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Computers of the future will interact with us more like humans. A key
element of that interaction will be their ability to recognize our faces and

even understand our expressions.

mart environments, wearable computers, and
ubiquitous computing in general are the com-
ing “fourth generation” of computing and
information technology.*® These devices will
be everywhere—clothes, home, car, and
office—and their economic impact and cultural sig-
nificance will dwarf those of the first three generations.
At the very least, they represent some of the most excit-
ing and economically important research areas in
information technology and computer science.

But before this new generation of computers can be
widely deployed, those working on interfaces must
invent new methods of interaction without a keyboard
or mouse. To win wide consumer acceptance, these inter-
actions must be friendly and personalized, which implies
that next-generation interfaces will be aware of the peo-
ple in theirimmediate environment and, at a minimum,
know who they are.

MEANS OF IDENTIFICATION

Given the requirement for determining people’s iden-
tities, the obvious question is, what technology is best?
A wide variety of identification technologies are avail-
able, and many have been in widespread commercial
use for years. The most common personal verification
and identification methods today are password/PIN
(personal identification number) systems and token sys-
tems (using tokens such as your driver’s license).
Because such systems are vulnerable to forgery, theft,
and lapses in users’ memories, biometric identification
systems, which use pattern recognition techniques to
identify people by their physiological characteristics,
are attracting considerable interest. Fingerprints are a
classic example of a biometric; newer technologies
include retina and iris recognition.

While they are appropriate for bank transactions
and entry into secure areas, such biometric technolo-
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gies have the disadvantage of being intrusive, both
physically and socially. They require users to position
their bodies relative to the sensor and then pause for
a second to “declare” themselves. This pause-and-
declare interaction is unlikely to change because of the
fine-grained spatial sensing required. There is an ““ora-
cle-like” aspect to the interaction as well. Since people
do not recognize each other by such things as retina
scans, these types of identification feel intrusive.

The pause-and-declare interaction is useful in high-
security applications (the interruption makes people
security conscious), but it is exactly the opposite of what
is required for a store that recognizes its best customers,
an information kiosk that remembers you, or a house
that knows the people who live there. Face and voice
recognition have a natural place in these next-genera-
tion smart environments. They are unobtrusive (they
recognize at a distance without a pause-and-declare
interaction), they are usually passive (needing no special
electromagnetic illumination), they do not restrict user
movement, and they are now both low power and inex-
pensive. Perhaps most important, though, is the fact
that humans identify other people by their faces and
voices and are likely to be comfortable with systems
that use similar means of recognition.

ACHIEVING FACE RECOGNITION

Twenty years ago, the problem of face recognition
was considered among the hardest in artificial intelli-
gence and computer vision. Surprisingly, however, over
the past decade, a series of successes have made gen-
eral personal identification appear not only technically
feasible but also economically practical.

The apparent tractability of the face recognition
problem, combined with the dream of smart environ-
ments, has produced a huge surge of interest from
funding agencies and from researchers themselves. It
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has also spawned several thriving commercial enter-
prises. There are now several companies that sell com-
mercial face recognition software that is capable of
high-accuracy recognition with databases of more
than 1,000 people.

These early successes came from the combination
of well-established pattern recognition techniques
with a fairly sophisticated understanding of the image
generation process. In addition, researchers realized
that they could capitalize on regularities that are pecu-
liar to people. For instance, human skin colors lie on
a one-dimensional manifold in color space, with color
variation primarily due to melanin concentration.
Human facial geometry is limited and essentially two-
dimensional when people are looking toward the cam-
era. Today, researchers are working on relaxing some
constraints of existing face recognition algorithms to
achieve robustness under changes due to lighting,
aging, rotation in depth, and expression. They are also
studying how to deal with variations in appearance
due to such things as facial hair, glasses, and
makeup—problems that already have partial solu-
tions.

Typical representational framework

The dominant representational approach that has
evolved is descriptive rather than generative. This
approach uses training images to characterize the range
of two-dimensional appearances of objects the system
must recognize. Although researchers initially used very
simple modeling methods, they now principally char-
acterize appearance by estimating the probability den-
sity function (PDF) of the image data for the target class.

For instance, given several examples of a target class
Q—for example, faces—in a low-dimensional repre-
sentation of the image data, it is straightforward to
model the PDF P(x|Q) of its image-level features x as
asimple parametric function—a mixture of Gaussian
distribution functions—thus obtaining a low-dimen-
sional, computationally efficient appearance model
for the target class. In other words, we can use exam-
ple face images to obtain a simple mathematical model
of facial appearance in image data.

