
166 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 1, JANUARY 2004

Face Recognition by Applying Wavelet Subband
Representation and Kernel Associative Memory
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Abstract—In this paper, we propose an efficient face recognition
scheme which has two features: 1) representation of face images by
two-dimensional (2-D) wavelet subband coefficients and 2) recog-
nition by a modular, personalised classification method based on
kernel associative memory models. Compared to PCA projections
and low resolution “thumb-nail” image representations, wavelet
subband coefficients can efficiently capture substantial facial
features while keeping computational complexity low. As there
are usually very limited samples, we constructed an associative
memory (AM) model for each person and proposed to improve
the performance of AM models by kernel methods. Specifically,
we first applied kernel transforms to each possible training pair of
faces sample and then mapped the high-dimensional feature space
back to input space. Our scheme using modular autoassociative
memory for face recognition is inspired by the same motivation as
using autoencoders for optical character recognition (OCR), for
which the advantages has been proven. By associative memory,
all the prototypical faces of one particular person are used
to reconstruct themselves and the reconstruction error for a
probe face image is used to decide if the probe face is from the
corresponding person. We carried out extensive experiments on
three standard face recognition datasets, the FERET data, the
XM2VTS data, and the ORL data. Detailed comparisons with
earlier published results are provided and our proposed scheme
offers better recognition accuracy on all of the face datasets.

Index Terms—Face recognition, wavelet transform, associative
memory, kernel methods.

I. INTRODUCTION

FACE recognition is a very important task which can be used
in a wide range of applications such as identity authentica-

tion, access control, surveillance, content-based indexing and
video retrieval systems. Compared to classical pattern recog-
nition problems such as optical character recognition (OCR),
face recognition is much more difficult because there are usu-
ally many individuals (classes), only a few images (samples) per
person, so a face recognition system must recognize faces by ex-
trapolating from the training samples. Various changes in face
images also present a great challenge, and a face recognition
system must be robust with respect to the many variabilities of
face images such as viewpoint, illumination, and facial expres-
sion conditions.
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A recognition process involves two basic computational
stages. In the first stage, a suitable representation is chosen,
which should make the subsequent processing not only compu-
tational feasible but also robust to certain variations in images.
In the past, many face representation approaches have been
studied, for example, geometric features based on the relative
positions of eyes, nose, and mouth [14]. The prerequisite for the
success of this approach is an accurate facial feature detection
scheme, which, however, remains a very difficult problem
so far. In practice, plain pixel intensity or low resolution
“thumb-nail” representations are often used, which is neither
a plausible psychological representation of faces [35] nor an
efficient one as we have experienced. Another popular method
of face representation attempts to capture and define the face as
a whole and exploit the statistical regularities of pixel intensity
variations. Principal component analysis (PCA) is the typical
method, by which faces are represented by a linear combination
of weighted eigenvectors, known as eigenfaces [32]. In prac-
tice, there are several limitations accompanying PCA-based
methods. Basically, PCA representations encode second-order
dependencies of patterns. For face recognition, the pixelwise
covariance among the pixels may not be sufficient for recogni-
tion. PCA usually gives high similarities indiscriminately for
two images from a single person or from two different persons.

It is well known that wavelet based image representation has
many advantages and there is strong evidence that the human
visual system processes images in a multiscale way according
to psychovisual research. Converging evidence in neurophysi-
ology and psychology is consistent with the notion that the vi-
sual system analyses input at several spatial resolution scales
[35]. Thus, spatial frequency preprocessing of faces is justified
by what is known about early visual processing. By spatial fre-
quency analysis, an image is represented as a weighted combi-
nation of basis functions, in which high frequencies carry finely
detailed information and low frequencies carry coarse, shape-
based information. Recently, there have been renewed interests
in applying wavelet techniques to solve many real world prob-
lems, and in image processing and computer vision in particular.
Examples include image database retrieval [22] and face recog-
nition [7], [17], [27]. An appropriate wavelet transform can re-
sult in robust representations with regard to lighting changes and
be capable of capturing substantial facial features while keeping
computational complexity low. From these considerations, we
propose to use wavelet transform (WT) to decompose face im-
ages and choose the lowest resolution subband coefficients for
face representation.

From a practical applications point of view, it is another im-
portant issue to maintain and update the recognition system
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easily. In this regard, an important design principle can be found
in the perceptual framework for human face processing [10],
which suggests a concept of face recognition units in the sense
that a recognition unit produces a positive signal only for the
particular person it is trained to recognize. In this framework, an
adaptive learning model based on RBF classifiers was proposed
[13]. The RBF network has been extensively studied and gen-
erally accepted as a valuable model [11]. The attractiveness of
RBF networks include its computational simplicity and the the-
oretical soundness. RBF networks are also seen as ideal models
for practical vision applications [9] due to their efficiency in
handling sparse, high-dimensional data and nice interpolation
capability for noisy, real-life data.

