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Abstract

To create a pose-invariant face recognizer, one strategy is the view-based approach, which uses a set of
example views at di�erent poses. But what if we only have one example view available, such as a scanned
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applying the rotation seen in the prototypes to essentially \rotate" the single real view which is available.
Next, the combined set of one real and multiple virtual views is used as example views in a view-based,
pose-invariant face recognizer. Our experiments suggest that for expressing prior knowledge of faces, 2D
example-based approaches should be considered alongside the more standard 3D modeling techniques.
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1 Introduction

Existing work in face recognition has demonstrated good
recognition performance on frontal, expressionless views
of faces with controlled lighting (see Baron [4], Turk and
Pentland [48], Bichsel [11], Brunelli and Poggio [14], and
Gilbert and Yang [20]). One of the key remaining prob-
lems in face recognition is to handle the variability in
appearance due to changes in pose, expression, and light-
ing conditions. There has been some recent work in this
direction, such as pose-invariant recognizers (Pentland,
et. al. [34], Beymer [10]) and deformable template ap-
proaches (Manjunath, et. al. [30]). In addition to recog-
nition, richer models for faces have been studied for an-
alyzing varying illumination (Hallinan [22]) and expres-
sion (Yacoob and Davis [55], Essa and Pentland [19]).

In this paper, we address the problem of recognizing
faces under varying pose when only one example view
per person is available. For example, perhaps just a
driver's license photograph is available for each person
in the database. If we wish to recognize new images of
these people under a range of viewing directions, some
of the new images will di�er from the single view by a
rotation in depth. Is recognition still possible?

There are a few potential approaches to the problem
of face recognition from one example view. For exam-
ple, the invariant features approach records features in
the example view that do not change as pose-expression-
lighting parameters change, features such as color or ge-
ometric invariants. While not yet applied to face recog-
nition, this approach has been used for face detection
under varying illumination (Sinha [45]) and for indexing
of packaged grocery items using color (Swain and Bal-
lard [46]).

In the exible matching approach (von der Malsburg
and collaborators [30][25]), the input image is deformed
in 2D to match the example view. In [30], the deforma-
tion is driven by a matching of local \end-stop" features
so that the resulting transformation between model and
input is like a 2D warp rather than a global, rigid trans-
form. This enables the deformation to match input and
model views even though they may di�er in expression
or out-of-plane rotations. A deformation matching the
input with a model view is evaluated by a cost func-
tional that measures both the similarity of matched fea-
tures and the geometrical distortion induced by the de-
formation. In this method, the di�culties include (a)
constructing a generally valid cost functional, and (b)
the computational expense of a non-convex optimiza-
tion problem at run-time. However, since this matching
mechanism is quite general (it does not take into con-
sideration any prior model of human facial expression or
3D structure), it may be used for a variety of objects.

Generic 3D models of the human face can be used to
predict the appearance of a face under di�erent pose-
expression-lighting parameters. For synthesizing images
of faces, 3D facial models have been explored in the com-
puter graphics, computer vision, and model-based im-
age coding communities (Aitchison and Craw[1], Kang,
Chen, and Hsu[24], Essa and Pentland [19], Akimoto,
Suennaga, and Wallace[3], Waters and Terzopoulos[47],
Aizawa, Harashima, and Saito[2]). In the 3D technique,

face shape is represented either by a polygonal model
or by a more complicated multilayer mesh that simu-
lates tissue. Once a 2D face image is texture mapped
onto the 3D model, the face can be treated as a tradi-
tional 3D object in computer graphics, undergoing 3D
rotations or changes in light source position. Faces are
texture mapped onto the 3D model either by specifying
corresponding facial features in both the image and 3D
model or by recording both 3D depth and color image
data simultaneously by using specialized equipment like
the Cyberware scanner. Prior knowledge for expression
has been added to the 3D model by embedding muscle
forces that deform the 3D model in a way that mimics
human facial muscles.

A generic 3D model could also be applied to our sce-
nario of pose-invariant face recognition from one example
view. The single view of each person could be texture
mapped onto a 3D model, and then the 3D model could
be rotated to novel poses. Applying this strategy to face
recognition, to our knowledge, has not yet been explored.

While 3D models are one method for using prior
knowledge of faces to synthesize new views from just
one view, in this paper we investigate representing this
prior face knowledge in an example-based manner, us-
ing 2D views of prototype faces. Since we address the
problem of recognition under varying pose, the views of
prototype faces will sample di�erent rotations out of the
image plane. In principle, though, di�erent expressions
and lightings can be modeled by sampling the proto-
type views under those parameters. Given one view of a
person, we will propose two methods for using the infor-
mation in the prototype views to synthesize new views
of the person, views from di�erent rotations in our case.
Following Poggio and Vetter [39], we call these synthe-
sized views virtual views.

Our motivation for using the example-based approach
is its potential for being a simple alternative to the
more complicated 3D model-based approach. Using an
example-based approach to bypass 3D models for 3D ob-
ject recognition was �rst explored in the linear combina-
tions approach to recognition (Ullman and Basri [49],
Poggio [35]). In linear combinations, one can show that
a 2D view of an object under rigid 3D transformation
can be written as a linear combination of a small set
of 2D example views, where the 2D view representation
is a vector of (x; y) locations of a set of feature points.
This is valid for a range of viewpoints in which a number
of feature points are visible in all views and thus can be
brought into correspondence for the view representation.
This suggests an object may be represented using a set
of 2D views instead of a 3D model.

Poggio and Vetter [39] have discussed this linear com-
binations approach in the case where only one example
view is available for an object, laying the groundwork for
virtual views. Normally, with just one view, 3D recogni-
tion is not possible. However, any method for generating
additional object views would enable a recognition sys-
tem to use the the linear combinations approach. This
motivated Poggio and Vetter to introduce the idea of
using prior knowledge of object class to generate vir-
tual views. Two types of prior knowledge were explored,
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knowledge of 3D object symmetry and example images
of prototypical objects of the same class. In the former,
the mirror reection of the single example can be gen-
erated, and the latter leads to the idea of linear classes,
which we will explain and use later in this paper.

In this paper, after discussing methods for generat-
ing virtual views, we evaluate their usefulness in a view-
based, pose-invariant face recognizer. Given only one
real example view per person, we will synthesize a set
of rotated virtual views, views that cover up/down and
left/right rotations. The combined set of one real and
multiple virtual views will be used as example views in
a view-based face recognizer. Recognition performance
will be reported on a separate test set of faces that cover
a range of rotations both in and out of the image plane.

Independent from our work, Lando and Edelman [26]
have recently investigated the same overall question {
generalization from a single view in face recognition {
using a similar example-based technique for represent-
ing prior knowledge of faces. In addition, Maurer and
von der Malsburg [31] have investigated a technique
for transforming their \jet" features across rotations in
depth. Their technique is more 3D than ours, as it uses
a local planarity assumption and knowledge of local sur-
face normals.

2 Vectorized image representation

Our example-based techniques for generating virtual
views use a vectorized face representation, which is an
ordered vector of image measurements taken at a set of
facial feature points. These features can run the gamut
from sparse features with semantic meaning, such as the
corners of the eyes and mouth, to pixel level features that
are de�ned by the local grey level structure of the image.
By an ordered vector, we mean that the facial features
have been enumerated f1; f2; : : : ; fn, and that the vector
representation �rst contains measurements from f1, then
f2, etc. The measurements at a given feature will include
its (x; y) location { a measure of face \shape" { and local
image color or intensity { a measure of face \texture".
The key part of this vectorized representation is that the
facial features f1; f2; : : : ; fn are e�ectively put into corre-
spondence across the face images being \vectorized". For
example, if f1 is the outer corner of the left eye, then the
�rst three elements of our vector representation will re-
fer to the (x1; y1; intensity-patch(x1; y1)) measurements
of that feature point for any face being vectorized.

