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Abstract. Geodesic distance is a natural dissimilarity measure between prob-
ability distributions of a specific type, and can be used to discriminate texture
in image-based measurements. Furthermore, since there is no known closed-form
solution for the geodesic distance between general multivariate normal distribu-
tions, we propose two efficient approximations to be used as texture dissimilarity
metrics in the context of face recognition. A novel face recognition approach based
on texture discrimination in high-resolution color face images is proposed, unlike
the typical appearance-based approach that relies on low-resolution grayscale face
images. In our face recognition approach, sparse facial features are extracted using
predefined landmark topologies, that identify discriminative image locations on
the face images. Given this landmark topology, the dissimilarity between distinct
face images are scored in terms of the dissimilarities between their corresponding
face landmarks, and the texture in each one of these landmarks is represented by
multivariate normal distributions, expressing the color distribution in the vicinity
of each landmark location. The classification of new face image samples occurs
by determining the face image sample in the training set which minimizes the dis-
similarity score, using the nearest neighbor rule. The proposed face recognition
method was compared to methods representative of the state-of-the-art, using
color or grayscale face images, and presented higher recognition rates. More-
over, the proposed texture dissimilarity metric also is efficient in general texture
discrimination (e.g., texture recognition of material images), as our experiments
suggest.

Keywords: geodesic distance, approximations, multivariate normal distribution, face
recognition, sparse features.
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1. Introduction

The instrumentation and measurement fields are associated to measure, detect, record
and monitor a certain phenomenon (i.e., a measurand) in applications that usually
involve uncertainty and/or probability distributions. Some measurands are invisible
like the electromagnetic field, and others are visible like the light reflection on a surface.

In order to measure signals in the visible light spectrum, imaging sensors (i.e.,
cameras) are commonly used to record images or videos which tend to present higher
resolutions due to the technological advancement. In such recorded data, colors are
usually represented as basic color intensity combinations (i.e., red, green and blue),
leading to an inherent high-dimensional multivariate feature representation.

Moreover, the image processing and computer vision fields may be used to help
to extract reliable features for several instrumentation-related applications which use
texture information, such as face recognition [1] [2] [3] [4], brain image recognition [5]
[6], texture recognition of material images [7], food image recognition [8] [9], character
recognition [10] [11], yawning detection [12], etc. In this work, we are mainly interested
in face recognition by using efficient texture dissimilarity metrics based on geodesic
distance approximations between probability distributions.

Face recognition is an instrumentation-related application which uses computer
vision and pattern recognition techniques to identify individuals. Moreover, there are
several emerging applications based in face recognition in augmented reality, gaming,
security, and so on [3] [4] [13] [14]. Face recognition is also studied by neuroscientists
and psychologists to provide useful insights in how the human brain works [15]. In such
applications, features extracted from images or videos present high dimensionality and
the sample availability for machine learning is scarce, potentially leading to the known
curse of dimensionality [16].

In order to obtain compact face features while preserving the global data
structure, the Eigenfaces method [17] uses Principal Component Analysis (PCA) [18]
to create a linear orthogonal projection into a lower dimensional space, where new
face samples are recognized. The Laplacianfaces method [19] provides a more
efficient approach that tries to preserve the local data structure by creating a locality
graph, from which a linear lower dimensional projection is obtained. Furthermore,
the Orthogonal Locality Preserving Projections method (OLPP) [20] extends the
Laplacianfaces method by ensuring that the final linear projection is orthogonal.
Similarly, the Orthogonal Neighborhood Preserving Projections method (ONPP) [21]
tries to preserve the local and the global face data geometry by learning a neighborhood
graph, which leads to the determination of the final orthogonal linear transformation.

However, preserving the face data structure in the lower dimensional space not
always leads to a good face class separation. On the other hand, if the class labels
of each training sample are previously known, it is possible to preserve better the
class structure by using supervised dimensionality reduction approaches like Linear
Discriminant Analysis (LDA) [22], which determines a linear projection (Fisherfaces)
that moves samples from different classes away while approximates samples in the
same classes in the lower dimensional space.

There are methods based on LDA, like the Multi-view Discriminant Analysis
(MvDA) [23] method, that create projections of input face features using different
perspectives, and combine them to obtain the final linear transformation. However,
the typical LDA-based supervised approach may present inaccuracies for non-linear
separation problems. Therefore, Kernel functions were proposed to map feature
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data to a higher dimensional separable space [24] [25] [26] [27]. For instance, the
Spectral Regression Kernel Discriminant Analysis method (SRKDA) provides an
efficient computation of the kernel LDA using large datasets [26], obtaining as result
a linear projection that tends to preserve the original non-linear class structure.