Instead of setting up a classifier using the “1-out-of-N en-
coding” principle for each subject as was the case in [13], we
pursued another personalised face recognition system based on
associative memory (AM) models. There has been a long his-
tory of AM research and the continuous interest is partly due to
a number of attractive features of these networks, such as con-
tent addressable memory, collective computation capabilities,
etc. The useful properties could be exploited in many areas, par-
ticularly in pattern recognition. Kohonen seems to be the first
to illustrate some useful properties of autoassociative memory
with faces as stimuli [16]. The equivalence of using an autoas-
sociative memory to store a set of patterns and computing the
eigendecomposition of the cross-product matrix created from
the set of features describing these patterns had been elaborated
[2], [15]. Partly inspired by the popular Eigenface method [32],
the role of linear associative memory models in face recognition
has also been extensively investigated in psychovisual studies
[1], [25], [33], [34].

Our further interests in associative memory models for face
recognition stem from a similar motivation to autoencoder for
OCR [29], [12]. An autoencoder usually refers to a kind of non-
linear, autoassociative multilayer perceptron trained by, for ex-
ample, error back-propagation algorithms. In the autoencoder
paradigm, the training samples in a class are used to build up
a model by the least reconstruction error principle and the re-
construction error expresses the likelihood that a particular ex-
ample is from the corresponding class. Classification proceeds
by choosing the best model which gives the least reconstruc-
tion error. Similarly, we set up a modular associative memory
structure for face recognition, with each subject being assigned
an AM model. To improve the performance of linear associative
memory models which usually bear similar limitations as eigen-
faces, we introduced kernel methods to associative memory by
nonlinearly mapping the data into some high dimensional fea-
ture space through operating a kernel function with input space.
An appropriately defined kernel associative memory inherits
RBF network structure with input being duplicated at output
as expectation. We use a kernel associative memory for each
person to recognize and each model codes the information of
the corresponding class without counter-examples, which can
then be used like discriminant functions: the recognition error
is in general much lower for examples of the person being mod-
eled than for others.

In recent years, a number of biologically motivated intelli-
gent approaches seem to offer promising, real solutions in many

multimedia processing tasks, and neural approaches have been
proven to be practical tools for face recognition in particular.
One of the appeals of these approaches is their ability to take
nonlinear or high-order statistical features into account while
tackling the dimensionality-reduction problem efficiently. Ex-
amples of pioneering works include: 1) the convolutional neural
network (CNN) [18], which is a hybrid approach combining
self-organizing map (SOM) and a convolutional neural network;
and 2) the probabilistic decision-based neural network [20]. Our
works is a continuing endeavour following the line of further
exploring the computing capability of neural networks in intel-
ligent processing of human faces.

Complementing the aforementioned, we propose a person-
alised face recognition scheme to allow kernel associative
memory modules trained with examples of views of the person
to be recognized. These face modules give high performance
due to the contribution of kernels which implicitly introduce
higher-order dependency features. The scheme also alleviates
the problem of adding new data to existing trained systems.
By splitting the training for individual classes into separate
modules, our modular structure can potentially support large
numbers of classes.

The paper is organized as follows. In the next section, we
briefly describe wavelet transform and the lowest subband
image representation. Section III presents our proposed kernel
associative memory after reviewing some linear associative
memories. Experiment results are summarized in Section IV
followed by discussions and conclusions in Section V.

II. WAVELET TRANSFORM

WT is an increasingly popular tool in image processing and
computer vision. Many applications, such as compression, de-
tection, recognition, image retrieval et al., have been investi-
gated. WT has the nice features of space-frequency localization
and multiresolutions. The main reasons for WTs popularity lie
in its complete theoretical framework, the great flexibility for
choosing bases and the low computational complexity.

Let denote the vector space of a measurable, square
integrable, one-dimensional (1-D) function. The continuous
wavelet transform of a 1-D signal is defined as

(1)

where the wavelet basis function can be ex-
pressed as

(2)

These basis functions are called wavelets and have at least one
vanishing moment. The arguments and denote the scale and
location parameters, respectively. The oscillation in the basis
functions increases with a decrease in . Equation (1) can be
discretized by restraining and to a discrete lattice

. Typically, there are some more constraints on
when a nonredundant complete transform is implemented and a
multiresolution representation is pursued.
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Fig. 1. Illustration of 2-D wavelet transform. 2-D DWT is generally carried out using a separable approach, by first calculating the 1-D DWT on the rows, and
then the 1-D DWT on the columns.

The wavelet basis functions in (2) are dilated and translated
versions of the mother wavelet . Therefore, the wavelet
coefficients of any scale (or resolution) could be computed
from the wavelet coefficients of the next higher resolutions.
This enables the implementation of wavelet transform using
a tree structure known as a pyramid algorithm [21]. Here, the
wavelet transform of a 1-D signal is calculated by splitting it
into two parts, with a low-pass filter (LPF) and high-pass filter
(HPF), respectively. The low frequency part is split again into
two parts of high and low frequencies. And the original signal
can be reconstructed from the DWT coefficients.