Once we have learned the PDF of the target class, we
can use Bayes’ rule to perform maximum a posteriori
(MAP) detection and recognition. The result is typically
avery simple, neural-net-like representation of the tar-
get class’s appearance, which a system can use to detect
occurrences of the class, to compactly describe its
appearance, and to efficiently compare different exam-
ples from the same class. Indeed, this representational
framework is so efficient that some current face recog-
nition methods can process video data at 30 frames per
second. Several systems can compare an incoming face
to a database of thousands of people in under one sec-
ond—and all on a standard PC!

Dealing with dimensionality

To obtain an appearance-based representa-
tion, the image must first be transformed into a
low-dimensional coordinate system that pre-
serves the general perceptual quality of the tar-
get object’s image. This transformation is
necessary to address the problem of dimen-
sionality: The raw image data has so many
degrees of freedom that it would require mil-
lions of examples to directly learn the range of appear-
ances. Typical methods for reducing dimensionality
include

e Karhunen-Loéve transform (also called principal
components analysis),

* Ritz approximation (also called example-based
representation),

= Sparse-filter representations (for example, Gabor
jets and wavelet transforms),

» Feature histograms, and

» Independent-component analysis.

These methods all allow efficient characterization of
a low-dimensional subspace within the large space of
raw image measurements. Once you obtain a low-
dimensional representation of the target class—face,
eye, or hand—you can use standard statistical para-
meter estimation methods to learn the range of
appearances that the target exhibits in the new, low-
dimensional coordinate system. Because of the lower
dimensionality, obtaining a useful estimate of either
the PDF or the interclass discriminant function
requires relatively few examples.

An important variation on this methodology is dis-
criminative models, which attempt to model the differ-
ences between classes rather than the classes themselves.
Such models can often be learned more efficiently and
accurately than by directly modeling the PDF. A simple
linear example of such a difference feature is the Fisher
discriminant. Systems can also employ discriminant
classifiers, such as support vector machines, which
attempt to maximize the margin between classes.

FACE RECOGNITION EFFORTS

The subject of face recognition is as old as computer
vision because of the topic’s practical importance and
theoretical interest from cognitive scientists. Despite
the fact that other identification methods (such as fin-
gerprints or iris scans) can be more accurate, face
recognition has always been a major research focus
because it is noninvasive and seems natural and intu-
itive to users.

Perhaps the most famous early example of a face
recognition system is that of Teuvo Kohonen of the
Helsinki University of Technology,* who demon-
strated that a simple neural net could perform face

Face recognition
capitalizes on

regularities that are
peculiar to humans.
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Figure 1. USC’s system uses elastic graph matching for face recognition. It creates a
face bunch graph from 70 face models to obtain a general representation called (a) an
object-adapted grid. The system then (b) matches a given image to the face bunch
graph to find the fiducial points. It creates an image graph using elastic graph matching
and then compares that image to a database of faces for recognition.

recognition for aligned and normalized images of
faces. The network he employed computed a face
description by approximating the eigenvectors of the
image’s autocorrelation matrix. These eigenvectors
are now known as eigenfaces.

Kohonen'’s system was not a practical success, how-
ever, because it relied on precise alignment and nor-
malization. In the following years, many researchers
tried face recognition schemes based on edges, inter-
feature distances, and other neural-net approaches.
While several were successful with small databases of
aligned images, none successfully addressed the more
realistic problem of large databases where the face’s
location and scale are unknown.

Michael Kirby and Lawrence Sirovich of Brown
University® later introduced an algebraic manipula-
tion that made it easy to directly calculate the eigen-
faces. They also showed that it required fewer than
100 eigenfaces to accurately code carefully aligned
and normalized face images. Matthew Turk and Alex
Pentland of MIT® then demonstrated that the resid-
ual error when coding with the eigenfaces could be
used to detect faces in cluttered natural imagery and
to determine the precise location and scale of faces in
an image. They then demonstrated that coupling this
method for detecting and localizing faces with the
eigenface recognition method could achieve reliable,
real-time recognition of faces in a minimally con-
strained environment. This demonstration that a com-
bination of simple, real-time pattern recognition
techniques could create a useful system sparked an
explosion of interest in face recognition.

Current work

By 1993, researchers claimed that several algorithms
provided accurate performance in minimally con-
strained environments. To better understand the poten-
tial of these algorithms, the US Defense Ad-vanced

Computer

Research Projects Agency and the US Army Research
Laboratory established the Feret (face recognition tech-
nology) program with the goals of evaluating their per-
formance and encouraging advances in the technology.”