Other methods try to learn non-linear transformations in order to preserve better
the non-linear data structure of high dimensional data, and that is the case of the
Isomap method [28], which creates a neighborhood graph in which the data manifold
is approximated by calculating approximations for geodesic distances by determining
the shortest path between samples. The final low dimensional representation of
the original samples is obtained by the typical multidimensional scaling algorithm
(MDS) [29].

The non-linear dimensionality reduction method called Locally Linear Embedding
(LLE) [30] tries to model data samples as linear combinations of its neighboring
samples and uses this information to determine the lower dimensional representation
of the original samples, preserving the local data geometry existing in the original
high dimensional space.

Although there are available in the literature several techniques to reduce
efficiently the face data dimensionality and preserve the underlying face class structure,
there are common issues which affect face representation such as variations of
illumination, changes in the head pose, change of appearance, and others, demanding
a high availability of distinct training samples in order properly to represent the face
variability for machine learning as in the appearance-based approach methods [17] [19]
[20] [21]. Since these methods concatenate all image pixels to create representative
feature vectors, they need to downsample grayscale face images to reduce the
computational complexity. The obtained face feature representation still presents
high dimensionality and suffers from the aforementioned issues.

On the other hand, it is possible to extract sparse face features directly from
high-resolution color face images by using face representations based in landmarks
associated to key points on face images at important and discriminative locations,
leading to an enhanced face representation [3] [31]. Landmarks can be automatically
determined by using approaches like Active Shape Models (ASMs) [32] and several
methods have been proposed to extract sparse features from face images using trained
ASMs [33] [34].

However, it is possible to rank landmarks in color high-resolution face images
according to their discrimination capability by using mutual information, as in the
Enhanced ASM method [31]. In this method, face features are represented by Gaussian
mixtures and new face samples are recognized by maximizing the class likelihood.
However, this classification scheme can be adversely affected by outliers and noisy
data.

Another method that extracts features from vicinities of landmark locations is
the Customized OLPP (COLPP) [3], in which landmark topologies are used to mark
important and discriminative information on face images. The pixels in the landmark
vicinities are concatenated to form high dimensional feature vectors which are mapped
into a lower dimensional space where the class structure of the original features is
preserved. In this discriminative linear space, classification occurs by employing a
linear soft margin Support Vector Machine (SVM) [35].

Most aforementioned methods usually extract high-dimensional feature vectors
from whole face images [19] [20] [21] or from landmark vicinities [3] [31], and may
be subject to undersampling because usually few training samples are available (i.e.,
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face images). On other hand, face features represented as probability distributions
demand fewer face samples for training and can be learnt from the texture in the
landmark vicinities in high-resolution color face images, leading to more accurate and
lower dimensional features representations [31]. In this case, relevant features are
extracted from key points on the face images (e.g. the eyes, eyebrows and nose). As
a consequence, texture dissimilarities can be obtained as geodesic distances between
probability distributions [4] [13].

In information geometry [36], the geodesic distance is defined as the length of
the shortest path between probability distributions lying on a Riemannian manifold
induced by the Fisher information metric applied to a parametric family of probability
distributions [37] [36]. As result, the geodesic distance is a natural dissimilarity metric
between probability distributions, and is used to discriminate texture in several image-
based-applications, e.g., face recognition [4]. Moreover, the normal distribution is
widely used in several applications, however, there is no known closed-form solution
for the geodesic distance between general multivariate normal distributions. Therefore,
we propose two efficient approximations to be used as texture dissimilarity measures
in the context of face recognition.

Moreover, we propose a novel approach for face recognition which uses information
geometry techniques [37] [36] to discriminate face textures, in which sparse facial
features are extracted from high-resolution color face images by using predefined
landmark topologies, unlike the appearance-based approach, in which low-resolution
grayscale face images are used to reduce the computational complexity [17] [19] [20]
[21]. By adopting a common landmark topology, the dissimilarity between distinct
face images can be scored in terms of the dissimilarities (obtained using the proposed
texture dissimilarity measures) between their corresponding landmarks represented by
multivariate normal distributions, which express the color distribution in the vicinities
of each landmark location.

The classification of new face samples is based on the nearest neighbor rule.
Therefore, a new sample is classified by determining the face image sample in the
training set which minimizes the dissimilarity score against the new sample. Our
new face recognition method was compared to methods representative of the state-
of-the-art using color or grayscale face images, and provided higher recognition rates,
reinforcing a belief that color information is relevant for face recognition [3] [31].
Moreover, our new texture dissimilarity metrics applied to face recognition also are
efficient in general texture discrimination (e.g., texture recognition of material images),
according to an additional set of experiments that we provide in texture recognition,
also overcoming state-of-the-art methods.

