
Face recognition from long-term observations

Gregory Shakhnarovich, John W. Fisher, and Trevor Darrell

Artificial Intelligence Laboratory
Massachusetts Institute of Technology
{gregory,fisher,trevor}@ai.mit.edu

Abstract. We address the problem of face recognition from a large set
of images obtained over time - a task arising in many surveillance and
authentication applications. A set or a sequence of images provides in-
formation about the variability in the appearance of the face which can
be used for more robust recognition. We discuss different approaches
to the use of this information, and show that when cast as a statis-
tical hypothesis testing problem, the classification task leads naturally
to an information-theoretic algorithm that classifies sets of images using
the relative entropy (Kullback-Leibler divergence) between the estimated
density of the input set and that of stored collections of images for each
class. We demonstrate the performance of the proposed algorithm on
two medium-sized data sets of approximately frontal face images, and
describe an application of the method as part of a view-independent
recognition system.

1 Introduction

Recognition in the context of visual surveillance applications is a topic of grow-
ing interest in computer vision. Face recognition has generally been posed as
the problem of recognizing an individual from a single “mug shot”, and many
successful systems have been developed (e.g. Visionics, Bochum/USC). Sepa-
rately, systems for tracking people in unconstrained environments have become
increasingly robust, and are able to track individuals for minutes or hours [8, 5].
These systems typically can provide images of users at low or medium resolu-
tion, possibly from multiple viewpoints, over long periods of time. For optimal
recognition performance, the information from all images of a user should be
included in the recognition process.

In such long-term recognition problems, sets of observations must be com-
pared to a list of known models. Typically the models themselves are obtained
from sets of images, and this process can be thought of as a set matching prob-
lem. There are many possible schemes for integrating information from multiple
observations, using either “early” or “late” integration approaches. Early inte-
gration schemes might consist of selecting the “best” observation from each set
using some quality metric, or simply averaging together all observations prior to
classification. In the case of late integration, the common statistical approach is
to take the product of the likelihoods of each observation. This approach, while
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simple and well justified under certain conditions, often fails to account for the
presence of outliers in the observation data as well as the fact that the data are
expected to be observed with a certain variability (e.g., repeated observations of
the most likely face of an individual does not yield a typical set of faces for that
individual, if we presume human faces occur with some natural variability.)

We propose an approach to face recognition using sets of images, in which
we directly compare models of probability distributions of observed and model
faces. Variability in the observed data is considered when comparing distribu-
tion models, and thus outliers and natural variation can be handled properly.
Many approaches to distribution modeling and matching are possible within
this general framework. In this paper we develop a method based on a Gaussian
model of appearance distribution and a matching criterion using the Kullback-
Leibler divergence measure. In our method, observations and models can be
compared efficiently using a closed-form expression. In addition to being poten-
tially more accurate, our approach can be more efficient than approaches that
require comparing each observation with each model example image since our
model distributions are compactly parameterized.

We have evaluated our approach on two different data sets of frontal face
images. The first was a collection of people observed at a distance in frontal
view in an indoor office environment. The second was computed using a recently
proposed scheme for integration across multiple viewpoints [15], in which images
from several cameras with arbitrary views of the user’s face were combined to
generate a virtual frontal view. With both data sets, our distribution matching
technique offered equal or improved recognition performance compared to tra-
ditional approaches, and showed robustness with respect to the choice of model
parameters.

Throughout the paper we will assume independence between any two samples
in a set of images, thus ignoring, for example, the dynamics of facial expression.
While disregarding a potentially important cue , this will also remove the as-
sumption of consecutive frames, making it easier to recognize a person from
sparse observations such as are available, for instance, in surveillance systems,
where the subject does not face the camera all the time. Furthermore, the train-
ing set may be derived from sparse or unordered observations rather than a
sequence.

The remainder of the paper is organized as follows. We start with a discus-
sion of previous work on this problem and of known methods appropriate for
classifying sets of images. In Sections 3 and 4 we present the statistical analysis
leading to our distribution matching algorithm, described in detail in Section 5.
Section 6 contains a report on the empirical comparative study of the discussed
methods, and is followed by conclusions and discussion in Section 7.