2.1 Shape

Given the locations of features f1; f2; : : : ; fn, shape is
represented by a vector y of length 2n consisting of the
concatenation of the x and y coordinate values

y =

0
BBBB@

x1
y1
...
xn
yn

1
CCCCA

:

In our notation, if an image being vectorized has an iden-
tifying subscript (e.g. ia), then the vector y will carry

the same subscript, ya. The coordinate system used
for measuring x and y will be one normalized by using
the eye locations to �x interocular distance and remove
head tilt. By factoring out the 2D aspects of pose, the
remaining variability in shape vectors will be caused by
expressions, rotations out of the image plane, and the
natural variation in the con�guration of features seen
across people.

This vectorized representation for 2D shape has been
widely used, including network-based object recogni-
tion (Poggio and Edelman [37]), the linear combinations
approach to recognition (Ullman and Basri [49], Pog-
gio [35]), active shape models (Cootes and Taylor [15],
Cootes, et al. [16]) and face recognition (Craw and
Cameron [17][18]). In these shape vectors, a sparse set of
feature points, on the order of 10's of features, are either
manually placed on the object or located using a feature
�nder. For a face, example feature points may include
the inner and outer corners of the eyes, the corners of
the mouth, and points along the eyebrows and sides of
the face.

In this paper we use a dense representation of one fea-
ture per pixel, a representation originally suggested to
us by the object recognition work of Shashua [43]. Com-
pared to a sparser representation, the pixelwise represen-
tation increases the di�culty of �nding correspondences.
However, we have found that a standard optical ow al-
gorithm [7], preceded by normalization based on the eye
locations, can do a good job at automatically computing
dense pixelwise correspondences. After de�ning one im-
age as a \reference" image, the (x; y) locations of feature
points of a new image are computed by �nding optical
ow between the two images. Thus the shape vector of
the new image, really a \relative" shape, is described
by a ow or a vector �eld of correspondences relative
to a standard reference shape. Our face vectorizer (see
Beymer [9]), which uses optical ow as a subroutine, is
also used to automatically compute the vectorized rep-
resentation.

Optical ow matches features in the two frames using
the local grey level structure of the images. As opposed
to a feature �nder, where the \semantics" of features is
determined in advance by the particular set of features
sought by the feature �nder, the reference image provides
shape \semantics" in the relative representation. For
example, to �nd the corner of the left eye in a relative
shape, one follows the vector �eld starting from the left
eye corner pixel in the reference image.

Correspondence with respect to a reference shape, as
computed by optical ow, can be expressed in our vector
notation as the di�erence between two vectorized shapes.
Let us chose a face shape ystd to be the reference. Then
the shape of an arbitrary face ya is represented by the
geometrical di�erence ya � ystd, which we shall abbre-
viate ya�std. This is still a vector of length 2n, but now
it is a vector �eld of correspondences between images
ia and istd. In addition, we keep track of the reference
frame by using a superscript, so we add the superscript
std to the shape y

std

a�std
. The utility of keeping track

of the reference image will become more apparent when
describing operations on shapes. Fig. 1 shows the shape
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Figure 1: Our vectorized representation for image ia
with respect to the reference image istd at standard
shape. First, pixelwise correspondence is computed be-
tween istd and ia, as indicated by the grey arrow. Shape
y
std

a�std
is a vector �eld that speci�es a corresponding

pixel in ia for each pixel in istd. Texture ta consists of
the grey levels of ia mapped onto the standard shape.
In this �gure, image istd is the mean grey level image of
55 example faces that have been warped to the standard
reference shape ystd.

representation y
std

a�std
for the image ia. As indicated by

the grey arrow, correspondences are measured relative to
the reference face istd at standard shape. This relative
shape representation has been used by Beymer, Shashua,
and Poggio [8] in an example-based approach to image
analysis and synthesis.

2.2 Texture

Our texture vector is a geometrically normalized ver-
sion of the image ia. That is, the geometrical di�erences
among face images are factored out by warping the im-
ages to a common reference shape. This strategy for
representing texture has been used, for example, in the
face recognition works of Craw and Cameron [17], and
Shackleton and Welsh [42]. If we let shape ystd be the
reference shape, then the geometrically normalized im-
age ta is given by the 2D warp

ta(x; y) = ia(x+�x
std

a�std
(x; y); y +�y

std

a�std
(x; y));

where�x
std

a�std
and�y

std

a�std
are the x and y components

of ystd

a�std
, the pixelwise mapping between ya and the

standard shape ystd. Fig. 1 in the lower right shows an
example texture vector ta for the input image ia in the
upper right.

If shape is sparsely de�ned, then texture mapping
or sparse data interpolation techniques can be em-
ployed to create the necessary pixelwise level representa-

tion. Example sparse data interpolation techniques in-
clude using splines (Litwinowicz and Williams [28], Wol-
berg [54]), radial basis functions (Reisfeld, Arad, and
Yeshurun [40]), and inverse weighted distance metrics
(Beier and Neely [5]). If a pixelwise representation is
being used for shape in the �rst place, such as one de-
rived from optical ow, then texture mapping or data
interpolation techniques can be avoided.

For our vectorized representation, we have chosen a
dense, pixelwise set of features. What are some of the
tradeo�s with respect to a sparser set of features? Tex-
ture processing is simpli�ed over the sparse case since
we avoid texture mapping and sparse data interpolation
techniques, instead employing a simple 2D warping algo-
rithm. Additionally, though, using a pixelwise represen-
tation makes the vectorized representation very simple
conceptually: we can think of three measurements be-
ing made per feature (x; y; I(x; y)). The price we pay
for this simplicity is a di�cult correspondence problem.
In section 5 we describe three correspondence techniques
we explored for computing the vectorized image repre-
sentation.

3 Prior knowledge of object class:

prototype views

In our example-based approach for generating virtual
views, prior knowledge of face transformations such as
changes in rotation or expression are represented by 2D
views of prototypical faces. Let there be N prototype
faces pj ; 1 � j � N , where the prototypes are chosen to
be representative of the variation in the class of faces.
Unlike non-prototype faces { for which we only have a
single example view { many views are available for each
prototype pj.

Given a single real view of a novel face at a known
pose, we wish to transform the face to produce a rotated
virtual view. Call the known pose of the real view the
standard pose and the pose of the desired virtual view
the virtual pose. Images of the prototype faces are then
collected for both the standard and virtual poses. As
shown in Fig. 2, let

ipj = set of N prototype views at standard pose,

ipj ;r = set of N prototype views at virtual pose,

where 1 � j � N . Since we wish to synthesize many
virtual views from the same standard pose, sets of pro-
totype views at the virtual pose will be acquired for all
the desired virtual views.

The techniques we explore for generating virtual views
work with the vectorized image representation intro-
duced in the previous section. That is, the prototype im-
ages ipj and ipj ;r have been vectorized, producing shape
vectors ypj

and ypj ;r
and texture vectors tpj and tpj;r.

The speci�c techniques we used to vectorize images will
be discussed in section 5.