This paper is organized as follows. Section 2 proposes geodesic distance
approximations between multivariate normal distributions to be used as a texture
dissimilarity metric in face recognition. Section 3 presents the proposed face
recognition method, where section 3.1 discusses how sparse features and probability
distributions are obtained from face images, and section 3.2 presents how dissimilarities
between distinct face images are scored in terms of the dissimilarities between textures
in their corresponding landmark vicinities by using the proposed geodesic distance
approximations. The experimental results are presented and discussed in section 4
and the final conclusions and ideas for future works are presented in section 5.



Meas. Sci. Technol. 5

2. Geodesic Distance Approximations Between Multivariate Normal
Distributions

In many face recognition methods, face features are represented as vectors [17] [19] [20]
[21] [3]. However, those feature representations are highly affected by natural image
issues such as variations in illumination, pose and scale. Moreover, usually there are
not enough samples (face images) properly to sample such high-dimensional feature
spaces.

On the other hand, multivariate probability distributions of color image
pixels tend to preserve the original image characteristics in a lower dimensionality
representation, which are useful for texture discrimination. Moreover, such feature
representations are robust to scale and pose variations. Therefore, we choose to
represent image features as multivariate normal distributions which are defined as
follows:

F (x|µ,Σ) =
e−

1
2 (x−µ)T Σ−1(x−µ)√

(2π)
C |Σ|

, (1)

where x is a C-dimensional vector, µ is the C-dimensional mean and Σ is the C × C
covariance matrix, for images with C color channels.

Since geodesic distances are the natural distance measure for families of
probability distributions [36], and assuming that the texture in the landmark vicinities
is normally distributed, we use geodesic distances between normal distributions in
order to measure dissimilarities between the textures of corresponding landmarks of
distinct face images.

Considering the case when there are two univariate normal distributions
F1(x|µ1, σ1) and F2(x|µ2, σ2), the geodesic distance Ge(F1, F2) between both
distributions is given in a closed-form [37] by:

Ge(F1, F2) =
√

2 ln
1 + δ

1− δ
= 2
√

2 tanh−1 δ, (2)

where

δ ≡

[
(µ1 − µ2)

2
+ 2(σ1 − σ2)

2

(µ1 − µ2)
2

+ 2(σ1 + σ2)
2

]1/2

. (3)

However, for the proposed method, a univariate normal distribution is not suitable
since it supports only monochromatic images (i.e., grayscale images). Instead, we use
color-based feature representations since color features tend to improve image class
discrimination [3] [31]. Therefore, multivariate normal distributions are more adequate
to represent face image features.

One special case of multivariate normal distribution is when the covariance matrix
Σ = diag(σ2

1 , σ
2
2 , ..., σ

2
C) is a diagonal matrix (i.e., the color channels are independent

features). Therefore, the geodesic distance Gf (F1, F2) between multivariate normal
distributions F1(x|µ1,Σ1) and F2(x|µ2,Σ2) given by [38] for diagonal covariance
matrices can be used as a dissimilarity metric:

Gf (F1, F2) =

√√√√ C∑
c=1

Ge(F c1 , F
c
2 )

2
, (4)
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where F c1 = F1(x(c)|µ1(c),Σ1(c, c)) represents the c-th independent univariate normal
distribution with mean µ1(c) and variance Σ1(c, c), belonging to the multivariate
distribution F1(x|µ1,Σ1).

However, image color channels are usually not statistically independent, and
using multivariate normal distributions with diagonal covariance matrices may discard
relevant and discriminative texture information which should be accounted for geodesic
distances. Moreover, such distributions are not generally adequate for texture
discrimination since they ignore the natural covariances between color channels
inherent in the color images.

Therefore, in order to obtain more accurate geodesic distances, we can consider
using geodesics for general multivariate normal distributions, where the covariances
between color channels are also accounted. Unfortunately, there is no known closed-
form solution for this case, but closed-form solutions for two specific multivariate
normal distribution subcases are known [37] [38]:

(i) µ1 6= µ2,Σ1 = Σ2 :

Gµ(F1, F2) =

√
(µ1 − µ2)

T
(Σ1)

−1
(µ1 − µ2), (5)

(ii) µ1 = µ2,Σ1 6= Σ2 :

GΣ(F1, F2) =

√√√√1

2

C∑
j=1

log2(λj), (6)

with {λj} = Eig((Σ1)
−1/2

Σ2(Σ1)
−1/2

), (7)

where Eig is a function that returns the eigenvalues of a given matrix and λj indicates
the j-th eigenvalue.