2 Previous work

The area of recognition from a single face image is very well established. Both
local, feature-based and global, template-based methods have been extensively
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explored [3]. The state of the art today is defined by a family of recognition
schemes related to eigendecomposition of the data directly [11] and through
Linear Discriminate Analysis [1], or to local feature analysis of images [13, 17],
all of which achieve very high performance. However, face recognition from an
image sequence, or more generally from a set of images, has been a subject of
relatively few published studies.

The common idea in most of the published work is that recognition per-
formance can be improved by modeling the variability in the observed data.
Recently proposed detection and tracking algorithms use the dynamics of the
consecutive images of a face, and integrate recognition into the tracking frame-
work. In [6], the variation of the individual faces is modeled in the framework of
the Active Appearance Model. In [7], the “temporal signature” of a face is de-
fined, and feed-forward neural network is used in order to classify the sequence.
In [2], people are recognized from a sequence of rotating head images, using
trajectories in a low-dimensional eigenspace. They assume that each image is
associated with a known pose – a situation which is uncommon in practice. In
all three papers, the temporal constraints of the sequence (i.e., the images being
consecutive in time) are crucial. We are interested in recognition under looser
assumptions, when the images are not necessarily finely sampled, or even ordered
in time.

2.1 Late integration strategies

A number of methods are applicable to the situation where multiple observations
of the same person’s face are accumulated over time. This is an instance of the
more general problem of fusion of evidence from multiple measurements. Kittler
et al in [9] present a statistical interpretation of a number of common methods
for cross- modal fusion, such as the product, maximum , and majority rules,
which are also appropriate for late integration over a set of observations from a
single modality. For example, it can be shown that under the assumption that
the samples in the set are distributed i.i.d., the product rule is the maximum
likelihood classifier of the set:

w∗ = argmax
wi

n∏
t=1

p(xt|wi) = argmax
wi

p
(
X(n)|wi

)
, (1)

where xt is the t-th sample in the set of n observations X(n).
The max rule chooses the identity with the highest estimated likelihood of a

single face image, while the mean rule prefers the identity that gives the highest
mean likelihood over the input images. The majority rule, which is an instance
of a voting strategy, observes classification decisions made on all of the input
images separately, and picks the label assigned to the largest number of images.
Though lacking clear statistical interpretation, the same combination rules can
be applied to scores instead of likelihood values (e.g., taking the product or mean
of the distances in feature space).
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2.2 Early integration and the MSM algorithm

The above combination rules are generally “late” integration strategies, in that
they combine likelihoods rather than observations. An alternative approach con-
sists of combining the input images themselves and mapping the whole sequence
to a feature space in which the classification is performed. The simplest example
of such a technique is classification of X(n) based on the mean image x̄. More
sophisticated approaches capture higher-order moments of the distribution. In
particular, the Mutual Subspace Method (MSM) of Yamaguchi et al [18] is note-
worthy.

In MSM, a test set of images is represented by the linear subspace spanned by
the principal components of the data. This subspace is then compared to each of
the subspaces constructed for the training data with dissimilarity measured by
the minimal principal angle between the subspaces1. This approach works even
with coarsely sampled sequences, or with general unordered sets of observations.
However, it does not consider the entire probabilistic model of face variation,
since the eigenvalues corresponding to the principal components, as well as the
means of the samples, are disregarded in the comparison.