In the vectorized image representation, a set of images
are brought into correspondence by locating a common
set of feature points across all images. Since the set of
prototype views contain a variety of both people and
viewpoints, our de�nition of the vectorized representa-
tion implies that correspondence needs to be computed
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Figure 2: To represent prior knowledge of a facial trans-
form (rotation upwards in the �gure), views of N pro-
totype faces are collected at the standard and virtual
poses.

across di�erent viewpoints as well as di�erent people.
However, the two techniques for generating virtual views,
parallel deformation and linear classes, have di�erent re-
quirements in terms of correspondence across viewpoint.
Parallel deformation requires these correspondences, so
the prototype views are vectorized as one large set. On
the other hand, linear classes does not require correspon-
dence across viewpoints, so the set of images is parti-
tioned by viewpoint and separate vectorizations de�ned
for each viewpoint. In this latter case, vectorization is
simply handling correspondence across the di�erent pro-
totypes at a �xed pose.

4 Virtual views synthesis techniques

In this section we explore two techniques for generating
virtual views of a \novel" face for which just one view is
available at standard pose:

1. Linear classes. Using multiple prototype objects,
�rst write the novel face as a linear combination of
prototypes at the standard pose, yielding a set of
linear prototype coe�cients. Then synthesize the
novel face at the virtual pose by taking the lin-
ear combination of prototype objects at the virtual
pose using the same set of coe�cients. Using this
approach, as discussed in Poggio [36] and Poggio
and Vetter [39], it is possible to \learn" a direct
mapping from standard pose to a particular virtual
pose.

2. Parallel deformation. Using just one prototype ob-
ject, measure the 2D deformation of object features
going from the standard to virtual view. Then
map this 2D deformation onto the novel object
and use the deformation to distort, or warp, the
novel image from the standard pose to the virtual
one. The technique has been explored previously
by Brunelli and Poggio [38] within the context of
an \example-based" approach to computer graph-
ics and by researchers in performance-driven ani-
mation (Williams [52][53], Patterson, Litwinowicz,

and Greene [33]).

For notation, let in be the single real view of the novel
face in standard pose. The virtual view will be denoted
in;r.

4.1 Linear Classes

Because the theory of linear classes begins with a model-
ing assumption in 3D, let us generalize the 2D vectorized
image representation to a 3D object representation. Re-
call that the 2D image vectorization is based on estab-
lishing feature correspondence across a set of 2D images.
In 3D, this simply becomes �nding a set of correspond-
ing 3D points for a set of objects. The feature points are
distributed over the face in 3D and thus may not all be
visible from any one single view. Two measurements are
made at each 3D feature point:

1. Shape. The (x; y; z) coordinates of the feature
point. If there are n feature points, the vector Y
will be a vector of length 3n consisting of the x, y,
and z coordinate values.

2. Texture. If we assume that the 3D object is Lam-

bertian and �x the lighting direction ~l = (lx; ly; lz),
we can measure the intensity of light reected from
each feature point, independent of viewpoint. At
the ith feature point, the intensity T[i] is given by

T[i] = �[i] (~�[i] �
~l); (1)

where �[i] is the albedo, or local surface reectance,
of feature i and ~�[i] is the local surface normal at
feature i.1

The texture vector T is not an image; one can think of it
as a texture that is mapped onto the 3D shape Y given a

particular set of lighting conditions ~l. One helpful way to
visualize of the texture vector T is a sampling of image
intensities in a cylindrical coordinate system that covers
feature points over the entire face. This is similar to that
produced by the Cyberware scanner.

Consider the relationship between 3D vectorized
shape Y and texture T and their counterpart 2D ver-
sions y and t. The projection process of going from
3D shape Y to 2D shape y consists of a 3D rotation,
occlusion of a set of non-visible feature points, and or-
thographic projection. Mathematically, we model this
using a matrix L

y = LY; (2)

1Vetter and Poggio [51] have explored the implications
of 3D linear combinations of shape on image grey levels, or
texture. If an object is a linear combination of prototype
objects in 3D, then so are the surface normals. Thus, under
Lambertian shading with constant albedo over each object,
the grey level image of the novel object should be the same
linear combination of the grey level prototype images.
Also, it is not strictly necessary for the object to be Lam-

bertian; equation (1) could be a di�erent functional form of

�, ~�, and ~l. What is necessary is that T[i] is independent
of lighting and viewing direction, which may be achieved
by �xing the light source and assuming that the object is
Lambertian.
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where matrix L is the product of a 3D rotation matrixR,
an occlusion matrixD that simply drops the coordinates
of the occluded points, and orthographic projection O

L = ODR:

Note that L is a linear projection operator.
Creating a 2D texture vector t at a particular view-

point ~v involves in some sense \projecting" the 3D tex-
ture T. This is done by selecting the feature points that
are visible in the standard shape at viewpoint ~v

t = DT; (3)

where D is a matrix that drops points occluded in the
given viewpoint. Thus, viewpoint is handled in D; the
lighting conditions are �xed in T. Like operator L, D is
a linear operator.

The idea of linear classes is based on the assumption
that the space of 3D object vectorizations for objects of
a given class is linearly spanned by a set of prototype
vectorizations. That is, the shape Y and texture T of a
class member can be written as

Y =

NX
j=1

�jYpj
and T =

NX
j=1

�jTpj
(4)

for some set of �j and �j coe�cients.
While the virtual views methods based on linear

classes do not actually compute the 3D vectorized rep-
resentation, the real view in is related to the destina-
tion virtual view in;r through the 3D vectorization of
the novel object. First, a 2D image analysis of in at
standard pose estimates the �j and �j in equation (4)
by using the prototype views ipj . Then the virtual view
in;r can be synthesized using the linear coe�cients and
the prototype views ipj ;r. Let us now examine these
steps in detail for the shape and texture of the novel
face.

4.1.1 Virtual shape

Given the vectorized shape of the novel person yn and
the prototype vectorizations ypj and ypj;r ; 1 � j � N ,
linear classes can be used to synthesize vectorized shape
yn;r at the virtual pose. This idea was �rst developed
by Poggio and Vetter [39].

In linear classes, we assume that the novel 3D shape
Yn can be written as a linear combination of the proto-
type shapes Ypj

Yn =
P

N

j=1�jYpj
: (5)

If the linear class assumption holds and the set of 2D
views ypj are linearly independent, then we can solve
for the �j's at the standard view

yn =
P

N

j=1�jypj (6)

and use the prototype coe�cients �j to synthesize the
virtual shape

yn;r =
P

N

j=1�jypj ;r: (7)

This is true under orthographic projection. The mathe-
matical details are provided in Appendix B.

While this may seem to imply that we can perform a
3D analysis based on one 2D view of an object, the lin-
ear class assumption cannot be veri�ed using 2D views.
Thus, from just the 2D analysis, the technique can be
\fooled" into thinking that it has found a good set of
linear coe�cients when in fact equation (5) is poorly ap-
proximated. That is, the technique will be fooled when
the actual 3D shape of the novel person is di�erent from
the 3D interpolated prototype shape in the right hand
side of equation (5).

In solving equations (6) and (7), the linear class ap-
proach can be interpreted as creating a direct mapping
from standard to virtual pose. That is, we can derive a
function that maps from y's in standard pose to y's in
the virtual pose. Let Y be a matrix where column j is
ypj , and let Yr be a matrix where column j is ypj ;r. Then
if we solve for equation (6) using linear least squares and
plug the resulting �'s into equation (7), then

yn;r = YrY
y
yn; (8)

where Y y is the pseudoinverse (Y tY )�1Y t.
Another way to formulate the solution as a direct

mapping is to train a network to learn the association
between standard and virtual pose (see Poggio and Vet-
ter [39]). The (input, output) pairs presented to the
network during training would be the prototype pairs
(ypj , ypj ;r). A potential architecture for such a network
is suggested by the fact that equation (8) can be imple-
mented by a single layer linear network. The weights
between the input and output layers are given simply by
the matrix YrY

y.