We intend to approximate the geodesic distance for the case of general
multivariate normal distributions based on equations (5) and (6), however some
adaptations are necessary due to the fact that distinct images often present different
means and covariance matrices. As equation (6) does not consider means (µ1 and
µ2), we can use it without changes since it is independent of the means. However,
equation (5) requires a common covariance matrix Σ1, but we have two different
covariance matrices Σ1 and Σ2. Therefore, we propose the following two alternatives
for computing Gµ for general multivariate normal distributions:

Ggµ(F1, F2) = 0.5

√
(µ1 − µ2)

T
(Σ1)

−1
(µ1 − µ2)

+ 0.5

√
(µ1 − µ2)

T
(Σ2)

−1
(µ1 − µ2), (8)

and,

Ghµ(F1, F2) =

√
(µ1 − µ2)

T

(
Σ1 + Σ2

2

)−1

(µ1 − µ2), (9)

leading to two distinct ways to approximate the geodesic distance for general
multivariate normal distributions:

Gg(F1, F2) =
Ggµ(F1, F2) +GΣ(F1, F2)

2
, or (10)

Gh(F1, F2) =
Ghµ(F1, F2) +GΣ(F1, F2)

2
. (11)
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Considering that the color channels of face images are statistically independent,
we fall into the multivariate case with diagonal covariance matrix (Gf ). Otherwise, the
general multivariate case provides a more accurate geodesic distance approximation
between multivariate normal distributions (Gg or Gh).

Moreover, based on information geometry concepts [36] [37], the proposed
geodesic distance approximations for multivariate normal distributions (Gf , Gg
and Gh) can be considered as Riemannian metrics on the parameter space of the
multivariate normal distributions given by the C-dimensional mean vectors (µ) and
the C × C-dimensional positive semi-definite symmetric matrices, i.e., covariance
matrices (Σ). As a consequence, our proposed geodesic distance approximations can
be used as efficient dissimilarity metrics for the statistical discrimination of texture
representations.

Next, we present the proposed approach for face recognition, which is based on
the proposed geodesic distance approximations as a texture dissimilarity metric.

3. Face Representation and Recognition

Next, we present our proposed approach for face representation and classification.

3.1. Sparse Face Feature Extraction

Typical appearance-based methods [17] [19] [20] [21] exploit the face data variability
for machine learning. However, in order to reduce the computational complexity, these
methods use low-resolution grayscale face images which are converted to the form of
high-dimensional feature vectors. On the other hand, more discriminative features
tend to be obtained from high-resolution color face images by extracting information
from the texture in the vicinities of key points on the face images (i.e., landmarks) [3].
Therefore, we propose a feature extraction method based on the sparse approach,
since this feature representation can be approached as a multivariate classification
problem [31] [3].

Assuming a point distribution model to represent color face images, a predefined
topology with Q landmarks can be used to represent the facial features at Q face
image locations. These Q landmarks may be manually annotated or automatically
identified in the face images. However, there is uncertainty about the correct location
of manually annotated or automatically identified landmarks due to image artifacts
(e.g. head pose, noise, illumination change, etc.). Therefore, given a landmark
topology, we can introduce interpolated landmarks between each pair of consecutive
landmarks on a face image, improving the reliability of the biometric information. The
final landmark topology contains a set of L identified and interpolated landmarks, with
L > Q. The adopted landmark topology used in this work is presented in figure 1,
marking important information from the face images such as the eyes, eyebrows and
nose.

Therefore, given a landmark topology with L landmarks (i.e., the landmark
topology in figure 1), the texture in the squared vicinities with size w×w centered in
each landmark l is extracted from each face image (i.e., head pose) b of face class a,
considering that the face images have C color channels. For a landmark l, Ia,b,l(m,n)
is the C-dimensional color vector representing the pixel (m,n) in the vicinity of l, with
m,n = 1, 2, ..., w.
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Figure 1. Adopted landmark topology exemplified in the FEI Face Database [39].
The face landmarks are in red and the interpolated landmarks are in blue.

Next, statistical feature descriptors of each landmark are obtained. First, the
C-dimensional color means µa,b,l in the landmark vicinities are obtained as follows:

µa,b,l = E[Ia,b,l] =
1

w2

w∑
m,n=1

Ia,b,l(m,n), (12)

that are associated with their respective (C × C)-dimensional covariance matrices
Σa,b,l, which are obtained as follows:

Σa,b,l = E[(Ia,b,l − µa,b,l)(Ia,b,l − µa,b,l)T ] =

1

w2

w∑
m,n=1

(Ia,b,l(m,n)− µa,b,l)(Ia,b,l(m,n)− µa,b,l)T .

(13)

For instance, considering color (RGB) face images, µa,b,l will be a 3-dimensional
vector, but for grayscale face images µa,b,l will be a 1-dimensional vector. As result,
each landmark l in the face image b of class a is represented by the mean µa,b,l and
the covariance matrix Σa,b,l computed from the vicinity of the same landmark.