The schematic examples in Figure 1 illustrate the shortcomings of ignoring
the eigenvalues and means. In Figure 1(a) the three 2D ellipses correspond to
the two principal components of three data sets of 300 points obtained from 3D
Gaussian distributions p0 (solid line), p1 (dotted) and p2 (dashed) with the same
mean but different covariance matrices. In fact p0 is the same as p1 but with
noise that slightly rotates the ellipse plane. In terms of distribution divergence –
either K-L or L2 – p0 is closer to p1 than to p2. However, the Mutual Subspace
approach fails to recognize this, since the 2D principal subspaces of p1 and p2

are identical.
The shortcomings of the subspace angle matching are even clearer in Figure

1(b). Here the two principal components of p0 and p2 again lie in the same
subspace, while the principal subspace of p1 is slightly rotated. In addition, in
this case important information about similarity of p0 and p1 is contained in the
positions of the means, disregarded by the MSM.

The MSM approach has the desirable feature that it builds a compact model
of the distribution of observations. However, it ignores important statistical char-
acteristics of the data and thus, as we show in Section 4, its decisions may
be statistically sub-optimal. In this paper we develop an alternative approach,
which takes into account both the means and the covariances of the data and is
grounded in the statistical approach to classification.

3 Statistical recognition framework

We assume that images of the kth person’s face are distributed according to an
underlying probability rule pk, and that the input face images are distributed

1 the minimal angle between any two vectors in the subspaces
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(b) p1 and p2 have different means

Fig. 1. Illustration of the difference between the Mutual Subspace Method and distri-
bution divergence method. The 2D ellipses, embedded in 3D, correspond to the first
2 principal components of the estimated distributions. By the minimal principal angle
measure, p0 (solid lines) is closer to p2 (dotted), while in terms of distribution similarity
– KL-divergence or L2-norm – p1 (dashed) must be chosen.

according to some p0. The task of the recognition system is then to find the class
label k∗ satisfying

k∗ = argmax
k

Pr(p0 = pk), (2)

subject to Pr(p0 = pk∗) ≥ 1−δ for a given confidence threshold δ, or to conclude
the lack of such a class (i.e. to reject the input). Note that score-producing
classifiers, which choose the identity that maximizes a score function and not a
probability, must effectively assume that the posterior class probability of the
identities is monotonic with the score function. Setting the minimal threshold
on a score sufficient to make a decision is equivalent to setting δ.

In this paper, we do not deal with the rejection mechanisms, and instead as-
sume that p0 is in fact equal to some pk in the database of K subjects. Therefore,
given a set of images distributed by p0, solving (2) amounts to optimally choos-
ing between K hypotheses of the form which in statistics is sometimes referred
to as the two-sample hypothesis: given two samples (in our case, the training
set of the kth subject and the test set), do these two sets come from the same
distribution?

When only a single sample point from p0 is available, it is known that the
optimal hypothesis test is performed by choosing k maximizing the posterior
probability of pk given this sample. When a larger sample set is available, the
optimal test becomes a comparison of posteriors of different models given this set.
If all the classes have equal prior probabilities, this becomes a comparison of the
likelihoods of the test set under different class models. In the following section, we
discuss ways of performing this test, and its relationship to the Kullback-Leibler
divergence between distributions.

In reality the distributions pk are unknown and need to be estimated from
data, as well as p0. In this paper, we follow [12] and estimate the densities in the
space of frontal face images by a multivariate Gaussian. Each subject has its own
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density, which is estimated based on the training samples of that subject’s face.
Our algorithm, described below, does not require (nor uses) temporal adjacency
of the images in the input sequence.

4 Density matching and hypothesis testing

Here we show the relationship of classical hypothesis testing to density match-
ing via K-L divergence. A conclusion of the analysis, supported by subsequent
experiments, is that when recognition is done by comparing sets of observations,
direct estimation of KL-divergence between densities inferred from training data
(i.e. the model densities) and densities inferred from samples under test is a
principled alternative to standard approaches. This follows from an analysis of
the K-ary hypothesis test, which can be stated as follows:

H1 : X
(n)
0 ∼ p1 (x)

...
HK : X

(n)
0 ∼ pK (x)

(3)

with the goal of determining which hypothesis, Hk, best explains the data, X
(n)
0 .

