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Abstract. This paper proposes a novel face recognition method based on dis-
criminant analysis with Gabor tensor representation. Although the Gabor face
representation has achieved great success in face recognition, its huge number
of features often brings about the problem of curse of dimensionality. In this pa-
per, we propose a 3rd-order Gabor tensor representation derived from a complete
response set of Gabor filters across pixel locations and filter types. 2D discrim-
inant analysis is then applied to unfolded tensors to extract three discriminative
subspaces. The dimension reduction is done in such a way that most useful in-
formation is retained. The subspaces are finally integrated for classification. Ex-
perimental results on FERET database show promising results of the proposed
method.
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1 Introduction

Face images lie in a highly nonlinear and nonconvex manifolds in the image space
due to the various changes by expression, illumination and pose etc. Design a robust
and accurate classifier in such a nonlinear and nonconvex distribution is diÆcult work.
One approach to simplify the complexity is to construct a local appearance-based fea-
ture space, using appropriate image filters, so that the distributions of faces are less
a�ected by various changes. Gabor wavelet-based features have been used for this pur-
pose [5,14,8].

The Gabor wavelets, whose kernels are similar to the two-dimensional (2D) receptive
field profiles of the mammalian cortical simple cells, exhibit desirable characteristics of
spatial locality and orientation selectivity. It is robust to variations due to expression and
illumination changes and is one of the most successful approaches for face recognition.
However, Gabor features are usually very high-dimensional data and there are redun-
dancies among them. It is well known that face images lie in a manifold of intrinsically
low dimension; therefore, the Gabor feature representations of faces could be analyzed
further to extract the underlying manifold by some statistical approach such as subspace
methods.
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Subspace methods such as PCA, LDA [1,13] have been extensively studied in face
recognition research. PCA uses the Karhunen-Loeve transform to produce the most ex-
pressive subspace for face representation and recognition by minimizing the residua of
the reconstruction. However, it does not utilize any class information and so it may drop
some important clues for classification. LDA is then proposed and it seeks subspace of
features best separating di�erent face classes by maximizing the ratio of the between-
classes scatter to the within-class scatter. It is an example of the most discriminating
subspace methods.

However, because of the usually high dimensions of feature space (e.g. the total
number of pixels in an image) and small sample size, the within-class scatter matrix S w

is often singular, so the optimal solution of LDA cannot be found directly. Therefore,
some variants of LDA have been proposed such as PCA�LDA (Fisher-LDA), Direct
LDA (D-LDA), Null space LDA (N-LDA) [1,19,2] etc. However, these LDAs all try to
solve the singular problem of S w instead of avoiding it. None of them can avoid losing
some discriminative information helpful for recognition. Recently, Two-Dimensional
Linear Discriminant Analysis (2D-LDA) method [18,6] has been discussed as a gener-
alization of traditional 1D-LDA.1 The main idea of the 2D method is to construct the
scatter matrices using image matrices directly instead of vectors. As the image scatter
matrices have a much smaller size, 2D-LDA significantly reduces the computational
cost and avoids the singularity problem. Further generalization has also been proposed
to represent each object as a general tensor of second or higher order, such as PCA and
discriminant analysis with tensor representation [15,16].

Previous work usually [3,9,12] performs subspace analysis with Gabor vector repre-
sentation. Because of the high-dimension of Gabor feature vectors and the scarcity of
available data, it leads to the curse of dimensionality problem. Moreover, for objects
such as face images, a vector representation ignores higher-order structures in the data.
Yan et al. [16] proposed discriminant analysis with tensor representation. It encoded
an object as a general tensor and iteratively learned multiple interrelated subspaces for
obtaining a lower-dimensional space. However, the computational convergence of the
method is not guaranteed and it is hard to extend it to kernel form.

In this paper, we propose a novel discriminant analysis method with Gabor tensor
representation for face recognition. Compared to the method in [16], we introduce an
alternative way for feature extraction on Gabor tensor in such a way that we can derive
a non-iterative way for discrimination and extend it to kernel learning easily. The algo-
rithm is divided into three steps. First, a face image is encoded by Gabor filters to form
a 3rd-order tensor; Second, the 3rd-order tensor is unfolded into three 2nd-order tensors
and 2D linear�kernel discriminant analysis is conducted on them respectively to derive
three discriminative subspaces; and finally these subspaces are integrated and reduced
further for classification with a nearest neighbor classifier.

The rest of the paper is organized as follows: Section 2 describes the Gabor tensor
representation. Section 3 details the discriminant analysis method with Gabor tensor
representation. The experimental results on FERET database are demonstrated in Sec-
tion 4 and in Section 5, we conclude the paper.