Since the landmarks represent discriminative information on the face images,
we propose to calculate dissimilarities between distinct face images in terms of the
dissimilarities between the texture in their corresponding landmark vicinities by
adopting a common landmark topology (i.e., the landmark topology in figure 1) as
will be described in section 3.2.

3.2. Face Classification

Since geodesic distances are a natural dissimilarity metric for statistical distributions,
we propose to calculate dissimilarities between distinct face images by summing
dissimilarities between the texture of their corresponding landmarks which are given
as geodesic distances approximations between multivariate normal distributions as
presented in section 2. Considering L, the total number of landmarks in a landmark
topology, a geodesic distance approximation between multivariate normal distributions
can be adopted, i.e., Gf (equation (4)), Gg (equation (10)) or Gh (equation (11)).

Considering color (RGB) face images, the texture in the vicinity of each landmark
can be considered as a multivariate normal distribution, since each pixel can be treated
as a 3-dimensional sample within the landmark vicinity. Considering that the color
channels are independent for each landmark, the geodesic distance approximation Gf
for multivariate normal distributions with diagonal covariance matrices provides a
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suitable geodesic distance metric. In this case, the dissimilarity Sf
a′,b′

a,b between the
face image (i.e., head pose) b of face class a with the face image b′ of face class a′ can
be scored by using Gf as follows:

Sf
a′,b′

a,b =

L∑
l=1

Gf (Fa,b,l, Fa′,b′,l), (14)

where Fa,b,l represents a multivariate normal distribution with null covariances for
the landmark l in the face image b of face class a with the C-dimensional mean
µa,b,l and the (C × C)-dimensional covariance matrix Σa,b,l. On the other hand, if
the multivariate face data present relevant covariances between color channels, one
of the proposed geodesic distance approximations for general multivariate normal
distributions (Gg or Gh) should be more adequate for the score calculation:

Sg
a′,b′

a,b =

L∑
l=1

Gg(Fa,b,l, Fa′,b′,l), (15)

or

Sh
a′,b′

a,b =

L∑
l=1

Gh(Fa,b,l, Fa′,b′,l). (16)

As result, small scores indicate similar face images (which is the case of a sum
of small dissimilarities between landmarks), and, similarly, bigger scores indicate
dissimilar face images. Based on the nearest neighbor classification rule, the
classification of a new face sample image Ia′,b′ occurs by determining the face image
Ia,b in the training set which is less dissimilar to Ia′,b′ by minimizing one of the three

proposed score functions: Sf
a′,b′

a,b , Sg
a′,b′

a,b or Sh
a′,b′

a,b .
Moreover, in the score calculation in practice, some landmarks may be influenced

by issues that commonly affect the face representation, such as variations of
illumination, changes in the head pose and change of appearance, including also
landmark positioning inaccuracies or texture non-Gaussianity. Such inaccurately
positioned landmarks are expected to have some effect on the proposed dissimilarity
score functions calculations. However, the impact of such landmarks is attenuated
by the addition of more landmarks, which are interpolated and tend to increase the
overall feature quality of the face image representation, diluting the impact of any
inaccurately positioned landmarks on the proposed scores calculations, since landmark
interpolation increases the overall feature quality as discussed in section 3.1.

Next, we compare experimentally the proposed method with methods that are
representative of the state-of-the-art under adverse image conditions found in practice.

4. Experimental Results

Experiments were conducted to compare the proposed face recognition method
presented in section 3 (which uses the geodesic distance approximations presented
in section 2 to discriminate texture in the vicinities of the landmarks) to methods
representative of the state-of-the-art using a face database commonly used in face
recognition (i.e., the FERET face database [40]). This face database was created
with the objective of providing credible data for the development of new techniques,
technology, and algorithms for the automatic recognition of human faces. The
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Table 1. Face recognition rates obtained for the FERET face database.

Methods RGB Grayscale

Proposed method with score Sh 95.3% 82.3%
Proposed method with score Sg 95.4% 83.2%
Proposed method with score Sf 83.1% 78.6%
COLPP (d=54,k=6,t=500,r=0.78) 93.8% 79.5%
Enhanced ASM 72.5% 53.8%
SVM 85.2% 76.4%
SRKDA (σ=20000) 64.9% 59.7%
MvDA (d=100) 76.1% 71.4%
Eigenfaces (d=51) 69.6% 64.1%
Fisherfaces (r=0.8) 67.1% 65.7%
LPP (d=50,k=1,t=500,r=0.34) 67.1% 65.5%
OLPP (d=54,k=1,t=500,r=0.34) 69.0% 66.2%
LLE 54.2% 46.2%
Isomap 69.1% 64.8%

database is used to develop, test, and evaluate face recognition algorithms. It presents
color face images in high-resolution (512 × 768 pixels), organized in several subsets
with specific head pose, expression, age, and illumination conditions. Experiments
were performed with the color face images of the first 200 face classes of the subsets
fa, fb, hl, hr, rb and rc, including all 6 head poses, totaling 1200 images (6 images
for each class), as details in [4].