The notation X
(n)
k ∼ pj (x) implies that the kth sample set is drawn from the

jth density. In the discussion which follows X
(n)
0 =

{
x1

0, . . . , x
n
0

}
indicates the

sample set under test and p0(x) the density from which it is drawn while X
(n)
k

(k = 1 . . .K) indicates the kth sample set and pk(x) the model density inferred
from that sample set.

Although not commonly used, the K-ary hypothesis test:

H1 : X
(n)
1 ∼ p0 (x)

...
HK : X

(n)
K ∼ p0 (x)

(4)

is, under mild conditions [10], equivalent to 3. In 3 we quantify and compare the
ability of our inferred model densities to explain the samples under test, while
in equation 4 we infer the density of our test samples and then quantify and
compare its ability to explain our model samples.

Assuming that the xi are i.i.d. (independent and indentically distributed) and
the classes have equal prior probability, it is well known, by the Neyman-Pearson
lemma (e.g. see [14]), that an optimal statistic for choosing one hypothesis over
the other is the log-likelihood function; that is,

Hk = argmax
k

∑
i

log
(
pk

(
xi

0

))
(5)

for the hypothesis test of (3) and

Hk = argmax
k

∑
i

log
(
p0

(
xi

k

))
(6)
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for hypothesis test of (4). Note the implication that all samples are used in
determination of the best hypothesis.

Under the i.i.d. assumption it can be shown that the log-likelihood of samples
drawn from pl (x) under model distribution pk (x) has the following expected
(with respect to pl (x)) and asymptotic behavior [4]:

Epl

{
1
N

N∑
i=1

log
(
pk

(
xi

l

))}
= − (H(pl (x)) + D (pl (x) ||pk (x))) (7)

= lim
N→∞

(
1
N

N∑
i=1

log
(
pk

(
xi

l

)))
(8)

where D (pl||pk) is the well-known asymmetric Kullback-Leibler (K-L) diver-
gence [10] defined as

D(p||q) =
∫

p(x) log
(

p(x)
q(x)

)
dx . (9)

It can be shown that D (pl||pk) ≥ 0, with equality only when pl(x) = pk(x).
The K-L divergence quantifies the ability of one density to explain samples

formalized by the information theoretic notion of relative entropy. In the con-
text of K-ary hypothesis testing we see that asymptotically (as we gather more
samples) and in expectation (given a finite sample set) that we choose the model
density, pk(x), which is closest to the sample density, pl(x), in K-L divergence
sense.

In this light we might recast the K-ary hypothesis test as one of trying to
estimate the K-L divergence between the distribution underlying our training
data and the distribution underlying the sample data under test. The difference
between the two hypothesis tests is in the direction one computes the divergence.
The hypothesis selection rules of 5 and 6 become

Hk = argmax
k

−D (p0||pk) (10)

Hk = argmax
k

− (H (pk) + D (pk||p0)) (11)

respectively. Consequently, we will investigate several methods by which one can
approximate the K-ary hypothesis test via direct computation/estimation of K-
L divergence. Depending on the assumptions made we unavoidably introduce
errors into the distribution estimates which in turn introduce errors into our
estimate of the K-L divergence.

In the first, and most commonly used, method we assume a parametric den-
sity form (Gaussian) with parameters estimated from the training data. The
log-likelihood of the samples under test are computed using equation 5 and
plugging in the estimated Gaussian densities. This is equivalent to first finding
the Gaussian densities which are closest to the “true” model densities in the K-L
sense and then second, of the Gaussian distributions, finding the one which is
closest in the K-L sense to the distribution of the sample under test.
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Secondly, we estimate the parameters of the distribution of our test sample
and subsequently evaluate the log likelihood of our training data using equation
6. This is equivalent to first finding the Guassian distribution which is closest
to the “true” test distribution and then, of the training distributions, selecting
that which is closest to the estimated testing density in the K-L sense.

Finally, using a recent result [19], we estimate Gaussian distribution param-
eters for both training and test data and compute K-L divergences analytically.