4.1.2 Virtual texture

In addition to generating the shape component of
virtual views, the prototypes can also be used to gen-
erate the texture of virtual views. Given the texture
of a novel face tn and the prototype textures tpj and
tpj;r; 1 � j � N , the concept of linear classes can be
used to synthesize the virtual texture tn;r. This synthe-
sized grey level texture is then warped or texture mapped
onto the virtual shape to create a �nished virtual view.
The ideas presented in this section were developed by
the authors and also independently by Vetter and Pog-
gio [51].

To generate the virtual texture tn;r, we propose using
the same linear class idea of approximation at the stan-
dard view and reconstruction at the virtual view. Simi-
larly to the shape case, this relies on the assumption that
the space of grey level textures T is linearly spanned by
a set of prototype textures. The validity of this assump-
tion is borne out by recent successful face recognition
systems (e.g. eigenfaces, Pentland, et al. [34]). First, as-
sume that the novel texture Tn can be written as a linear
combination of the prototype textures Tpj

Tn =
P

N

j=1 �jTpj
: (9)

The analog of linear classes for texture, presented in Ap-
pendix B, says that if this assumption holds and the 2D
textures tpj are linearly independent, then we should be
able to decompose the real texture tn in terms of the
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example textures tpj

tn =
P

N

j=1 �jtpj (10)

and use the same set of coe�cients to reconstruct the
texture of the virtual view

tn;r =
P

N

j=1 �jtpj;r: (11)

Note that the texture T and hence the �j coe�cients
are dependent on the lighting conditions. Thus, by com-
puting di�erent views t using the D operator, we are
e�ectively rotating the camera around the object. The
geometry between object and light source is kept �xed.

We have synthesized textures for rotations of 10 to 15
degrees between standard and virtual poses with reason-
able results; see section 5 for example tn;r images and
section 6 for recognition experiments. In terms of com-
puting tn;r from tn, we can use the same linear solution
technique as for shape (equation (8)).

4.2 Parallel deformation

While the linear class idea does not require the y vectors
to be in correspondence between the standard and vir-
tual views, if we add such \cross view" correspondence
then the linear class idea can be interpreted as �nding
a 2D deformation from yn to yn;r. Having shape vec-
tors in cross view correspondence simply means that the
y vectors in both poses refer to the same set of facial
feature points. The advantage of computing this 2D de-
formation is that the texture of the virtual view can be
generated by texture mapping directly from the original
view in. This avoids the need for additional techniques
to synthesize virtual texture at the virtual view.

To see the deformation interpretation, subtract equa-
tion (6) from (7) and move yn to the other side, yielding

yn;r = yn +
P

N

j=1�j(ypj ;r � ypj ): (12)

Bringing shape vectors from the di�erent poses together
in the same equation is legal because we have added cross
view correspondence. The quantity �y

j
= ypj ;r � ypj

is a 2D warp that speci�es how prototype j's feature
points move under the prototype transformation. Equa-
tion (12) modi�es the shape yn by a linear combination
of these prototype deformations. The coe�cients of this
linear combination, the �j's, are given by Y y

yn, the so-
lution to the approximation equation (6).

Consider as a special case the deformation approach
with just one prototype. In this case, the novel face is
deformed in a manner that imitates the deformation seen
in the prototype. This is similar to performance-driven
animation (Williams [52]), and Poggio and Brunelli [38],
who call it parallel deformation, have suggested it as a
computer graphics tool for animating objects when pro-
vided with just one view. Specializing equation (12)
gives

yn;r = yn + (yp;r � yp); (13)

where we have dropped the j subscripts on the prototype
variable p. The deformation �y = yp;r � yp essentially
represents the prototype transform and is the same 2D
warping as in the multiple prototypes case.

By looking at the one prototype case through special-
izing the original equations (6) and (7), we get yn = yp

and yn;r = yp;r. This seems to say that the virtual
shape yn;r is simply that of the prototype at virtual pose,
so why should equation (13) give us anything di�erent?
However, the specialized equations, which approximate
the novel shape by prototype shape, are likely to be poor
approximations. Thus, we should really add error terms,
writing yn = yp + yerror1 and yn;r = yp;r + yerror2 .
The error terms are likely to be highly correlated, so by
subtracting the equations { as is done by parallel defor-
mation { we cancel out the error terms to some degree.

4.3 Comparing linear classes and parallel

deformation

What are some of the relative advantages of linear classes
and parallel deformation? First, consider some of the ad-
vantages of linear classes over parallel deformation. Par-
allel deformation works well when the 3D shape of the
prototype matches the 3D shape of the novel person. If
the two 3D shapes di�er enough, the virtual view gen-
erated by parallel deformation will appear geometrically
distorted. Linear classes, on the other hand, e�ectively
tries to construct a prototype that matches the novel
shape by taking the proper linear combination of exam-
ple prototypes. Another advantage of linear classes is
that correspondence is not required between standard
and virtual poses. Thus, linear classes may be able to
cover a wider range of rotations out of the image plane
as compared to parallel deformation.

One advantage of parallel deformation over linear
classes is its ability to preserve peculiarities of texture
such as moles or birthmarks. Parallel deformation will
preserve such marks since it samples texture from the
original real view of the novel person's face. For linear
classes, it is most likely that a random mark on a per-
son's face will be outside the linear texture space of the
prototypes, so it will not be reconstructed in the virtual
view.

5 Generating virtual views

In our approach to recognizing faces using just one ex-
ample view per person, we �rst expand the example set
by generating virtual views of each person's face. The
full set of views that we would ultimately like to have for
our view-based face recognizer are the set of 15 example
views shown in Fig. 3 and originally used in the view-
based recognizer of Beymer [10]. These views evenly
sample the two rotation angles out of the image plane.

While Fig. 3 shows 15 real views, in virtual views we
assume that only viewm4 is available and we synthesize
the remaining 14 example views. For the single real view,
an o�-center view was favored over, say, a frontal view
because of the recognition results for bilaterally symmet-
ric objects of Poggio and Vetter [39]. When the single
real view is from a nondegenerate pose (i.e. mirror re-
ection is not equal to original view), then the mirror
reection immediately provides a second view that can
be used for recognition. The choice of an o�-center view
is also supported by the psychophysical experiments of
Schyns and B�ultho� [41]. They found that when humans
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m5 m4 m3 m2 m1

m15 m14 m13 m12 m11

Figure 3: The view-based face recognizer uses 15 views to model a person's face. For virtual views, we assume that
only one real view, view m4, is available and we synthesize the remaining 14.

are trained on just one pose and tested on many, recogni-
tion performance is better when the single training view
is an o�-center one as opposed to a frontal pose.

In completing the set of 15 example views, the 8 views
neighboringm4 will be generated using our virtual views
techniques. Using the terminology of the theory section,
view m4 is the standard pose and each of the neighbor-
ing views are virtual poses. The remaining 6 views, the
right two columns of Fig. 3, will be generated by assum-
ing bilateral symmetry of the face and taking the mirror
reection of the left two columns.

But before describing our implementation of parallel
deformation and linear classes, we need to de�ne some
operators on shape.

5.1 Shape operators

5.1.1 Vectorizing face images

Computing the vectorized representation is really a
feature correspondence problem. The di�culty of this
correspondence task depends on the di�erence between
the two image arguments. Finding pixelwise correspon-
dence between the images of two dissimilar people is in-
herently more di�cult than dealing with two poses of
the same person, both situations of which are encoun-
tered in virtual views. Thus, we have looked at three
ways to vectorize faces, a manual method, optical ow,
and a new automatic technique that we call an image
vectorizer.