In all experiments with the proposed method, the feature extraction and
representation method proposed in section 3.1 was applied to the face images in the
database to extract statistical feature descriptors (i.e., mean vectors and covariance
matrices) from the landmark vicinities of size w × w (w = 11) centered at each
landmark location, using (12) and (13). In order to select consistent features from the
landmarks vicinities, only faces with no landmark occlusions were used. A common
landmark topology was used in all experiments in table 1, which is reported in figure 1,
collecting important and discriminative features from face images.

The methods used for comparison in the table 1 are the Customized OLPP
method (COLPP) [3], Enhanced ASM method [31], Support Vector Machines
(SVM) [41], Spectral Regression Kernel Discriminant Analysis (SRKDA) [26],
Multi-view Discriminant Analysis (MvDA) [23], Eigenfaces [17], Fisherfaces [22],
Laplacianfaces [19], Orthogonal Locality Preserving Projection (OLPP) [20], Locally
Linear Embedding (LLE) [30] and Isomap [28]. The proposed method is compared
using three distinct score functions (Sf , Sg and Sh) defined in section 3.2.

A set of experiments involving the proposed method and the aforementioned
methods was conducted on the FERET face database, and 6 runs were executed on
the entire test subset. In each run, a leave-one-out test strategy was adopted, and 5
head poses per class were randomly selected for training, and 1 head pose per class
was randomly selected for testing. Table 1 shows the average face recognition rates for
the proposed method and methods representative of the state-of-the-art. All methods
in table 1 use the same selection of face images, in color (RGB) or in grayscale (color
images were converted to grayscale).

For each method listed in table 1, the parameters obtaining the best experimental
results were chosen by testing each method with several parameters configurations
until the maximum recognition rate was reached. The parameter d used in Eigenfaces,
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Table 2. Elapsed execution times by image for training and testing in the face
recognition experiments with the FERET face database.

Methods RGB Greylevel

Proposed method with score Sh 0.04s 0.04s
Proposed method with score Sg 0.04s 0.04s
Proposed method with score Sf 0.04s 0.04s
COLPP 0.06s 0.05s
Enhanced ASM 0.47s 0.05s
SVM 0.14s 0.06s
SRKDA 0.06s 0.05s
MvDA 0.07s 0.04s
Eigenfaces 0.06s 0.04s
Fisherfaces 0.06s 0.05s
LPP 0.08s 0.06s
OLPP 0.06s 0.05s
LLE 0.81s 1.19s
Isomap 0.12s 0.44s

Laplacianfaces and other methods is the dimensionality of the subspace, assuming k
neighbors, and r is the PCA ratio [17] [19] [20], which also is used by the Fisherfaces
and the MvDA methods. The adopted SVM implementation was the LIBSVM [42].
In SRKDA, the Gaussian kernel with standard deviation σ was used. In the iterative
Boosting LDA method [43], 10 iterations were performed in each experiment, using
half of the training samples for training and the other half for validation, and the
Euclidean distance was used as the distance measure. In table 1, the method MvDA
was trained to use head poses as views. In the Enhanced ASM method [31], the
parameter α was set to 1 giving more importance to measurements in the local vicinity
of the landmarks.

As shown in table 1, experiments with color images presented higher
recognition rates than the experiments with the same images but converted to
grayscale, confirming a trend that color face features tend to improve face class
discrimination [31] [3]. Moreover, the proposed face recognition method with the score
functions Sh or Sg presented higher recognition rates than with the score function Sf ,
pointing out that the covariance information between color channels is important to
accommodate effects of lighting variation and to approximate better the geodesic
distances between multivariate normal distributions. Finally, the proposed face
recognition method potentially can present higher recognition rates than comparable
methods in the state-of-the-art.

The obtained execution time is relevant for practical face recognition applications,
which commonly require real-time processing. The average execution time per color
image for each method in the experiments reported in table 1 are mentioned in
table ??, for training and for testing. The short execution times found for the proposed
method are due to its low computational complexity, since only small mean vectors
and covariance matrices are extracted from the face images. As a result, the proposed
method has potential for real real-time applications. The experiments reported in
table ?? were performed in a computer with an Intel i5 processor, third generation,
with 8Gb RAM.

The results obtained in table 1 show that the proposed metrics to discriminate
texture are efficient in face recognition (Gg in (10) and Gh in (11)). Moreover, we
provide an additional set of experiments in general texture discrimination (e.g., texture
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Table 3. Texture recognition rates obtained for the KTH-TIPS texture database.