5 Classification based on Kullback-Leibler divergence

In this section we define the proposed classification scheme based on the KL-
divergence between the estimated model and input probability densities, and
present the computation details of our scheme. The first phase of our algorithm
consists of modeling the data distribution as a single multivariate Gaussian con-
structed from two factors – the density in the principal subspace and the isotropic
“noise” component in the orthogonal subspace. This is a fairly standard proce-
dure. The second, novel phase is the closed-form evaluation of the KL-divergence
between the models estimated for input set and the ones estimated for each sub-
ject from the training data. The resulting values can be treated as a score for
classification or rejection decisions.

5.1 Computation of DKL (pk‖p0)

In the general case of two multivariate distributions, evaluating DKL (pk‖p0) is
a difficult and computationally expensive task, especially for high dimensions,
and is typically performed by means of numeric integration, and computationally
expensive, especially for high dimensions. However, a recent result [19] for the
case of two normal distributions pk and p0 provides a closed form expression:

DKL (p0‖pk) =
1
2

log
( |Σk|
|Σ0|

)
+

1
2

Tr
(
Σ0Σ−1

k + Σ−1
k (x̄k − x̄0)(x̄k − x̄0)T

)− d

2
,

(12)
where d is the dimensionality of the data (number of pixels in the images), x̄k

and x̄0 are the means of the training set for the kth subject and of the input
set, respectively, and Σk and Σ0 are the covariance matrices of the estimated
Gaussians for the kth subject and for the input set, respectively.

After estimating Σ0 and finding its eigendecomposition, an operation taking
O(d3), we can compute the determinant in (12) in linear time, by taking the
product of the eigenvalues. Calculation of the matrix products will require an
additional workload of O(d3). Therefore, for K subjects in the database, we need
O(Kd3) operations.

To compute DKL (p0‖pk), we exchange the indices 0 and k in (12). Since
KL-divergence is an asymmetric measure, we should expect the results to be
different for the two “directions”.
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5.2 Normal approximation of face appearance densities

For the sake of completeness, we describe our calculation of Σ0 and Σk, which
is a straightforward application of PCA, as done, e.g., in [12]. Let Φk be the
orthonormal matrix of eigenvectors (columns) and Λk be the diagonal matrix of
non-decreasing eigenvalues λk1 ≥ λk2 ≥ . . . ≥ λkd of the auto-correlation matrix
Sk = (X(n)

k − x̄k)(X(n)
k − x̄k)T of the kth set of images. We will denote by the

subscript k the components of such a decomposition for the training set of images
of the kth subject, and by the subscript 0 the components of the decomposition
of the test image set.

The maximum likelihood estimate of a multi-dimensional Gaussian from the
data is N(· ; x̄k,Sk). However, following the assumption that the true dimen-
sionality of the data (with the noise excluded) is lower than d, we choose a
subset of Mk ≤ n eigenvectors, corresponding to the desired retained energy2 E:∑Mk−1

i=1 λi < E ≤ ∑Mk

i=1 λi. The chosen eigenvectors define the principal linear
subspace Lk.

Our model must still explain the variance in the complementary orthogonal
subspace L⊥k ⊥ Lk. Following [12], we replace each one of the remaining diagonal
elements of Λk by their mean ρk. This solution, which estimates the distribution
in L⊥k as isotropic Gaussian noise with variance ρk, can be shown to minimize
the KL-divergence from the true distribution, if the Gaussianity assumption is
correct. The estimated density of the faces in the k-th class is then the product
of the Gaussian densities in the two subspaces, and can be written in the full
d-dimensional space as

pk(x) = N (x; x̄k,Σk) , (13)

where x̄k is the mean of the images in k-th class, and

Σk = ΦkΛE
k ΦT

k , ΛE
k =




λk1 0 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 . λkMk

0 . 0
0 . 0 ρk 0 . .

. . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . ρk




, ρk =
1

d−Mk

d∑
i=Mk+1

λki

Similarly, the estimated density of the observed face sequence is

p0(x) = N (x; x̄0,Σ0) . (14)

It is important to point out that x̄k and Σk need to be computed only once for
each subject, at the time the subject is entered into the database.