The pixelwise correspondence algorithms discussed in
this section compute a relative shape yb

a�b
, i.e. the shape

ya of image ia with respect to a reference image ib. This
computation will be denoted using the vect operator

y
b

a�b
= vect(ia; ib):

Pictorially, we visualize the shape yb
a�b

in Fig. 4 by draw-
ing an arrow from ib to ia. Of course, given this relative
shape y

b

a�b
, our original \absolute" de�nition of shape

iaib

y a-b
b

Figure 4: In relative shape, yb
a�b

denotes feature corre-
spondence between ib and ia using ib as a reference.

Figure 5: Manually speci�ed line segments drive Beier
and Neely's pixelwise correspondence technique.

y
b

a
can be computed by simply adding the shape y

b

b
,

which is simply the x and y coordinate values of each
pixel in ib.

The manual technique is borrowed from Beier and
Neely's morphing technique in computer graphics [5]. In
their technique, a sparse set of corresponding line seg-
ment features manually placed on images ia and ib drive
pixelwise correspondence between the two images (see
Fig. 5). Points on the line segments are mapped exactly,
and points in between are mapped using a weighted com-
bination of the displacement �elds generated by the line
segment correspondences. This is one method we used
for computing interperson correspondence { correspon-
dence across di�erent people. While this technique al-
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ways works, it is manual. Ideally, we would like some-
thing automatic, which leads us to the next two tech-
niques.

The optical ow technique uses the gradient-based,
hierarchical method of Bergen and Hingorani [7] (also see
Lucas and Kanade [29], Bergen, et al. [6]). Before ap-
plying optical ow, face images are brought into rough
registration using the eyes, which were located manu-
ally. Optical ow is useful for computing correspondence
among di�erent rotated views of the same prototype. It
works for interperson correspondence when the two peo-
ple are similar enough in grey-level appearance, but this
does not happen frequently enough to be useful.

Finally, our image vectorizer is a new method for
computing pixelwise correspondence between an input
and an \average" face shape ystd. Beymer [9] provides
the details; here we only set the problem up and sketch
the solution. To model grey level face texture, the vec-
torizer uses a set of N shape free prototypes tpj , the
same set as described before for texture representation.
\Vectorizing" an input image ia means simultaneously
solving for (1) an optical ow y

std

a�std
that converts the

input to the shape free representation, and (2) a set of
linear prototype coe�cients �j used to construct a model
image resembling the input. This is done by iteratively
solving

ia(x + y
std

a�std
(x)) =

P
N

j=1 �jtpj

by alternating between the operations of optical ow and
projection onto the prototypes until a stable solution is
found. In this equation, x is a 2D point (x; y) in average
shape ystd. The iterative processing of shape and tex-
ture is similar to the active shape models of Cootes and
Taylor [15], Cootes, et al. [16], and Lanitis, Taylor, and
Cootes [27]. Jones and Poggio [23] also describe a re-
lated system that uses linear combinations of prototype
shapes to analyze line drawings.

Correspondence between two arbitrary images can
thus be found by vectorizing both, as now both images
are in correspondence with the average shape. After vec-
torizing both images, one ow is inverted (which can be
done with negation followed by a forward warp), and the
two ows are then concatenated. This is an automatic
technique for �nding interperson correspondence.

5.1.2 Warping and shape manipulation

operators

2D warping operations move pixel values back and
forth between the reference shape yb and the destina-
tion shape ya. A forward warp, fwarp, pushes pixels
in the reference frame forward along the ow vectors
to the destination shape. For example, back in Fig. 4,
we can write ia = fwarp(ib;y

b

a�b
). In general, we can

push pixels along any arbitrary ow x, yielding the more
general form of ib+x = fwarp(ib;y

b

x
). Note that the

subscript of the image argument must match the super-
script of the shape argument, implying that the image
must be in the reference frame of the shape. Inversely, a
backwards warp, bwarp, uses the ow as an index into
the destination shape, bringing pixels in the destination
shape back to the reference. In Fig. 4, we can write
ib = bwarp(ia;y

b

a�b
).

iaib

y a-b
b

y x
b

y x
a

iaib

y a-b
b

y x
b

y x
a

(a) (b)

Figure 6: (a) To change the reference frame of ow y
b

x

from ia to ib, the x and y components are forward warped
along yb

a�b
, producing the dotted ow y

a

x
. In (b), back-

wards warping is used to compute the inverse.

Between the forward and backward warping opera-
tions, implementingbwarp is the easier of the two. Each
pixel in the reference image samples the destination im-
age by following its ow vector. Since the destination
location is usually between pixels, bilinear interpolation
is used to produce a grey level value.

Forward warping is solved using the idea of four cor-
ner mapping (see Wolberg[54]). Basically, we invert the
forward warping and then apply the backward warping
algorithm. To invert the forward warping, repeat the
following for every square source patch of four adjacent
pixels in the source. Map the source patch to a quadrilat-
eral in the destination image. Then for each destination
pixel inside this quadrilateral, we estimate its position
inside the quadrilateral treating the sides of the quadri-
lateral as a warped coordinate system. This position is
used to map to a location in the original source patch.

In addition to warping operations, shapes can be com-
bined using binary operations such as addition and sub-
traction. In adding and subtracting shapes, the reference
frames of both shapes must be the same, and the sub-
scripts of the shape arguments are added/subtracted to
yield the subscripts of the results: yb

u�v
= y

b

u
� y

b

v
.

The reference frame of a shape y
b

x
can be changed

from ib to ia by applying a forward warp with the shape
y
b

a�b
. Shown pictorially in Fig. 6(a), the operation con-

sists of separate 2D forward warps on the x and y com-
ponents of yb

x
interpreted for the moment as images in-

stead of vectors. Instead of pushing grey level pixels in
the forward warp, we push the x and y components of
the shape. The operation in Fig. 6(a) is denoted y

a

x
=

fwarp-vect(yb
x
;yb

a�b
). The inverse operation, shown in

Fig. 6(b), is computed using two backwards warps in-
stead of forward ones: yb

x
= bwarp-vect(ya

x
;yb

a�b
).

Finally, two ows �elds ya
b�a

and y
b

c�b
can be con-

catenated or composed to produce pixelwise correspon-
dences between ia and ic, y

a

c�a
. Concatenation is

shown pictorially in Fig. 7 and is denoted y
a

c�a
=

concat(ya
b�a

;yb
c�b

). The basic idea behind implement-
ing this operator is to put both shapes in the same
reference frame and then add. This is done by �rst
computing ya

c�b
= bwarp-vect(yb

c�b
;ya

b�a
) followed by

y
a

c�a
= y

a

b�a
+ y

a

c�b
.

Having �nished our primer on shape operators, we
now describe how parallel deformation and linear classes
were used to expand the example set with virtual views.
Recognition results with these virtual views are summa-
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ibia

y b-a
a

y c-b
b

ic

y c-a
a

Figure 7: In ow concatentation, the ows y
a

b�a
and

y
b

c�b
are composed to produce the dotted ow y

a

c�a
.

ip

ip,r

yp,r-p
p

in

in,r in + (p,r-p)=

yn-p
p

yp,r-p
n

B

CA

Figure 8: In parallel deformation, (A) the prototype ow
y
p

p;r�p
is �rst measured between ip;r and ip, (B) the ow

is mapped onto the novel face in, and (C) the novel face
is 2D warped to the virtual view.

rized in the next section.

5.2 Parallel deformation

The goal of parallel deformation is to map a facial trans-
formation observed on a prototype face onto a novel,
non-prototype face. There are three steps in implement-
ing parallel deformation: (a) recording the deformation
yp;r � yp on the prototype face, (b) mapping this de-
formation onto the novel face, and (c) 2D warping the
novel face using the deformation. We now go over these
steps in more detail, using as an example the prototype
views and single novel view in Fig. 8.