Methods Recognition Rates

Proposed method with score Sh 99.76%
Proposed method with score Sg 99.76%
Proposed method with score Sf 66.80%
SRP [7] 99.29%
PLS [46] 98.50%
SSLBP [47] 99.39%
LETRIST [48] 99.00%
DMD [49] 97.96%

recognition of material images) in order to evaluate the potential of the proposed
texture discrimination metrics shown in section 2 to be applied in typical texture
discrimination problems (i.e., represented here by the KTH-TIPS texture database [44]
and the KTH-TIPS-2b texture database [45]). In these experiments, statistical feature
descriptors (i.e., mean vectors and covariance matrices) were extracted using (12)
and (13) from the entire texture images, assuming that the texture features in each
texture image are normally distributed. This is supported by the fact that the human
face presents a recognizable structure which helps face recognition [3] [31]. However,
texture images often contain stochastic variations, and may vary with the pose and
scale, so textures are described statistically.

As mentioned before, in order to evaluate the potential of the proposed method
for texture recognition, additional tests were performed on the KTH-TIPS texture
database [44] and on the KTH-TIPS-2b database [45]. The KTH-TIPS texture
database [44] provides images of textured materials in color with size 200 × 200
organized in 10 texture classes, and each class consists of 81 samples which are
captured under nine scales, three different poses and three distinct illumination
directions. Experiments were run by partitioning the database samples in 50 partitions
of training and testing sets, in which half of the samples per class are randomly selected
for training and the remaining half for testing [7]. Table 3 shows the average texture
recognition rates for the proposed method and methods representative of the state-of-
the-art.

The methods presented in table 3 used for comparison in the KTH-TIPS
database are the Sorted Random Projections (SRP) [7], Pattern Lacunarity Spectrum
(PLS) [46], Scale-Selective Local Binary Pattern (SSLBP) [47], Locally Encoded
Transform Feature Histogram (LETRIST) [48] and Dense Microblock Difference
(DMD) [49]. The proposed method was compared using three distinct score functions
(Sf , Sg and Sh) defined in section 3.2.

Another challenging database used in texture recognition is the KTH-TIPS-2b
database [45] which provides material images in color with size 200×200 organized in
11 texture classes, and each class consists of 432 samples which are captured under nine
scales, three different poses and four distinct illuminants, as exemplified in [45]. Fifty
experiments were run partitioning the database samples in a ten-fold test strategy [50],
in which 11 samples per class are randomly selected for testing and the remaining
samples were selected for training in each experiment. Table 4 shows the average
texture recognition rates for the proposed method and methods representative of the
state-of-the-art.

The methods presented in table 4 used for comparison in the KTH-TIPS-2b
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Table 4. Texture recognition rates obtained for the KTH-TIPS-2b texture
database.

Methods Recognition Rates

Proposed method with score Sh 99.24%
Proposed method with score Sg 99.23%
Proposed method with score Sf 93.70%
LBP [51] 92.53%
ILBP [52] 95.88%
SLBP [53] 95.54%
LTP [54] 96.61%
αLBP [50] 96.04%
IαLBP [50] 97.25%

database are the Local Binary Pattern (LBP) [51], Improved LBP (ILBP) [52],
Shift LBP (SLBP) [53], Local Ternary Pattern (LTP) [54], α-Local Binary Pattern
(αLBP) [50], and Improved αLBP (IαLBP) [50]. The proposed method was compared
using three distinct score functions (Sf , Sg and Sh) defined in section 3.2.

In the experimental results presented in table 3 and 4, the proposed texture
dissimilarity metric (i.e., geodesic distance approximations) applied to texture
recognition with the score functions Sh or Sg presented higher recognition rates
than with the score function Sf , also pointing out that the covariance information
between color channels is important to approximate better the geodesic distance
between multivariate normal distributions. Finally, our new method applied to texture
recognition presented higher recognition rates than comparable methods in the state-
of-the-art, also pointing out that this discrimination metric is efficient not only for
face textures, but also for typical textures, such as those occurring in material images.

5. Conclusions

In this work, geodesic distance approximations for multivariate normal distributions
were proposed as texture dissimilarity measures applied to face recognition. Also,
a novel face recognition method based on information geometry techniques [36] is
proposed. In the proposed approach, the textural dissimilarities in the vicinities of
corresponding landmarks in distinct high-resolution color face images are scored in
terms of these geodesic approximations, i.e., using the proposed geodesic distance
approximations between multivariate normal distributions representing the color
distributions in the vicinity of each landmark location. Besides, a specific landmark
topology is utilized to extract and compare the face landmarks.

Our proposed face recognition method tends to handle better common issues in
face recognition, such as variations in illumination, changes in the head pose, change
of appearance, and other issues, since the extracted pixel distributions sampled in the
vicinities of the face landmarks tend to be similar across different expressions and
head poses. Moreover, the new method takes advantage of the natural redundancy
that exists in high-resolution color face images, so it more accurately evaluates the
dissimilarities between textures in the vicinities of corresponding landmarks.