6 Experiments

In order to evaluate the relative performance of the proposed algorithm, we
compared it to several other integration algorithms mentioned above. The com-
parisons were made on two data sets, described below, both containing frontal
2 alternatively one can set Mk directly; while both techniques are heuristic, we found

the latter to be less robust with respect to discovering the true dimensionality
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face images. One data set was obtained with a single camera using a face detector
to collect images, while the other used a recently proposed virtual view rendering
technique to generate frontal pose images from a set of arbitrary views.

In our experiments we compared the performance of the following algorithms:

– Our distribution comparison algorithm based on KL-divergence
– MSM
– Comparison by the mean log-likelihood of the set
– Comparison by the log-likelihood of the mean face
– Max / min / mean combination rules for likelihoods of individual images
– Max / min / mean combination rules for classifier scores of individual images

(distances from the principal subspace).
– Majority vote, both by likelihoods and by scores of individual images

Due to space constraints, and to keep the graphs scaled conveniently, we report
only the results on those methods that achieved reasonably low classification
error for some energy level. Methods not reported were performance significantly
inferior to the reported ones.

(a) Conversation video (b) Visual Hull generated face views

Fig. 2. Representative examples from the data used in the experiments. Note thethe
pose and lighting variation in (a), and synthetic rendering artifacts in (b)

6.1 “Conversation” face sequences

To evaluate the discussed methods on conventional data obtained with a single
monocular camera, we experimented with a data set3 containing video clips of 29
subjects filmed during a conversation; we refer to this data set as the Conversa-
tion data. Each person is represented by one clip captured with a CCD camera,
at 30 fps. The faces were detected using a fast face detection algorithm [16], and
resized to 22×22 pixel gray level images. False positives were manually removed.
In all of the images, the pose is frontal within about 15 degrees, with an even
smaller range of tilt and yaw. The first 500 frames for each person were used
as a training set, and the rest were used for testing. To estimate the behavior
3 courtesy of Mitsubishi Electric Research Lab
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of the discussed algorithms for different input sizes, we partitioned the test im-
ages into sets of 60, 150 and 500 frames (2, 5 and 17 seconds) - 240, 95 and 25
sets, respectively. The examples shown in Figure 2(a) are representative of the
amount of variation in the data.

We decided to perform the recognition task on low-resolution images (22×22)
for two reasons. One is the interest to compare performance to that on virtually
rendered images, described in the following section, which are small by necessity.
The second is the reduction in computation and storage space.

Figure 3 shows the results for 60 and 150 frames. In both cases, DKL (pk‖p0)
achieved performance statistically indistinguishable from that of the other top-
performing algorithms. For sets of 60 images its error rate was 0.04%, while for
sets of 150 frames its performance (and also that of a few other algorithms)
was perfect. The optimal energy cut-off point for most algorithms seems to be
around 0.7, but some algorithms, including ours, show robustness around this
point, staying at low error for a much wider range of E. In the absence of a clear
principled way of choosing the dimensionality of the principal subspace, this is
an encouraging quality.

In our experiments with sets of 500 frames, the difference between many of the
algorithms vanishes as they achieve zero error for some PCA dimension. We did
observe, however, more robust performance with respect to PCA dimensionality,
with the KL-divergence, mean face likelihood, and max rule on the likelihoods.
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(a) 60 frames
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(b) 150 frames

Fig. 3. Experiments with Conversation data, sequences of (a) 60 and (b) 150 frames.
Note that for 150 frames, three algorithm achieve zero error rate.
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6.2 View-independent recognition with rendered images

We have previously developed methodology for view-independent multi-modal
recognition using multiple synchronized views. In this framework, views of the
subject are rendered from desired viewpoints using a fast implementation of
image-based Visual Hulls (VH). The viewpoints are set based on the subject’s
pose, estimated from the trajectory, and according to the mode of operation of
the relevant classifiers. The identity is then derived from combining an eigenspace-
based face recognizer, operating on nearly frontal views of the face, and a gait
recognizer, which extracts geometric features form a sequence of profile silhou-
ettes [15].
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(a) Performance of set recognition al-
gorithms for different PCA dimensions
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(b) Performance as a function of rank-
threshold