Feret identified three algorithms that demonstrated
the highest level of recognition accuracy with large
databases (1,196 people or more) under double-blind
testing conditions: those of the University of Southern
California (USC), illustrated in Figure 1,8 the University
of Maryland (UMD);® and the Massachusetts Institute
of Technology (MIT) Media Laboratory, illustrated in
Figure 2.1° Only two algorithms, those from USC and
MIT, are capable of both minimally constrained detec-
tion and recognition; the UMD system requires
approximate eye locations to operate. Rockefeller
University developed a fourth algorithm, illustrated in
Figure 3, that was an early contender, but it was with-
drawn from testing to form a commercial enterprise.**
The MIT and USC algorithms have also become the
basis for commercial systems.

The MIT, Rockefeller, and UMD algorithms all use
versions of the eigenface transform followed by dis-
criminative modeling. The UMD algorithm uses a lin-
ear discriminant, while the MIT system employs a
quadratic discriminant. The Rockefeller system uses a
sparse version of the eigenface transform followed by
a discriminative neural network. The USC system, in
contrast, takes a very different approach. It begins by
computing Gabor jets from the image and then does
a flexible template comparison of image descriptions
using a graph-matching algorithm.

The Feret database testing employs faces with vari-
able positions, scales, and lighting in a manner consis-
tent with mug shot or driver’s license photography.
With databases of fewer than 200 people and images
taken under similar conditions, all four algorithms per-
form nearly perfectly. Interestingly, even simple corre-
lation matching can sometimes achieve similar accuracy
for databases of only 200 people.” This is strong evi-
dence that any new algorithm should be tested with
databases of at least 200 individuals and should achieve
performance over 95 percent on mug-shot-like images
to be considered potentially competitive.

In the larger Feret testing (with 1,196 or more
images), the performance of the four algorithms are
similar enough that it is difficult or impossible to make
meaningful distinctions among them (especially if
adjustments for date of testing are made). With frontal
images taken on the same day, the typical first-choice
recognition performance is 95 percent accuracy. For
images taken with different cameras and lighting, typ-
ical performance drops to 80 percent accuracy. For
images taken one year later, the typical accuracy is
approximately 50 percent. Still, it should be noted that
even 50 percent accuracy is hundreds of times chance
performance.



1. The system collects a database of face
images.

2. It generates a set of eigenfaces by per-
forming principal component analysis
(PCA) on the face images. Approxi-
mately 100 eigenvectors are enough to
code a large database of faces.

3. The system then represents each face
image as a linear combination of the
eigenfaces.

4. Given a test image, the system approx-
imates it as a combination of eigen-
faces. A distance measure indicates the
similarity between two images.
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1. The system obtains data sets Q, and Q. by

computing intrapersonal differences
(matching two views of each individual in
the data set) and by computing extraper-
sonal differences (matching different indi-
viduals in the data set).

. It generates two sets of eigenfaces by per-

forming PCA on each class.

. The system derives a similarity score

between two images by calculating S =
P(QI|A), where A is the difference between
a pair of images. If S is less than 0.5, the
system considers the two images to be of
the same individual.
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Figure 2. MIT’s system of using eigenfaces for face recognition relies on (a) appearance and (b) discriminative models.
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Figure 3. Rockefeller University’s system of using local feature analysis for face recognition. The parts marked on the image to the left correspond to
receptive fields for the (a) mouth, (b) nose, (c) eyebrow, (d) jawline, and (e) cheekbone. (Reprinted with permission of NYT Pictures)
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interpreting human

actions.

Commercial systems and applications

Several face recognition products are com-
mercially available. Algorithms developed by the
top contenders in the Feret competition are the
bases for some available systems; others were
developed outside of the Feret testing frame-
work. While it is extremely difficult to judge,
three systems—from Visionics, Viisage, and
Miros—seem to be the current market leaders.

e Visionics’ Facelt software is based on the
local feature analysis algorithm developed at
Rockefeller University. A commercial company
in the UK is incorporating Facelt into a closed-
circuit television anticrime system called
Mandrake. This system searches for known crim-
inals in video data acquired from 144 closed-cir-
cuit camera locations. When a match occurs, the
system notifies a security officer in the control
room.

» Viisage, another leading face recognition com-
pany, uses the eigenface-based recognition algo-
rithm developed at the MIT Media Laboratory.
Companies and government agencies in many US
states and several developing nations use Viisage’s
system in conjunction with identification cards—
for example, driver’s licenses and similar gov-
ernment ID cards.

e Miros uses neural network technology for its
TrueFace face recognition software. TrueFace is
used by the Mr. Payroll Corp. system in its check
cashing system and has been deployed at casinos
and similar sites in many US states.