First, we collect prototype views ip and ip;r and com-
pute the prototype deformation

y
p

p;r�p
= vect(ip;r; ip)

using optical ow. Shown overlayed on the reference im-
age on the left of Fig. 8, this 2D deformation speci�es
how to forward warp ip to ip;r and represents our \prior
knowledge" of face rotation. To assist the correspon-
dence calculation, a sequence of four frames from stan-
dard to virtual pose is used instead of just two frames.

proto A proto B proto C

Figure 9: The prototypes used for parallel deformation.
Standard poses are shown.

Pairwise optical ows are computed and concatenated to
get the composite ow from �rst to last frame.

Next, the 2D rotation deformation is mapped onto the
novel person's face by changing the reference frame of
y
p

p;r�p
from ip to in. First, interperson correspondences

between ip and in are computed

y
p

n�p
= vect(in; ip)

and used to change the reference frame

y
n

p;r�p
= fwarp-vect(y

p

p;r�p
;y

p

n�p
):

The ow y
n

p;r�p
is the 2D rotation deformation mapped

onto the novel person's standard view. As the interper-
son correspondences are di�cult to compute, we evalu-
ated two techniques for establishing feature correspon-
dence: labeling features manually on both faces, and us-
ing our face vectorizer (see section 5.1.1 and Beymer [9])
to automatically locate features. More will be said about
our use of these two approaches shortly.

Finally, the texture from the original real view in is
2D warped onto the rotated face shape, producing the
�nal virtual view

in;r = in+(p;r�p) = fwarp(in;yn

p;r�p
):

Referring to our running example in Fig. 8, the �nal
virtual view is shown in the lower right.

In this procedure for parallel deformation, there are
two main parameters that one may vary:

1. The prototype. As mentioned previously, the ac-
curacy of virtual views generated by parallel de-
formation depends on the degree to which the 3D
shape of the prototype matches the 3D shape of the
novel face. Thus, one would expect di�erent recog-
nition results from di�erent prototypes. We have
experimented with virtual views generated using
the three di�erent prototypes shown in Fig. 9. In
general, given a particular novel person, it is best
to have a variety of prototypes to choose from and
to try to select the one that is closest to the novel
person in terms of shape.

2. Approach for interperson correspondence. In both
the manual and automatic approaches, interperson
correspondences are driven by the line segment fea-
tures shown in Fig. 10. The automatic segments
shown on the right were located using our face vec-
torizer from Beymer [9]. The manual segments
on the left include some additional features not
returned by the vectorizer, especially around the
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example
manual segments

example
automatic segments

Figure 10: Parallel deformation requires correspon-
dences between the prototype and novel person. These
correspondences are driven by the segment features
shown in the �gure. The features on the left were man-
ually located, and the features on the right were auto-
matically located using the vectorizer.

sides of the face. Given these sets of correspon-
dences, the interpolation method from Beier and
Neely [5] (see section 5.1.1) is used to interpolate
the correspondences to de�ne a dense, pixelwise
mapping from the prototype to novel face.

Figures 11 and 12 show example virtual views gener-
ated using prototype A with the real view in the center.
Manual interperson correspondences were used in Fig. 11
and the image vectorizer in Fig. 12. To compare views
generated from the di�erent prototypes, Fig. 13 shows
virtual views generated from all three prototypes. For
comparison purposes, the real view of each novel person
is shown on the right.

5.3 Linear Classes

We use the linear class idea to analyze the novel texture
in terms of the prototypes at the standard view and re-
construct at the virtual view. In the analysis step at the
standard view, we decompose the shape free texture of
the novel view tn in terms of the N shape free prototype
views tpj

tn =
P

N

j=1 �jtpj ; (14)

which results in a set of �j prototype coe�cients. But
before solving this equation for the �j , the novel view in
and prototype views ipj must be vectorized to produce
the geometrically normalized textures tn and tpj ; 1 �
j � N . Since the tpj 's can be put into correspondence
manually in an o�-line step (using the interpolation tech-
nique of Beier and Neely [5]), the primary di�culty of
this step is in converting in into its shape free represen-
tation tn. Since in is an m4 view of the face, this step
means �nding correspondence between in and viewm4's
standard face shape. Let this standard shape be denoted
as ystd.

Our image vectorizer (Beymer [9]) is used to solve
for the correspondences ystd

n�std
between in and standard

shape ystd. These correspondences can then be used to
geometrically standardize in

tn(x) = in(x + y
std

n�std
(x));

Figure 11: Example virtual views using parallel defor-
mation. Prototype A was used, and interperson corre-
spondence y

p

n�p
was speci�ed manually.

Figure 12: Example virtual views using parallel defor-
mation. Prototype A was used, and interperson corre-
spondence y

p

n�p
was computed automatically using the

image vectorizer.
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m3

m9

m15

real view

Figure 13: Example virtual views as the prototype per-
son is varied. The corresponding real view of each novel
person is shown on the right for comparison.

where x is an arbitrary 2D point (x; y) in standard shape.
Fig. 14 on the left shows an example view in with some
features automatically located by the vectorizer. The
right side of the �gure shows templates tn of the eyes,
nose, and mouth that have been geometrically normal-
ized using the correspondences ystd

n�std
.

Next, the texture tn is decomposed as a linear com-
bination of the prototype textures, following equation
(14). First, combine the �j terms into a column vector
� and de�ne a matrix T of the prototype textures, where
the jth column of T is tpj . Then equation (14) can be
rewritten as

tn = T�:

This can be solved using linear least squares, yielding

� = T ytn;

where T y is the pseudoinverse (T tT )�1T t.
The synthesis step assumes that the textural decom-

position at the virtual view is the same as that at the
standard view. Thus, we can synthesize the virtual tex-
ture

tn;r =

NX
j=1

�jtpj;r;

where tpj ;r are the shape free prototypes that have been
warped to the standard shape of the virtual view. As
with the tpj 's, the tpj;r's are put into correspondence
manually in an o�-line step. If we de�ne a matrix Tr
such that column j is tpj;r, the analysis and synthesis
steps can be written as a linear mapping from tn to tn;r

tn;r = TrT
y
tn:

This linear mapping was previously discussed in sec-
tion 4.1 for generating virtual shapes.

Fig. 15 shows a set of virtual views generated using
the analysis of Fig. 14. Note that the prototype views

in

tn

Figure 14: Using correspondences from our face vector-
izer, we can geometrically normalize input in, producing
the \shape free" texture tn.

must be of the same set of people across all nine views.
We used a prototype set of 55 people, so we had to spec-
ify manual correspondence (see Fig. 5) for 9 views of each
person to set up the shape free views. When generating
the virtual views for a particular person, we would, of
course, remove him from the prototype set if he were ini-
tially present, following a cross validation methodology.

Notice from Fig. 15 that by using the shape free tex-
tural representation, the virtual views in this experiment
are decoupled from shape and hence all views are in the
standard shape of the virtual pose. The only di�erence
between the views of di�erent people at a �xed pose will
be their texture.

6 Experimental results

In this section we report the recognition rates obtained
when virtual views were used in our view-based recog-
nizer [10].

6.1 View-based recognizer

In our view-based face recognizer [10], the 15 example
views of Fig. 3 are stored for each person to handle pose
invariance. To recognize an input view, our recognizer
uses a strategy of registering the input with the exam-
ple views followed by template matching. To drive the
registration step in the recognizer, a person- and pose-
invariant feature �nder �rst locates the irises and a nose
lobe feature. Similar in avor to the recognizer, the fea-
ture �nder is template-based, using a large set of eyes-
nose templates from a variety of \exemplar" people and
the 15 example poses.
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Figure 15: Example virtual views for linear classes.