The DWT for two-dimensional (2-D) images
can be similarly defined by implementing the one di-
mensional DWT for each dimension and separately:

. Two-dimensional WT decomposes
an image into “subbands” that are localized in frequency and
orientation. A wavelet transform is created by passing the
image through a series of filter bank stages. One stage is shown
in Fig. 1, in which an image is first filtered in the horizontal
direction. The high-pass filter (wavelet function) and low-pass
filter (scaling function) are finite impulse response filters. In
other words, the output at each point depends only on a finite
portion of the input. The filtered outputs are then downsampled
by a factor of 2 in the horizontal direction. These signals are
then each filtered by an identical filter pair in the vertical
direction. We end up with a decomposition of the image into 4
subbands denoted by LL, HL, LH, HH. Each of these subbands
can be thought of as a smaller version of the image repre-
senting different image properties. The band LL is a coarser
approximation to the original image. The bands LH and HL
record the changes of the image along horizontal and vertical
directions, respectively. The HH band shows the high frequency
component of the image. Second level decomposition can then
be conducted on the LL subband. Fig. 2 shows a two-level
wavelet decomposition of an image of size 200 150 pixels.

Earlier studies concluded that information in low spatial fre-
quency bands play a dominant role in face recognition. Nastar
et al. [[23]] have investigated the relationship between varia-
tions in facial appearance and their deformation spectrum. They
found that facial expressions and small occlusions affect the

Fig. 2. (a) An original image with resolution 200� 150. (b) The two-level
wavelet decomposition.

intensity manifold locally. Under frequency-based representa-
tion, only high-frequency spectrum is affected, called high-fre-
quency phenomenon. Moreover, changes in pose or scale of a
face affect the intensity manifold globally, in which only their
low-frequency spectrum is affected, called low-frequency phe-
nomenon. Only a change in face will affect all frequency compo-
nents. In their recent work on combining wavelet subband repre-
sentations with Eigenface methods [17], Lai et al. also demon-
strated that: 1) the effect of different facial expressions can be at-
tenuated by removing the high-frequency components and 2) the
low-frequency components only are sufficient for recognition.

In the following, we will use Daubechies D8 for image de-
composition [6].

III. KERNEL ASSOCIATIVE MEMORY AS COMPUTATIONAL

MODEL OF FACES

In this section, we will briefly review some autoassociative
memory models which can be readily applied to face recogni-
tion. Detailed introductions can be found in [11] and [16].

A. Associative Memory Models Revisited

Simple linear associative memory models [2], [3], [15], [16]
were some of the earliest models that characterize the resur-
gence of interest in neural network research.

We begin with a common pattern classification setting, where
we have a number of pattern classes. For a specific class, sup-
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pose we have prototypes . A prototype is
predefined as a vector in an dimensional space. In the case of
a face, can be a vector formed from concatenating rows of an
image with suitable size, or a feature vector such as the wavelet
coefficients. We want to construct a projection operator for
the corresponding class with its prototypes such that any proto-
type in it can be represented as a projection onto the subspace
spanned by . That is

(3)

Obviously, this can be elaborated as an associative memory
(AM) problem which has been extensively investigated in neural
network literature. For face recognition, an associative memory
model will enable us to combine multiple prototypes belonging
to the same person in an appropriate way to infer a new image
of the person.

There are many ways to construct . The simplest way
would be the Hebbian-type, which sets up the connection
weights as the sum of outerproduct matrices from the prototype
vectors

(4)

where is an matrix in which the th column is equal
to .

If is a vector formed by concatenating rows of a face
image, then encodes the covariance of possible pairs of
pixels in the set of learned faces. Retrieval or recall of the th
prototype from the corresponding class can be simply given by
(3). Such a simple linear combination of prototypes can expand
the representational capability of the prototypes, particularly
when the prototypes are independent.

Because the cross-product connection weight matrix is
semidefinite, it can be written as a linear combination of its
eigenvectors [1]

(5)

where denote the -th eigenvector and the corresponding
eigenvalue of is the matrix in which the th column is

represents the diagonal matrix of eigenvalues and is
the rank of . Equation (5) tells us that using a Hebbian-type
autoassociative memory to store and recall a set of prototypes is
equivalent to performing a principal component analysis (PCA)
on the cross-product matrix. The eigenvectors of the weight ma-
trix can be thought of as a set of “global features” or “macro-
features” from which the face are built [25].

The eigenvectors and eigenvalues of can also be obtained
from the prototype matrix by SVD, i.e.,

(6)

where represents the matrix of eigenvectors of rep-
resents the matrix of eigenvectors of and is the diagonal
matrix of the singular values. In the famous eigenface method,

each face image is represented as a projection on the subspace
spanned by the eigenvectors of [32].

The correlation matrix memory as we discussed above is
simple and easy to design. However, a major limitation of such
a design is that the memory may commit too many errors.
There is another type of linear associative memory known as
the pseudo-inverse or generalized-inverse memory [11], [15],
[16]. Given a prototype matrix , the estimate of the memory
matrix is given by

(7)

where is the pseudoinverse matrix of , i.e.,
. Kohonen showed that such an au-

toassociative memory can be used to store images of human
faces and reconstruct the original faces when features have
been omitted or degraded [16]. Equation (7) is a solution of the
following least square problem

(8)

The pseudoinverse memory provides better noise perfor-
mance than the correlation matrix memory [11].

Associative memory models can be efficiently applied to face
recognition. If a memory matrix is constructed for the

th person, a query face can be classified into one of face
classes based on a distance measure of how far is from each
class. The distance can be simply the Euclidean distance

(9)

The face represented by is classified as belonging to the
class represented by if the distance
is minimum.