NOVEL APPLICATIONS

Face recognition systems are no longer limited to
identity verification and surveillance tasks. Growing
numbers of applications are using face recognition as
the initial step toward interpreting human actions,
intentions, and behavior as a central part of next-gen-
eration smart environments. Many actions and behav-
iors humans display can only be interpreted if you also
know the identities of the individuals and the people
around them. Examples are a valued repeat customer
entering a store, behavior monitoring in an elder care
or child care facility, and command-and-control inter-
faces in a military or an industrial setting. In each of
these applications, identity information is crucial to
providing machines with the background knowledge
needed to interpret measurements and observations
of human actions.

Face recognition for smart environments

Researchers today are actively building smart envi-
ronments—visual, audio, and haptic interfaces with
environments such as rooms, cars, and office desks.2
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In these applications, a key goal is to give machines
perceptual abilities that allow them to function natu-
rally with people—to recognize people and remember
their preferences and peculiarities, to know what they
are looking at, and to interpret their words, gestures,
and unconscious cues, such as vocal prosody and body
language. Researchers are exploring applications for
these perceptually aware devices in health care, enter-
tainment, and collaborative work.

Facial-expression recognition interacts with other
smart-environment capabilities. For example, a smart
system should know whether the user looks impa-
tient—because information is being presented too
slowly—or confused because it is coming too fast.
Facial expressions provide cues for identifying and
distinguishing between these states. Recently, much
effort has gone into creating a person-independent
expression recognition capability. While there are sim-
ilarities in expressions across cultures and between
people, for anything but the most gross facial expres-
sions, the analysis must account for the person’s nor-
mal resting facial state—something that definitely isn’t
the same between people. Consequently, facial-expres-
sion research has so far been limited to recognition of
a few discrete expressions rather than addressing the
entire spectrum of expressions along with their subtle
variations. Before a system can achieve a really useful
expression analysis capability, it must first be able to
recognize and tune its parameters to a specific person.

Wearable recognition systems

When we build computers, cameras, microphones,
and other sensors into a person’s clothes, the com-
puter’s view moves from a passive third-person to an
active first-person vantage point.® These wearable
devices can adapt to a specific user and be more inti-
mately and actively involved in the user’s activities. The
wearable-computing field is rapidly expanding and just
recently became a full-fledged technical committee
within the IEEE Computer Society. Consequently, we
can expect to see rapidly growing interest in the largely
unexplored area of first-person image interpretation.

Face recognition is an integral part of wearable sys-
tems like memory aids and context-aware systems.
Thus, developers will integrate many future recogni-
tion systems with clothing and accessories. For
instance, if you build a camera into your eyeglasses,
then face recognition software can help you remember
the name of the person you are looking at by whis-
pering it in your ear. The US Army has started testing
such devices for use by border guards in Bosnia, and
researchers at the University of Rochester’s Center
for Future Health are looking at them for patients
with Alzheimer’s disease (see http://wearables.www.
media.mit.edu/projects/wearables and http://www.
futurehealth.rochester.edu).



FUTURE WORK

Today’s face recognition systems work very well
under constrained conditions, such as frontal mug
shot images and consistent lighting. All current face
recognition algorithms fail under the vastly varying
conditions in which humans can and must identify
other people. Next-generation recognition systems
will need to recognize people in real time and in much
less constrained situations.

We believe that identification systems that are
robust in natural environments—in the presence of
noise and illumination changes—cannot rely on a sin-
gle modality; thus, fusion with other modalities is
essential. Technology used in smart environments has
to be unobtrusive and allow users to act freely.
Wearable systems in particular require the sensing
technology to be small, low power, and easily inte-
grable with clothing. Considering all the requirements,
systems that use face and voice identification seem to
have the most potential for widespread application.

Cameras and microphones today are very small and
lightweight, and have been successfully integrated with
wearable systems. Audio- and video-based recognition
systems have the critical advantage of using the modal-
ities humans use for recognition. Finally, researchers
are beginning to demonstrate that unobtrusive audio-
and video-based personal identification systems can
achieve high recognition rates without requiring the
user to be in a highly controlled environment.*?

space where computers and machines are more

like helpful assistants, rather than inanimate
objects. Face recognition technology could play a
major part in achieving this goal, and it has come a
long way in the past 20 years. But to achieve the goal
of widespread application in smart environments,
next-generation face recognition systems will have to
fit naturally within the pattern of normal human
interactions and conform to human intuitions about
when recognition is likely. This implies that future
smart environments should use the same modalities
as humans and have approximately the same limita-
tions. Although substantial research remains to be
done, these goals now appear to be within reach. [J

T he goal of smart environments is to create a
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