After feature detection, the input is repetitively
matched against all example views of all people. Match-
ing the input against a particular example view consists
of two steps, a geometrical registration step and corre-
lation. In the registration step, �rst an a�ne transform
is applied to the input to bring the iris and nose lobe
features into correspondence with the same points on
the example view. While this brings the two views into
coarse alignment, small pose or expressional di�erences
may remain. To bring the input and example into closer
correspondence, optical ow is computed between the
two and a 2D warp driven by the ow brings the two
into pixelwise correspondence. Lastly, normalized cor-
relation with example templates of the eyes, nose, and
mouth is used to evaluate the match. The best match
from the data base is reported as the identi�ed person.

6.2 Recognition results

To test the recognizer, a set of 10 testing views per per-
son were taken to randomly sample poses within the
overall range of poses in Fig. 3. Roughly half of the test
views include an image-plane rotation, so all three rota-
tional degrees of freedom are tested. There are 62 people
in the database, including 44 males and 18 females, peo-
ple from di�erent races, and an age range from the 20s
to the 40s. Lighting for all views is frontal and facial
expression is neutral.

Table 1 shows recognition rates for parallel deforma-
tion for the di�erent prototypes and for manual vs. auto-
matic features. As with the experiments with real views
in Beymer [10], the recognition rates were recorded for
a forced choice scenario { the recognizer always reports
the best match. In the template-based recognizer, tem-
plate scale was �xed at an intermediate scale (interoc-
ular distance = 30 pixels) and preprocessing was �xed
at dx+dy (the sum of separate correlations on the x
and y components of the gradient). These parameters
had yielded the best recognition rates for real views in

interperson prototype
correspondence A B C

manual 84.5% 83.9% 83.9%
auto 85.2% 84.0% 83.4%

Table 1: Recognition rates for parallel deformation for
the di�erent prototypes and for manual vs. automatic
features.

Beymer [10]. The results were fairly consistent, with a
mean recognition rate of 84.1% and a standard deviation
of only 0.6%. Automatic feature correspondence on av-
erage was as good as the manual correspondences, which
was a good result for the face vectorizer. In the manual
case, though, it is important to note that the manual
step is at \model-building" time; the face recognizer at
run time is still completely automatic.

Fig. 16 summarizes our experiments with using real
and virtual views in the recognizer. Starting on the
right, we repeat the result from Beymer [10] where we
use 15 real views per person. This recognition rate of
98.7% presents a \best case" scenario for virtual views.
The real views case is followed by parallel deformation,
which gives a recognition rate of 85.2% for prototype A
and automatic interperson correspondences. Next, lin-
ear classes on texture yields a recognition rate of 73.5%.
To put these two recognition numbers in context, we
compare them to a \base" case that uses only two ex-
ample views per person, the real viewm4 plus its mirror
reection. A recognition rate of 70% was obtained for
this two view case, thus establishing a lower bound for
virtual views. Parallel deformation at 85% falls midway
between the benchmark cases of 70% (one view + mir-
ror reect.) and 98%, (15 views) so it shows that virtual
views do bene�t pose-invariant face recognition.

In addition, the leftmost bar in Fig. 16 (one view)
gives the recognition rate when only the viewm4 is used.
This shows how much using mirror reection helps in the
single real view case: without the view generated by mir-
ror reection, the recognition rate is roughly cut in half
from 70% to 32%. This low recognition rate is caused
by winnowing of example views based on the coarse pose
estimate (looking left vs. looking right) of the input. If
the input view is \looking right", then the system does
not even try to match against the m4 example view,
which is \looking left". In this (one view) case, 62% of
the inputs are rejected, and 6% of the inputs give rise to
substitution errors.

Linear classes for virtual texture was a disappoint-
ment, however, only yielding a recognition rate a few
percentage points higher than the base case of 70%. This
may have been due to the factoring out of shape informa-
tion. We also noticed that the linear reconstruction has
a \smoothing" e�ect, reproducing the lower frequency
components of the face better than the higher frequency
ones. One di�erence in the experimental test conditions
with respect to parallel deformation was that correla-
tion was performed on the original grey levels instead
of dx+dy; empirically we obtained much worse perfor-
mance after applying a di�erential operator.
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Figure 16: Face recognition performance for real and
virtual views.

7 Discussion

7.1 Evaluation of recognition rate

While the recognition rate using virtual views, rang-
ing from 85% for parallel deformation to 73% for linear
classes, is much lower than the 98% rate for the multi-
ple views case, this was expected since virtual views use
much less information. One way to evaluate these rates
is to use human performance as a benchmark. To test
human performance, one would provide a subject with a
set of training images of previously unknown people, us-
ing only one image per person. After studying the train-
ing images, the subject would be asked to identify new
images of the people under a variety of poses. Moses, Ull-
man, and Edelman [32] have performed this experiment
using testing views at a variety of poses and lighting
conditions. While high recognition rates were observed
in the subjects (97%), the subjects were only asked to
discriminate between three di�erent people. Bruce [12]
performs a similar experiment where the subject is asked
whether a face had appeared during training, and detec-
tion rates go down to either 76% or 60%, depending on
the amount of pose/expression di�erence between the
testing and training views. Schyns and B�ultho� [41] ob-
tain a low recognition rate, but their results are di�cult
to compare since their stimuli are Gouraud shaded 3D
faces that exclude texture information. Lando and Edel-
man [26] have recently performed computational exper-
iments to replicate earlier psychophysical results in [32].
A recognition rate of only 76% was reported, but the
authors suggest that this may be improved by using a
two-stage classi�er instead of a single-stage one.

Direct comparison of our results to related face recog-
nition systems is di�cult because of di�erences in exam-

ple and testing views. The closest systems are those of
Lando and Edelman [26] and Maurer and von der Mals-
burg [31]. Both systems explore a view transformation
method that e�ectively generates new views from a sin-
gle view. The view representation, in contrast to our
template-based approach, is feature-based: Lando and
Edelman use di�erence of Gaussian features, and Mau-
rer and von der Malsburg use a set of Gabor �lters at a
variety of scales and rotations (called \jets"). The prior
knowledge Lando and Edelman used to transform faces
is similar to ours, views of prototype faces at standard
and virtual views. They average the transformation in
feature space over the prototypes and apply this aver-
age transformation to a novel object to produce a \vir-
tual" set of features. As mentioned above, they report a
recognition rate of 76%. Maurer and von der Malsburg
transform their Gabor jet features by approximating the
facial surface at each feature point as a plane and then
estimating how the Gabor jet changes as the plane ro-
tates in 3D. They apply this technique to rotating faces
about 45� between frontal and half-pro�le views. They
report a recognition rate of 53% on a subset of 90 people
from the FERET database.

Two other comparable results are fromManjunath, et
al. [30], who obtain 86% on a database of 86 people, and
Pentland, et al. [34], whose extrapolation experiment
with view-based eigenspaces yields 83% on a database of
21 people. In both cases, the system is trained on a set of
views (vs. just one for ours) and recognition performance
is tested on views from outside the pose-expression space
of the training set. One di�erence in example views is
that they include hair and we do not. In the future, the
new Army FERET database should provide a common
benchmark for comparing recognition algorithms.