B. Kernel Associative Memory Models

As we have briefly discussed earlier, associative memory is a
natural way for generalizing prototypes in a pattern class. In the
neural network community, many associative memory models
have been thoroughly studied. Most of these studies, however,
are restricted to binary vectors only or purely from a biological
modeling point of view. The requirement of huge storage size is
another problem that hinders the application of many associative
memory models. For example, if a face image is a 112 92 pixel
image, it is represented by a 10 304-element vector. A set of
prototypical faces will result in an associative memory matrix
as in (4) or (7), with size 10304 10 304.

Linear associative memory models as we reviewed above
share the same characteristics as principal component anal-
ysis (PCA) representations for encoding face images, i.e.,
second-order statistical features which only record the pix-
elwise covariance among the pixels. Higher-order statistics
may be crucial to better represent complex patterns and ac-
cordingly makes substantial attributes to recognition. Higher
order dependencies in an image include nonlinear relationships
among the pixel values, such as the relationships among three
or more pixels in edges or curves, which can capture important
information for recognition purpose.



170 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 1, JANUARY 2004

Here we propose to improve the linear associative memory
models by using the so-called kernel trick, which basically
computes the dot products in high-dimensional feature spaces
using simple functions defined on pairs of input patterns.
Support vector machines (SVM) are typical examples that
exploit such a kernel method [5], [36]. By kernel method, the
space of input data can be mapped into a high-dimensional
feature space through an adequate mapping . However, we
need not explicitly compute the mapped pattern , but
the dot product between mapped patterns, which are directly
available from the kernel function which generates .

We rewrite the pattern reconstruction formula (3), together
with the outerproduct associative memory model (4)

(10)

where stands for the dot product between a prototype
and a probe pattern vector . Obviously, (10) above can be re-
garded as a special case of the “linear class” concept proposed
by Vetter and Poggio [37], which uses linear combinations of
views to define and model classes of objects. The combination
coefficients here are the dot product which can be conveniently
replaced by a kernel function with the same motivation as in
other kernel methods. By mapping the data into some feature
space via , some nonlinear features in high-dimensional fea-
ture space will be implicitly obtained.

Denote by

(11)

a kernel corresponding to . In many cases, is much cheaper
to compute than . A popular example is Gaussian radial basis
function

(12)

Accordingly, a kernel associative memory corresponding to
(11) is

(13)

The kernel associative memory (13) can be further general-
ized to a parametric form , where

are weights determined by the following least square
objective

(14)

where is a -element vector in which the th element is equal
to .

Kernel associative memory constructed from (14) can be
viewed as a network structure which is the same as radial basis
function (RBF) networks, as shown in Fig. 3, in which the
output is a linear combination of the hidden units activations

, where are the weights from the RBF unit in

Fig. 3. Illustration of a kernel associative memory network.

the hidden layer to the linear output unit . Here the activity
of the hidden unit is the same as the kernel function, for
example, a Gaussian kernel of the distance from the input to
its center , which indicates the similarity between the input
and the prototype, with as the width of the Gaussian. When
an examplar matches exactly the centre , the activity of
the unit is at its maximum and it decreases as an exponential
function of the squared distance between the input and the
centre. By kernel associative memory (14), the input patterns
are represented by an -dimensional vector, where is the
number of hidden units or the number of prototypes in the
corresponding class, as will be elaborated shortly.

In the kernel associative memory, the connection weights de-
termine how much a kernel can contribute to the output. Here
we propose a concept of normalized kernel, which uses normal-
ization following the kernel operation. Specifically, the recon-
structions from the normalized kernels are

(15)

where is the dimension of input space and s are the solu-
tions of (14) with normalized kernel vector . By normalization,
the reconstruction becomes a kind of “center of gravity” of the
connection weights from the kernels to the output. The most ac-
tive kernel will be decisive in choosing the connection weights
for a reconstruction.

By kernel associative memory (15), an input pattern is first
compared with all of the prototypes and then the normalized
distances are used as indicators for choosing connection weights
in reconstructing input vectors. When the width parameters of
Gaussians are appropriately chosen, the kernels would decrease
quickly with the distance between input and the prototpyes. This
will activate only a few kernels to make contributions to the net-
work output. If only one kernel is active while all the others can
be omitted, it is obvious that the best connection weights from
the kernel to output is a copy of the input pattern, as described by
(13). Generally, the optimum values for the weights can be ob-
tained by using a least-squares approximation from (14). For
kernels and , using ma-
trix representation , the connection weight

from hidden layer to output can be calculated as

(16)

where is the pseudo-inverse of .
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The recalling of the -th face can be directly achieved by
the kernel associative memory (15), i.e., first inputting the face
vector to the network and then premultiplying the kernel
vector by the matrix

(17)

where represents the estimation of the th face. The quality
of this estimation can be measured by computing the cosine of
the angle between the vectors and , formally

(18)

with cosine of 1 indicating a perfect reconstruction of the stim-
ulus.

In our proposed kernel associative memory for the represen-
tation of faces, two important issues should be emphasized. The
first issue is about the RBFs centers. Unlike traditional RBF net-
works for which center selection is accomplished by unsuper-
vised learning such as -means clustering, in our implementa-
tion of associative memory, all of the available prototypes are
used as RBF centers for the AM model associated with a par-
ticular individual. Different prototypes of an individual usually
comprise of different views of faces for the individual. Thus,
the hidden units preferentially tune to specific views and the ac-
tivations measure the similarity between the view presented as
input and the view preferred. This property had been earlier ex-
plored in [34] for the investigation of different types of internal
representations with gender classification task.