Our method was compared to methods that are representatives of the state-
of-the-art using color and also grayscale face images, and it tends to obtain higher
recognition rates. Moreover, the experimental results also support a trend in which
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color information is relevant on face recognition [31] [3].
Additionally, our texture dissimilarity measures applied in face recognition

potentially can be efficient in general texture discrimination (e.g., texture recognition
of material images); an additional set of experiments in texture recognition showed
that our method improved on state-of-the-art methods. Furthermore, using different
covariance matrices was found to be relevant for texture discrimination.

Future work will deal with issues such as the identification of the best landmark
topology for face recognition. Also, we intend to investigate texture feature
representations for binary patterns applied to face recognition. Further study will
be of alternative techniques to obtain other geodesic distance approximations for
multivariate normal distributions, including Gaussian mixture models.
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[34] Kim J, Çetin M, and Willsky A S. Nonparametric shape priors for active contour-based image

segmentation. Sign Process, 87(12):3021–3044, 2007.
[35] Vapnik V N. Statistical Learning Theory. Wiley-Interscience, Ney York, 1998.
[36] Amari S-I and Nagaoka H. Methods of Information Geometry. American Mathematical Society,

2007.
[37] Atkinson C and Mitchell A F S. Rao’s distance measure. The Indian J. of Statistics, 48(3):345–

365, 1981.
[38] Costa S I R, Santos S A, and Strapasson J E. Fisher information distance: a geometrical reading.

Discrete Appl. Math., 197:59–69, 2015.
[39] Thomaz C E and Giraldi G A. A new ranking method for principal components analysis and

its application to face image analysis. Image Vis Comput., 28(6):902–913, 2010.
[40] Phillips P J, Wechsler H, Huang J, and Rauss P J. The FERET database and evaluation

procedure for face recognition algorithms. Image Vis Comput., 16(5):295–306, 1998.
[41] U H-G Kressel. Pairwise classification and support vector machines. In Advances in Kernel

Methods, pages 255–268. MIT Press, Cambridge, MA, USA, 1999.
[42] Chang C-C and Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intel

Sys Technol., 2:27:1–27:27, 2011.
[43] Lu J, Plataniotis K N, and Venetsanopoulos A N. Boosting linear discriminant analysis for face

recognition. In in Proc. IEEE Int. Conf. Image Proce., volume 1, pages I–657–660, 2003.
[44] Hayman E, Caputo B, Fritz M, and Eklundh J-O. On the significance of real-world conditions

for material classification. In in Proc. Eur. Conf. Comput. Vis, pages 253–266, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[45] Caputo B, Hayman e, Fritz M, and Eklundh J-O. Classifying materials in the real world. Image
Vision Comput., 28(1):150–163, 2010.

[46] Quan Y, Xu Y, Sun Y, and Luo Y. Lacunarity analysis on image patterns for texture
classification. In Proc. CVPR, pages 160–167, 2014.

[47] Guo Z, Wang X, Zhou J, and You J. Robust texture image representation by scale selective



Meas. Sci. Technol. 16

local binary patterns. IEEE Trans. Image Process., 25(2):687–699, 2016.
[48] Song T, Li H, Meng F, Wu Q, and Cai J. Letrist: locally encoded transform feature histogram

for rotation-invariant texture classification. IEEE Trans. Circuits Syst. Video Technol,
PP(99):1–1, 2017.

[49] Mehta R and Eguiazarian K E. Texture classification using dense micro-block difference. IEEE
Trans. Image Process., 25(4):1604–1616, 2016.

[50] Delic M, Lindblad J, and Sladoje N. αlbp - a novel member of the local binary pattern family
based on α-cutting. In Proc. ISPA, pages 13–18, 2015.

[51] Ojala T, Pietikainen M, and Maenpaa T. Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell.,
24(7):971–987, 2002.

[52] Jin H, Liu Q, Lu H, and Tong X. Face detection using improved lbp under bayesian framework.
In Proc. ICIG, pages 306–309, 2004.

[53] Kylberg G and Sintorn I-M. Evaluation of noise robustness for local binary pattern descriptors
in texture classification. EURASIP J. Image Video Process, 2013(1):17, 2013.

[54] Tan X and Triggs B. Enhanced local texture feature sets for face recognition under difficult
lighting conditions. IEEE Trans. Image Process., 19(6):1635–1650, 2010.


	Introduction
	Geodesic Distance Approximations Between Multivariate Normal Distributions
	Face Representation and Recognition
	Sparse Face Feature Extraction
	Face Classification

	Experimental Results
	Conclusions

