result from the fact that extraction of discriminative 
information and manifold analysis depend on enough samples 
per image set. Compared to AHISD, the advantage of RNP is 
significant, which validates that the regularization of RAH 
indeed brings benefits to the final classification. 

YouTube Celebrities Dataset 

The YouTube Celebrities dataset [16] is a large-scale video 
dataset. This dataset is more challenging than the previous two 
datasets since the images are mostly low resolution and have 
large pose/expression variation, motion blur, etc, as shown in 
Fig. 3. In this part, the video sequences of the first 29 
celebrities are used to do the experiments. For each subject, 
three video sequences are randomly selected as the training 
data, with the other three randomly selected sequences as the 
testing data. We conduct 5 experiments by repeating the 
random selection of training/testing data. 

The experimental results, including the average recognition 
rate and the standard deviation, are summarized in Table 4. 
Similar conclusions to those on the previous two datasets could 
be made. RNP has better performance than all the competing 
methods. Compared to the second best method, SANP, over 1% 
improvement is achieved when the frame number is 50 and 100. 
In this challenging test, MSM has the worst result, with average 
identification rates less than 70%. It is also interesting to see 
that AHISD’s recognition rate fluctuates with the increase of 
the frame number, similar to what have found in the previous 
two datasets. 

 

   

Fig.3.Some examples of the YouTube dataset. 

 

TABLE 4. Recognition rates on the YouTube Dataset 

Methods/Set Length 50 Fames 100  Frames 200 Frames 

DCC 68.7%±3.2% 73.8%±4.7% 76.1%±2.5% 

MMD 69.0%±3.5% 72.0%±4.6% 76.3%±4.3% 

MDA 63.9%±3.9% 74.2%±5.9% 74.5%±5.0% 

AHISD 73.3%±5.4% 72.6%±7.6% 66.9%±4.8% 

CHISD 72.4%±5.5% 73.6%±5.2% 75.2%±5.2% 

MSM 66.2%±4.6% 66.0%±8.6% 65.3%±6.5% 

SANP 73.3%±3.9% 74.9%±5.9% 78.3%±4.2% 

RNP 74.9%±5.4% 76.1%±5.5% 78.9%±6.4% 

 

C. Runing time comparison 

From Section B, we can see that RNP achieves higher 

recognition rates than all the competing methods, including 

the recently developed SANP [2]. Next let’s compare their 

running time, which is one the most important concerns in 

practical applications. 

We do face recognition on CMU Mobo dataset [15] with 

the same experimental setting as that in Section B. The 

programming environment is Matlab version 2001a. The 

desktop used is of i7 2.8 GHz CPU and with 4GB RAM. In 

order to make the running time comparison fairer, we also list 

the offline training time of some methods. Apart from these 

discriminant methods (e.g., DCC, MDA) which need a 

training phase, the construction of local linear subspace in 

MMD, the SVD of training sets in SANP, and the projection 

matrix learning of the training sets in RNP are also regarded as 

the offline training.  

The offline training time and online testing time for 

classifying one image set with frame number as 100 is listed in 

Table 5. RNP has very short offline training time since only 

several matrix inverse computations are needed. The online 

testing time is more important for a classifier. From Table 5, 

we can see that the running time (i.e., for classifying a testing 

image set) of RNP is much less than all the other methods. 

Compared to SANP, the speedup of RNP is over 20 times. 

RNP is about 5 times faster than the second fastest method, 

MDA, with having much higher recognition accuracy.  

In order to more comprehensively evaluate the running 

time, in Fig. 4 we plot all the methods’ testing time versus 

different frame numbers. It can be seen that the proposed RNP 

is consistently faster than all the competing methods. The 

running time of all the methods will increase as the frame 

number except some special cases (e.g., DCC and MDA when 

the frame number is 200). Especially, AHISD’s running time 

will dramatically rise as the frame number increases.  

 

 
Fig. 4. The testing time for one image set versus the frame number for all the 

competing methods on the CMU Mobo dataset. 

 
TABLE 5. Computation time (seconds) of different methods on the CMU 
Mobo dataset with 100 frames for training and testing (classification of one 
image set). #1: offline  training time; #2: online testing time. 

 DCC MMD MDA AHISD. CHISD MSM SANP RNP 

#1 16.4 19.8 5.87 N/A N/A N/A 7.71 0.21 

#2 0.603 20.0 0.348 0.739 1.48 0.468 1.61 0.078
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V. CONCLUSION 

In this paper, we proposed a regularized nearest points 
(RNP) method for robust and fast face recognition based on 
image sets. We developed a novel regularized affine hull 
(RAH) to represent an image set, and defined the between-set 
distance as the distance between RNPs with consideration of 
the structure of image set. An efficient algorithm was also 
developed to implement RNP for image set based face 
recognition. We evaluated the proposed RNP on several 
benchmark image set databases. The extensive experimental 
results clearly demonstrated that RNP could achieve higher 
identification accuracy than the state-of-the-art methods (e.g., 
sparse approximated nearest points) but with much faster 
speed, making image sets based face recognition more 
applicable in practical applications. In this paper, we only 
discussed RNP with l2-norm regularization. Nevertheless, RNP 
is a general classification scheme, and different regularizations 
(e.g., sparse, non-negative) and the kernel tricks (e.g., Gaussian 
kernel) could be employed for different applications. 
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