The second issue is regarding an appropriate selection of the
value in (12) which is the ‘width’ parameter associated with the
Gaussian kernel function and defines the nature and scope of the
receptive field response from the corresponding RBF unit. This
value is critical for the network’s performance, which should
be properly related to the relative proximity of the test data to
the training data. In our RBF based associative memory, an ap-
propriate value of would also allow a direct measure of con-
fidence in the reconstruction for a particular input. There has
been many discussions in the literature about the influence of
value over RBFs generalization capability in conventional ap-
plications of RBF. For example, Howell and Buxton have dis-
cussed the relationships between with RBF hidden units and
the classification performance [13]. To effectively calculate the

value, we adopted a practice proposed in [31] by taking an
average of Euclidean distance between every pair of different
RBF centers, as expressed in the following:

(19)

C. Related Works

The role of linear autoassociative memories in face recogni-
tion has been studied for many years in psychological litera-
ture. For example, O’Toole et al. conducted some simulations
on gender classification using linear autoassociator approach

which represented a face as a weighted sum of eigenvectors ex-
tracted from a cross-product matrix of face images [25]. These
simulations were mainly for psychological study rather than a
practical face recognition model. Analysis of a set of facial im-
ages in terms of their principal components is also at the core of
the eigenface method [32].

Being similar to associative memory, another kind of autoas-
sociative network, called an autoencoder, has been successfully
applied to optical character recognition (OCR) problems [12],
[29]. This method uses multilayer perceptron and training al-
gorithms such as error backpropagation to train with examples
of a class by best reconstruction principle. The distance be-
tween the input vector and the expected reconstruction vector
expresses the likelihood that a particular example belongs to the
corresponding class and classification proceeds by choosing the
model that offers best reconstruction. This is also the concept
inherited by the autoassociative memory based face recognition
we proposed in this paper. As a usual constraint, there are often
few prototypical face images available for a subject, which make
it quite different from most of OCR problems and accordingly
hard to apply the autoencoder paradigm.

In some previous studies, RBF networks have also been pro-
posed for face recognition. For example, Valentin et al. inves-
tigated the usefulness of an RBF network in representing and
identifying faces when specific views or combinations of views
are employed as RBF centers [34]. However, the RBF network
they used is a classifier for gender classification purposes only.
Based on the concept of face units [10], Howell and Buxton
studied a modular RBF network for face recognition [13], in
which each individual is allocated a separate RBF classifier.
For an individual, the corresponding RBF network with two
output units is trained to discriminate between that person and
others selected from the face data. By using RBF networks as
two-class classifiers, a multiclass face recognition system is set
up by combining a number of RBF classifiers through the one-
against-all strategy, which means each class must be classified
against all the remaining. In contrast with such a scheme for
making “yes” or “no” decisions, we stressed the representational
capability for face images with kernel associative memories.

Our proposed face recognition scheme has also related to a
recently proposed approach called nearest feature line (NFL)
[19], which uses a linear model to interpolate and extrapolate
each pair of prototype feature points belonging to the same class.
By the feature line which passes through two prototype fea-
ture points, variants of the two prototypes under some variations
such as pose, illumination and expression, could be possibly ap-
proximated. The classification is done by using the minimum
distance between the feature point of the query and the feature
lines. Instead of using each pair of samples to interpolate faces,
which inevitably involve extensive calculation, we established a
face representation model for each individual and subsequently
recognize a query face by choosing the best fitting model.

IV. MODULAR FACE RECOGNITION SYSTEM

Our face recognition system consists of a set of subject-based
separate AM modules, each capturing the variations of the re-
spective subject and modeling the corresponding class.
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Fig. 4. The modular recognition scheme. In the model setting step, after decomposing a face image into wavelet subbands, the LL subband representation is
used to construct a personalized kernel associative memory model. In the recognition step, a probe face image is first decomposed by WT and the LL subband is
inputted to all the kAM models. The similarity scores are calculated and compared for all the estimations. A kth subject is identified as matching the probe if its
kAM gives the highest matching score.

A. Model Setting Stage

In our scheme, each subject has an independent AM
model. For a specific th person, let the set of training im-
ages be , where is
the number of training images for the th person and
the number of subjects. We first calculated an average face

. Then a set of mean-centered
vectors is obtained by subtracting each input image from
the average face. After applying an L-level wavelet transform
to decompose the reference images, a collection of LL subband
image representations for each subject is used to construct a

AM model according to (12) and (16).
A AM involves two phases, an encoding phase and a

learning phase. During the encoding phase, kernel operations
encode input patterns according to their similarities with the
prototypes. During the learning phase, the coded patterns are
associated with the prototypes as expected outputs, which
is realized by using a standard heteroassociation, as in (16).
Specifically, coding is performed by the Gaussian kernel
functions which transform each input to feature space. The
kernels are then mapped to the expected output via connection
weights using a least-squares approximation.