1 LDA based on vectors is noted as 1D-LDA.



Face Recognition by Discriminant Analysis 89

2 Gabor Tensor Representation

The representation of faces using Gabor features has been extensively and successfully
used in face recognition [14]. Gabor features exhibit desirable characteristics of spatial
locality and orientation selectively and optimally localized in the space and frequency
domains. The Gabor kernels are defined as follows:
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where � and � define the orientation and scale of the Gabor kernels respectively, z �
(x� y), and the wave vector k��� is defined as follows:

k��� � k�e
i�� (2)

where k� � kmax� f �, kmax � ��2, f �
�

2, �� � ���8 . The Gabor kernels in (1) are all
self-similar since they can be generated from one filter, the mother wavelet, by scaling
and rotating via the wave vector k���. Each kernel is product of a Gaussian envelope and
a complex plane wave, while the first term in the square brackets in (1) determines the
oscillatory part of the kernel and the second term compensates for the DC value. Hence,
a band of Gabor filters is generated by a set of various scales and rotations of the kernel.

In this paper, we use Gabor kernels at five scales � � �0� 1� 2� 3� 4� and eight ori-
entations � � �0� 1� 2� 3� 4� 5� 6� 7� with the parameter � � 2� [9] to derive the Gabor
representation by convoluting face images with corresponding Gabor kernels. For ev-
ery image pixel we have totally 40 Gabor magnitude coeÆcients which can be regarded
as a Gabor feature vector of 40 dimensions. Therefore, a h�w 2D image can be encoded
by 40 Gabor filters to form a 40�h�w 3rd-order Gabor tensor. Fig. 1 shows an example
of a face image with its corresponding 3rd-order Gabor tensor.

Fig. 1. A face image and its corresponding 3rd-order Gabor tensor

3 Discriminant Analysis with Gabor Tensor Representation

Since it is hard to apply discriminant analysis directly in the 3rd or higher-order tensor
space, we here adopt an alternative strategy. The 3rd-order Gabor tensor is first unfolded
into three 2nd-order tensors (matrices) along di�erent axes. Fig. 2 shows the modes of
the Gabor tensor unfolding. After that 2D linear�kernel discriminant analysis is con-
ducted on these 2nd-order tensors respectively to extract e�ective and robust subspaces
which will be combined further for classification.
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Fig. 2. Illustration of the three feature matrices unfolded from a 3rd-order tensor along di�erent
axes m1,m2,m3

3.1 2D Linear Discriminant Analysis (2D-LDA)

2D-LDA is based on the matrices rather than vectors as opposed to 1D-LDA based
approaches. Let the sample set be X � �X1� X2� 			� Xn�, and Xi is an r � c unfolded
Gabor matrix. The within-class scatter matrix S w and the between-class scatter matrix
S b based on 2nd-order tensors are defined as follows:

S w �

L�

i�1

�

X j�Ci

(X j � mi)T (X j � mi) (3)
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X j is the mean of data matrices in class Ci, and m � 1
n

�L
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�
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X j is the global mean matrix. The 2D-LDA searches such optimal projections that after
projecting the original data onto these directions, the trace of the resulting between-
class scatter matrix is maximized while the trace of the within-class scatter matrix is
minimized. Let W denote a c � d (d 
 c) projection matrix, and the r � c unfolded
Gabor matrix X is projected onto W by the following linear transformation:

Y � XW (5)
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where the resulting Y is a r � d matrix smaller than X. Denote S̃ w , S̃ b the with-class
and between-class scatter matrices of the projected data Y respectively. 2D-LDA then
chooses W so that the following object function is maximized:

J �
tr(S̃ b)

tr(S̃ w)
�

tr(
�L

i�1 niWT (mi � m)T (mi � m)W)

tr(
�L

i�1
�

X j�Ci
WT (X j � mi)T (X j � mi)W)

�
tr(WT S bW)
tr(WT S wW)

(6)

The optimal projection matrix Wopt can be obtained by solving the following gener-
alized eigen-value problem

S �1
w S bW � W� (7)

where � is the diagonal matrix whose diagonal elements are eigenvalues of S �1
w S b .

3.2 2D Kernel Discriminant Analysis (2D-KDA)

It is well known the face appearances may lie in a nonlinear low-dimensional manifold
due to the expression and illumination variations [7]. The linear methods may not be
adequate to model such a nonlinear problem. Accordingly, a 2D non-linear discriminant
analysis method based on kernel trick is proposed here. Like other kernel subspace
representations, such as Kernel PCA (KPCA) [11], Kernel 2DPCA [4], Kernel FDA
(KFDA) [17], the key idea of 2D Kernel Discrimannt Analysis (2D-KDA) is to solve
the problem of 2D-LDA in an implicit feature space F which is constructed by the
kernel trick:

� : x � Rd � �(x) � F (8)

Given M training samples, denoted by r � c unfolded Gabor matrices Ak

(k � 1� 2� 	 	 	 � M). A kernel-induced mapping function maps the data vector from the
original input space to a higher or even infinite dimensional feature space. The kernel
mapping on matrices is defined as:

�(A) � [�(A1)T � �(A2)T � 	 	 	 � �(AM)T ]T (9)

where Ai is the i-th row vector (1�c) of the matrix A and � is kernel mapping function on
vectors. Performing 2D-LDA in F means to maximize the following Fisher discriminant
function:

J(W) � argmax
tr(WT S �

bW)

tr(WT S �
wW)