Fig. 4. Experiments with Visual Hull- generated data, sequences of about 60 frames

The input images to the face classifier are rendered using a virtual camera
placed to obtain a frontal view of the user. Thus the face image is assumed to
be in roughly canonical scale and orientation, to this extent solving the pose
variation problem. However, the problem of changing expression, hair style etc.
remains. In addition, images are of low resolution (22×22 in our implementation)
due to the typical distance of about 10 meters between the subjects and the
physical cameras. Some examples of images used for training and as input to
the face recognizer in our VH-based system are given in Figure 2(b). In general,
recognition performance on this data set is lower than it would be on typical
data. Error rate of 20% was reported in [15] for face recognition on a larger
data set, that included very short input sequences.

It is also worth mentioning that the frontal face view is sought within a small
spatial angle of the initial estimate of the face orientation, and often a face is
detected in a number of virtual views that are nearly frontal. Therefore, the
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number of available virtual face images for t time frames is typically larger than
t, sometimes by an order of magnitude.

The results shown in Figure 4 were computed by leave-one-out cross vali-
dation. Each one of the 133 sets of at least 60 synthetic faces of one of the 23
subjects was used as the input, while the rest of the data was used for training.
All of the classification algorithms were evaluated for different energy thresholds
E varying from 0.1 (for which typically a single principal component is chosen)
to .99 (typically around 100 components). As in the experiments with the Con-
versation data, we did not address the issue of choosing the right E, but it can
be seen from the plots that in all data sets, the E producing the best results is
in the range of 0.75–0.9. And again the behavior of some algorithms, including
ours, is notably more robust than the others, with respect to the choice of E.

For this dataset, DKL (p0‖pk) achieves best performance for E = 0.75 at
misclassification rate of 18%, compared to 24% for the log-likelihood of the
input set computed as in (5). For most values of E the error rate associated
with DKL (p0‖pk) is lower than the other methods. To quantify the robustness
of the method, Figure 4(b) shows the classification performance as a function
of rank-threshold. That is, the vertical axis corresponds to the percentage of
the correct identities within the first n, as ranked by different measures. The
robust performance of our algorithm (solid line) is similar to that of the mean
face likelihood,

7 Discussion, conclusions and future work

Our algorithm for recognition from a set of observations is based on classifying a
model built from the set, rather than classifying the individual observations and
combining the results. This approach, motivated by casting the classification of
sets as a statistical hypothesis testing problem, while not uncommon in the sta-
tistical community, to the best of our knowledge has not been used in vision. Our
experimental results are in accordance with the theoretical analysis, and support
using statistically-motivated density matching for classification. An additional
potential benefit of our algorithm, though not fully realized in our current im-
plementation, is in further reducing the computational costs of recognition by
using sequential PCA and more sophisticated matrix manipulation algorithms.

We intend to continue the experiments while extending the range of the
data to a larger number of classes and greater variability. For such data, the
assumption that the underlying distributions are Gaussian, which allows simple
computation, may not be true. We are currently investigating using alternative
statistical models.

Our current integration strategy ignores the dynamics of the sequence. In
fact, it classifies sets rather than sequences of images, and therefore does not
assume meaningful temporal constraints between the images. We expect that
including the dynamics of the face appearance, when available, into the algorithm
would improve the classification.
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Another interesting direction is to extend the distribution matching approach
to features other than principal components of images. For instance, one may
estimate the distributions of salient features, using nostril, eye, mouth etc. de-
tectors. Alternatively, an Active Appearance Model may be fit to each image in
the training and input sets, and the distributions of the computed feature values
may be compared.

Finally, the general approach introduced in this paper can be applied to
recognition not only of faces, but of any objects with variation in appearance
across images.
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