B. Recognition Stage

When an unknown image is presented to the recognition
stage, it is substracted by the average face and a caricature image
is obtained. Then, an L-level WT is applied to transform the car-
icature image in the same way as the encoding stage. The LL
subband is represented as a probe image representation, which
is applied to all AM models to yield respective estimations (re-
called image representations). Then, a similarity measurement
between the probe image and a recalled image is taken to de-
termine which recalled image representation best matches the
probe image representation. Given the probe image represen-
tation and a recalled image representation , the similarity
measure is defined as as given in (18), which
will return a value between and .

The process of identifying a face is demonstrated further in
Fig. 4. When a test face is presented to the recognition system,

Fig. 5. Illustration of face recognition process by kernel associative memory
models. (a) A probe image to be recognized. (b) Wavelet LL subband
representation which is used as a key for all of the kAM models. (c) The first
three recalled results from 40 kAM models via the similarity measure (18). (d)
The corresponding first three subjects. The most similar one (left) is singled
out as the recognized person.

the image is first transformed by the same wavelet as in model
setting stage and the LL subband image representation is pro-
duced. Using the wavelet subband representation as probe, the

AM models recall their estimations, respectively, and the
corresponding similarity scores are generated according to (18).
In Fig. 5, we show (a) a probe face image; (b) the corresponding
LL representation which is used as a key for retrieval from all of

AM models built, (c) the first three best recalls according to the
matching score (18), and (d) the corresponding target face im-
ages in the database. Obviously, the model that offers the first re-



ZHANG et al.: WAVELET SUBBAND REPRESENTATION AND KERNEL ASSOCIATIVE MEMORY 173

call best matches the input image and identification of the probe
image is thus made.

V. EXPERIMENTAL RESULTS

We conducted experiments to compare our algorithm with
some other well-known methods, e.g., the eigenface technique
[32] and ARENA[30], using three different face database, in-
cluding the FERET standard facial databases (Release2) [26],
the XM2VTS face database from the University of Surrey [24],
and the Olivetti-Oracle Research Lab (ORL) database [28].

As there are only a few of training examples available, the
transformation variancies are difficult to capture. One efficient
approach for tackling the issue is to augment the training set
with some synthetically generated face images. In all of our
experiments, we synthesize images by some simple geometric
transformations, particularly rotation and scaling. Such an ap-
proach has also been used in some previous face recognition
studies, which generally improves performance. In our experi-
ments, we generate ten synthetic images from each raw training
image by making small, random perturbations to the original
image: rotation (up to and ) and scaling (by a factor be-
tween 95% and 105%).

A. Experiments With FERET Datasets

FERET2, the second release of the FERET, consists of 14 051
8-bit grayscale images of human heads with views ranging from
frontal to left and right profile, and the database design took into
account variable factors such as different expressions, different
eyewears/hairstyles, and different illuminations. We only chose
3816 images accompanied with explicit coordinate information.
But many of those 3816 images are not suitable for our experi-
ments, so we selected the persons with more than five frontal or
near-frontal instances individually, which enable us to investi-
gate the systems over different training/testing sets. Eventually
we had a dataset of 119 persons and 927 images, all of which
had undergone a preprocessing program. In such preprocessing,
images underwent affine transformation to produce uniform eye
positions in the 130 150 dimensional outcome image. Sub-
sequently, the images were imposed on face masks and were
processed by histogram equalization. Since the original images
include remarkable variations, the preprocessing is important
to most of the algorithms. Fig. 6 shows four images from the
FERET dataset and the corresponding preprocessed images.

With the 927 images, we carried out multiple training/testing
experiments. The training set was set up by a random selec-
tion of ( or ) samples per person from the whole
database and the testing set was the remaining images. When

, there were a total of 357 images for training and 570
images for testing; when , there were 476 training images
and 451 testing images.

We conducted our experiments using wavelet LL subband
representations and downsampled low-resolution image repre-
sentations, respectively. With wavelet subband representation,
two-level decomposition results in 2-D LL subband coefficients
with size of 38 33. With low-resolution image representation,
each face image is downsampled by bilinear methods to a size
of 38 33.

Fig. 6. Top row: samples from the FERET dataset. Bottom row: the
corresponding normalized images.

TABLE I
COMPARISION OF RECOGNITION ACCURACIES FOR FERET DATASETS

WITH DIFFERENT m (SAMPLE NUMBER) AND IMAGE REPRESENTATION

(W FOR WAVELETS SUBBAND COEFFICIENTS, I FOR DOWNSAMPLED

LOW-RESOLUTION IMAGE)

As eigenfaces [32] are still widely used as baseline for face
recognition, we evaluated a variant of the methods, called PCA-
nearest-neighbor [30]. Basic Eigenfaces compute the centroid of
weight vectors for each person in the training set, by assuming
that each person’s face images will be clustered in the eigen-
face space. While in PCA-nearest-neighbor, each of the weight
vectors is individually stored for richer representation. When a
probe image is presented, it first transforms into the eigenspace
and the weight vector will be compared with memorized pat-
terns, then a nearest-neighbor (NN) method will be employed
to locate the closest pattern class (person identity).

From the face images dataset, we built the covariance and
then choose the first eigenvectors to construct a subspace. We
tried several from 20 to 30 but did not see any remarkable
effect on the recognition performance. So we fixed .