(10)

where S �

b and S �
w represent the between-class scatter and the within-class scatter re-

spectively in F.
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If we follow the conventional kernel analysis as in 1D-KFDA, there exist r � M
samples to span the kernel feature space ��(Ai

k)T � i � 1� 	 	 	 � r; k � 1� 	 	 	 � M�, which will
result in heavy computational cost for subsequent optimization procedure. To alleviate
the computational cost, following [20], we use M samples to approximate the kernel
feature space: � f � [�(A1)T � 	 	 	 � �(AM)T ]T , here Ak is the mean of the r row vector of
Ak. Thus, (10) can be rewritten as:

J() � argmax
tr(T Kb)
tr(T Kw)

(13)

and the problem of 2D-KDA is converted into finding the leading eigenvectors of
K�1

w Kb.
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j)� 	 	 	 � k(AM � Ai
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function to compute the inner product of two vectors in F; zi �
1
ni

�
� j�Ci

� j, and z is
the mean of all � j. Three classes of kernel functions are widely used, i.e. Gaussian
kernels, polynomial kernels, and sigmoid kernels and here, we use Gaussian kernels in
the following experiments.

3.3 Discriminant Analysis with Gabor Tensor Representation

The 2nd-order tensors, which were obtained by unfolding the 3rd-order Gabor tensor
along di�erent axes, depict faces from di�erent aspects, so the subspaces derived from
the di�erent modes of 2nd-order tensor spaces may contain complemental information
helpful for discrimination. Considering this, the subspaces are integrated and reduced
further using PCA method. Suppose Y1� Y2� Y3 are the three subspaces obtained for each
image, they are first transformed into 1D vectors respectively, denoted as y1� y2� y3, and
concatenated into one 1D vector y � [yT

1 � y
T
2 � y

T
3 ]T , PCA is then performed on these com-

bined vectors. Finally, the shorter vectors derived from PCA are used for classification
with a nearest neighbor classifier.

As mentioned above, we proposed a novel linear�kernel discriminant analysis method
with Gabor-tensor representation noted as GT-LDA and GT-KDA respectively. It inher-
its the advantages of the 2D discriminant analysis methods and therefore can e�ectively
avoid the singularity problem. The algorithm is described with the Gabor tensor repre-
sentation but not limit to it. In fact, it can be extended to arbitrary N-order tensor.
Specifically, it’s not hard to find that 2D-LDA and LDA are both special forms of our
proposed method with N � 2 and N � 1.

4 Experimental Results and Analysis

In this section, we evaluate the performance of the proposed algorithm (GT-LDA�GT-
KDA) using the FERET database [10]. The FERET database is a standard test set for
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Fig. 3. Example cropped FERET images used in our experiments

(a) (b)

Fig. 4. Cumulative match curves on fb (a) and fc (b) probe sets

face recognition technologies. In our experiments, we use a subset of the training set
containing 540 images from 270 subjects for training. Two probe sets named fb (ex-
pression) and fc (lighting), which contains images with expression and lighting varia-
tion respectively, are used for testing against the gallery set containing 1196 images .
All images are cropped to 88 � 80 pixels according to the eye positions. Fig. 3 shows
some examples of the cropped FERET images.

To prove the advantage of the proposed method, we compare our method (GT-LDA�
GT-KDA) with some other well-known methods: PCA, LDA, Gabor�LDA and Ga-
bor�KFDA. Fig. 4 demonstrates the cumulative match curves (CMC) of these methods
on the fb and fc probe sets and the rank-1 recognition rates are shown in Table 1. From
the results, we can find the proposed method, GT-LDA and GT-KDA, all outperform



94 Z. Lei et al.

Table 1. The rank-1 recognition rates on the FERET fb and fc probe sets

Methods fb(Expression) fc(Lighting)
PCA 77.99% 38.14%

F-LDA 87.53% 42.78%
Gabor�F-LDA 93.97% 77.84%
Gabor�KFDA 95.56% 78.87%

GT-LDA 98.24% 89.18%
GT-KDA 98.66% 89.69%

significantly to the other methods both in fb and fc probe sets and the kernel method,
GT-KDA, achieves the best result: 98.66% in fb and 89.69% in fc. These results indicate
the proposed method is accurate and robust to the variation of expression and illumina-
tion. Moreover, in contrast to the traditional LDA method, the computational cost of the
proposed algorithm is not increased very much. In the training phase, although it needs
to do three discriminant analysis rather than once in traditional LDA, the computational
cost is not much higher because the 2D discriminant analysis is usually conducted on
a lower feature space. And in the testing phase, the computational cost of the proposed
method is nearly the same as the traditional LDA.

5 Conclusions

In this paper, a novel algorithm, linear�kenerl discriminant analysis with Gabor tensor
representation has been proposed for face recognition. A face image is first encoded as
a 3rd-order Gabor tensor. After unfolding the Gabor tensor and applying discriminant
analysis with them, we can e�ectively avoid the curse of dimensionality dilemma and
overcome the small sample size problem to extract di�erent discriminative subspaces.
Followed by combining these discriminant subspaces and doing reduction further, a ro-
bust and e�ective subspace is finally derived for face recognition. Experimental results
on FERET database have shown the accuracy and robustness of the proposed method
to the variation of expression and illumination.
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