Another face recognition method we compared in the
experiments is a recently proposed simple NN-based template
matching, termed ARENA [30]. ARENA employs reduced-res-
olution images and a simple similarity measure defined as

(20)

where is a user defined constant for which we took .
Similar to PCA, every training pattern was memorized. The dis-
tance from the query image to each of the stored images in the
database is computed, and the label of the best match is returned.

The experiment results for the PCA-nearest-neighbor and
ARENA are summarized in the Table I. We compared two
image representations, i.e., wavelet LL subband representation
and downsampled low-resolution representation, as denoted as
W and I, repspectively, in the table. For both of the image rep-
resentations, neither PCA nor ARENA could give reasonable
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Fig. 7. Comparision of cumulative match scores. In the figure, “Image-3” and “Wavelet-3” stand for applying downsampled low resolution image representation
and wavelet lowest subband representation, respectively, with three samples involved.

recognition results, and PCA and ARENA share similar poor
performance.

We then assessed the performance of our proposed kernel as-
sociative memory ( AM) using the FERET face dataset as de-
scribed earlier. At encoding stage, a AM is created for each
subject, which is specified by weight matrix and variance

, together with samples , as elaborated in (12), (15), and
(16). When a probe face image is given at testing stage, the AM
recognizes the face by picking the optimal response based on
(17) and (18).

AM shows excellent performance on the FERET face data-
base. With downsampled low resolution image representation, it
achieved accuracies of 90.7 and 84.7%, respectively, for
and . With wavelet subband representation, the recog-
nition accuracies are 91.6 and 83.3% for and ,
respectively.

We also applied an evaluation methodology proposed by
the developers of FERET [26]. In this method, the recognition
system will answer a question like “is the correct answer in the
top matches?” rather than “is the top match correct?” The
performance statistics are reported as cumulative match scores.
In this case, an identification is regarded as correct if the true
object is in the top matchs. As an example, let , then
80 identifications out of 100 satisfy the condition (have their
true identities in top five matches, respectively), the cumulative
match score for is .

Fig. 7 illustrates the cumulative match scores of differenct al-
gorithms. The rank is plotted along the horizontal axis, and the
vertical axis is the percentage of correct matches. Here AM
again exhibits obvious evidence of superiority in performance
over the other two methods. Particularly, when only a small

sample set is available, AM performs better with wavelets LL
subband representation than with reduced-resolution images.

From the simulation results we can see that the eigenface
method and ARENA again show a similar performance as their
scores are very close, particularly with reduced-resolution im-
ages.

B. Experiments With XM2VTS Dataset and ORL Dataset

We also conducted experiments on other two different face
databases. The first is the XM2VTS face database from the Uni-
versity of Surrey [24], which consists of 1180 images, with four
images per person taken at four different time intervals (one
month apart). Similar lighting conditions and backgrounds have
been used during image acquisition. The set of images is com-
posed of frontal and near frontal images with varying facial ex-
pressions. The original image size is 726 576 pixels and the
database contains images of both caucasian and asian males and
females. The pre-processing procedure consisted of manually
locating the centres of the eyes; then translating, rotating and
scaling the faces to place the center of eyes on specific pixels.
In our experiments, the images were cropped and normalized to
yield a size of 150 200. Images from a subject and the cor-
responding wavelet representations after three level decompo-
sition are shown in Fig. 8. In our subsequent experiments, we
select three faces out of four for each subject to set up the respec-
tive AM model, and use the remaining face to test the recog-
nition accuracy. The sessions are accordingly tagged as Simula-
tions I, II, III, IV. Specifically, Simulation I denotes the face im-
ages division by choosing for building up models while
using fourth image for testing; Similarly, Simulations II, III, IV
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Fig. 8. Samples from the XM2VTS face database and the corresponding LL
wavelet subband representations after three levels decomposition.

TABLE II
SIZES OF LL WAVELET SUBBAND REPRESENTATION FOR THE XM2VTS FACE

IMAGES (200� 150) AND ORL FACE IMAGES (112� 92)

TABLE III
COMPARISON OF RECOGNITION ACCURACIES FOR THE XM2VTS FACE DATA

EXPLOITING DIFFERENT LEVELS OF WAVELET DECOMPOSITION

correspond to the choices of and for
prototypes in the models construction, respectively.

The second face database we used was the Olivetti-Oracle
Research Lab (ORL) database, in which there are 40 subjects
and each subject had 10 different facial views representing var-
ious expressions, small occlusion (by glasses), different scale
and orientations. Hence, there are 400 face images in the data-
base. The resolution of all the images is 112 92. The ORL
database has been used in many previous works, for example,
[18], [19]. Being different with the XM2VTS faces, we did not
take any normalization procedures. As all the faces were rep-
resented by orthogonal wavelet coefficients in our experiments,
we listed the sizes of LL subband representation for the two face
datasets in Table II.

In Table III, we illustrated the recognition results for the first
face dataset by comparing different resolution levels of wavelet
decomposition, which show that three levels of decomposition
yields better recognition accuracy.

In order to illustrate the advantage of using wavelet decom-
position for image representation, we also experimented on face
recognition using pixel image representation, which has been fa-
vored by some researchers due to its simplicity [30]. For com-
parison reasons, we downsampled face images from XM2VTS

TABLE IV
RECOGNITION ACCURACIES FOR THE XM2VTS FACE DATA BASED ON

DOWNSAMPLED PIXEL REPRESENTATION (WITH SIZE 50� 38)

TABLE V
COMPARISON OF RECOGNITION ACCURACIES FOR THE ORL FACE DATA

FROM DIFFERENT METHODS

TABLE VI
PERFORMANCE COMPARISON (ERROR RATE) BETWEEN LINEAR AM

MODEL (PSEUDO-INVERSE AM) AND kAM FOR THE XM2VTS
AND THE ORL DATASETS

to 50 38, the same size as the LL wavelet subband after three
levels of decomposition. The downsized images were first used
to set up personalised AM models and then the recognition was
proceeded as we described above. From Table IV we find that
wavelet LL subband image representation is superior in recog-
nition performance.

For the ORL dataset, we randomly select a limited number
of faces (for example, three or five) out of 10 for each subject
to set up a AM model and then count the recognition accu-
racy on the remaining faces. We applied a two level wavelet
decomposition, yielding 28 23 LL subband image represen-
tations. The recognition accuracies are 94.3% and 98.2%, re-
spectively, for the cases where three and five faces are randomly
picked up from ten images for each subject to construct associa-
tive memory models. This compares very favorably with previ-
ously published results which used different image representa-
tions or classification models. In [28], a hidden Markov model
(HMM) based approach was used, with a 13% error rate for
the best model. Lawrence et al. takes the convolutional neural
network (CNN) approach for the classification of ORL faces,
and the best error rate reported is 3.83%. In Table V, we dupli-
cated some earlier results published in [18], [30] and compared
with our results. Here the “Eigenface” stands for an implemen-
tation of PCA method [32] by projecting each training image
into eigenspace and each of the projection vectors is individu-
ally stored [18]. “ ” is the scheme proposed in [18]
which combines the Self-organizing Map (SOM) with convolu-
tional network. “ARENA” is the memory-based face recogni-
tion algorithm [30] which matches a reduced resolution version
of the image against a database of previously collected exem-
plars using a similarity metric (20). Obviously, our kernel as-
sociative memory model outperforms all of the reported best
recognition accuracy on the ORL dataset.

In Table VI, we also compared the recognition performances
by applying two different kind of associative memory models,
i.e., the generalized inverse (pseudoinverse) based, linear AM as
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Fig. 9. Illustration of the recognition accuracies versus rejection rate. (a) For the XM2VTS face database. (b) For the ORL face database.

in (7), and the AM based on the normalized Gaussian kernels
as we proposed in (12), (15), and (16). The results showed that

AM outperforms linear AM models to a great extent.
The recognition accuracy can be enhanced by rejecting some

probe face images based on some thresholds. Denote the largest
similarity score and second largest score . A face image is
rejected from recognition if , where is a predefined
threshold. The recognition accuracy will be increased by tuning
the threshold larger. In Fig. 9, we illustrate the accuracy versus
the rejection rate which results from equally varying from 0.01
to 0.1. From the simulations we see that for the ORL faces the
highest recognition accuracy is over 99.5% with a rejection rate
of 10%, while for the XM2VTS faces, the highest recognition
accuracy is around 95% with a rejection rate of 20%. For the
rejected faces, more sophisticated methods could be pursued for
further analysis.

VI. DISCUSSIONS AND CONCLUSION

In this paper we proposed a modular face recognition scheme
by combining the techniques of wavelet subband represen-
tations and kernel associative memories. Wavelet subband
representation has been recently advocated by the multimedia
research community for a broad range of applications, in-
cluding face recognition, for which our works have confirmed
again the efficiency. By wavelet transform, face images are
decomposed and the computational complexity is substan-
tially reduced by choosing a lower resolution subband image.
Sharing the same inspiration as using a multilayer perceptron
(MLP) based autoencoder for solving OCR problems, our face
recognition scheme aims at building up an associative memory
model for each subject, with the corresponding prototypical
images without any counter examples involved. Multiclass face
recognition is thus obtained by simply holding these associative
memories. When a probe face is presented, an AM model gives
the likelihood that the probe is from the corresponding class
by calculating the reconstruction errors or matching scores.
To overcome the limitations of linear associative memory
models, we introduced kernel methods, which implicitly take
high-order statistical features into account through mapping
input space into high-dimensional feature space. As a result, the
generalization capability of associative memories can be much
improved and a corresponding face recognition scheme thus
benefits. The efficiency of our scheme has been demonstrated
on three standard databases, namely,the FERET, the XM2VTS

and the ORL face databases. For the face database from FERET,
the recognition accuracy can reach 91.6% when four samples
per person are used to construct a AM model. For the face
database from XM2VTS, the averaged recognition accuracy
is around 84%, while for the ORL database, the averaged
recognition accuracy is over 98%, without any rejections.

Our ongoing research includes: 1) introducing some discrim-
inative learning algorithms for individual kernel associative
memory models, by minimizing the reconstruction error while
maximizing the distance with the closest class and 2) incor-
porating some prior knowledge into recognition, for example,
using certain domain specific distance measures for each class,
which has been proven a very good method for improving
the performance in handwritten digit recognition by using the
“tangent distance” with autoencoders.
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