7.2 Di�culties with virtual views generation

Since we know that the view-based approach performs
well with real example views, making the virtual views
closer in appearance to the \true" rotated views would
obviously improve recognition performance. What dif-
�culties do we encounter in generating \true" virtual
views? First, the parallel deformation approach for
shape essentially approximates the 3D shape of the novel
person with the 3D shape of the prototype. If the two 3D
shapes are di�erent, the virtual view will not be \true"
even though it may still appear to be a valid face. The
resulting shape is a mixture of the novel and prototype
shapes. Using multiple prototypes and the linear class
approach may provide a better shape approximation.

In addition, for parallel deformation we have prob-
lems with areas that are visible in the virtual view but
not in the standard view. For example, for the m4 pose,
the underside of the nose is often not visible. How can
one predict how that region appears for upward looking
virtual views? Possible ways to address this problem in-
clude using additional real views or having the recognizer
exclude those regions during matching.

7.3 Transformations besides rotation

While the theory and recognition experiments in this
paper revolve around generating rotated virtual views,
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one may also wish to generate virtual views for di�erent
lighting conditions or expressions. This would be useful
for building a view-based face recognizer that handles
those kinds of variation in the input. Here we suggest
ways to generate these views.

7.3.1 Lighting

For changes in lighting conditions, the prototype faces
are �xed in pose but the position of the light source is
changed between the standard and virtual views. Un-
fortunately, changing the direction of the light source
violates an assumption made for linear classes that the
lighting conditions are �xed. That assumption had al-
lowed us to ignore the fact that surface albedo and the
local surface normal are confounded in the Lambertian
model for image intensity.

However, the idea of parallel deformation can still be
applied. Parallel deformation assumes that the 3D shape
of the prototype is similar to the 3D shape of the novel
person. Thus, corresponding points on the two faces
should have the same local surface normal. The follow-
ing analysis focuses on the image brightness of the same
feature point on both the prototype and novel face. The
two feature points may have been brought into corre-
spondence through a vectorization procedure. Let

� = surface normal for both the prototype

and novel faces

lstd = light source direction for standard lighting

lvirtual = light source direction for virtual lighting

�proto = albedo for the prototype face

�nov = albedo for the novel face

The prior knowledge of the lighting transformation can
be represented by the ratio of the prototype image in-
tensities under the two lighting directions

�proto(� � lvirtual)

�proto(� � lstd)
:

Simply by multiplyingby the image intensity of the novel
person �nov(� � lstd) and cancelling terms, one can get

�nov(� � lvirtual);

which is the image intensity of the novel feature point
under the virtual lighting. Overall, the novel face texture
is modulated by the changes in the prototype lighting,
an approach that has been explored by Brunelli [13].

7.3.2 Expression

In this case, the prototypes are �xed in pose and light-
ing but di�er in expression, with the standard view be-
ing, say, a neutral expression and the virtual view being
a smile, frown, etc. When generating virtual views, we
need to capture both nonrigid shape deformations and
the subtle texture changes such as the darkening e�ect
of dimples or winkles. Thus, virtual views generation
techniques for both shape and texture are required.

Predicting virtual expressions, however, seems more
di�cult than the rotation or lighting case. This is be-
cause the way a person smiles or frowns is probably de-
coupled from how to decompose his neutral face as a

linear combination of the prototypes. To the extent that
they are decoupled, the approaches we have suggested
for generating virtual shapes and textures will be an ap-
proximation. Our problems show up mathematically in
the nonrigidness of the transformation; the linear class
idea for shape assumes a rigid 3D transform. The im-
plication of these problems is that the expense of multi-
ple prototypes is probably not justi�ed; one is probably
better o� using just one or a few prototypes. In ear-
lier work aimed primarily at computer graphics [8], we
demonstrated parallel deformation for transformations
from neutral to smiling expressions.

7.4 Future work

For future work on our approach to virtual views, we
plan to use multiple prototypes for generating virtual
shape. Vetter and Poggio [51] have already done some
work in applying the linear class idea to both shape and
texture. It would be interesting to test some of their
virtual views in a view-based recognizer. In the longer
term, one can test the virtual views technique for face
recognition under di�erent lighting conditions or expres-
sions.

For the problem of recognizing faces from just one ex-
ample view, it should be possible to use the idea of linear
classes without actually synthesizing virtual views. The
basic idea is to compare faces based on sets of (�j; �j)
coe�cients from equations (5) and (9) rather than us-
ing correlation in an image space. According to linear
classes, the (�j; �j) decomposition for a speci�c individ-
ual should be invariant to pose. As explained in sec-
tion 4.1, linear classes is based on the assumption that
the 3D shape vector of the input Y and the 3D texture
vector T are linear combinations of the shapes and tex-
tures of prototype faces. Under certain conditions, the
linear coe�cients (�j; �j) of the 3D decomposition are
computable from an arbitrary 2D view. Thus, the coe�-
cients should be invariant to pose since they are derived
from a 3D representation. It follows that the (�j; �j)
coe�cients should themselves be an e�ective representa-
tion for faces. The coe�cients of the unidenti�ed input
view (�j; �j)

input can be directly matched against the
data base coe�cients of each person at standard pose
(�j; �j)

std. Note that the linear coe�cients are not a
true invariant because the recognizer at run-time needs
to have an estimate of the out-of-plane image rotation
of the input.

8 Conclusion

In this paper we have addressed the problem of recogniz-
ing faces under di�erent poses when only one example
view of each person is available. Given one real view at
a known pose, we use prior knowledge of faces to gener-
ate virtual views, views of the face as seen from di�erent
poses. Rather than using a more traditional 3D mod-
eling approach, prior knowledge of faces is expressed in
the form of 2D views of rotating prototype faces. Given
the 2D prototype views and a single real view of a novel
person, we demonstrated two techniques for e�ectively
rotating the novel face in depth. First, in parallel defor-
mation, a facial transformation observed on a prototype
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face in mapped onto a novel face and used to warp the
novel view. Second, in linear classes, the single novel
view is decomposed as a linear combination of prototype
views at the same pose. Then these same linear coe�-
cients are used to synthesize a virtual view of the novel
person by taking a linear combination of the prototype
views at virtual pose. We demonstrated this for the grey
level, or textural, component of the face.

To evaluate virtual views, they were then used as ex-
ample views in a view-based, pose-invariant face recog-
nizer. On a database of 62 people with 10 test views per
person, a recognition rate of 85% was achieved in experi-
ments with parallel deformation, which is well above the
base recognition rate of 70% when only one real view
(plus its mirror reection) is used. Also, our recogni-
tion rate is similar to other face recognition experiments
where extrapolation from the pose-expression range of
the example views is tested. Overall, for the problem of
generating new views of an object from just one view,
these results demonstrate that the 2D example-based
technique, similarly to 3D object models, may be a viable
method for representing knowledge of object classes.
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A Appendix: how general is the linear

class assumption?

Following the basic suggestion in Poggio (1991) and Pog-
gio and Vetter (1992) we consider the problem of creat-
ing virtual views within the framework of learning-from-
examples techniques. In this metaphor, a learning mod-
ule such as a Regularization Network is trained with a set
of input-output examples of objects of the same \nice"
class (see Vetter et al., 1995) to learn a certain class-
speci�c transformation. For a rotation transformation
\frontal" views are associated with the \rotated" views
of the same faces. For the \smile" transformation "seri-
ous" views are associated with \smiling" views. One can
think of the frontal view as the input to the network and
the rotated view as the corresponding output during the
training phase.

One may be inclined to believe that this approach
may be more powerful than the simple linear technique
described in the the text and justi�ed under the linear
class assumption of Poggio and Vetter. Though this is
true, the behavior of a generic network trained as de-
scribed above is still severely restricted. It turns out that
under rather general conditions the output of a very large
class of learning-from-examples techniques produces vir-
tual views that are contained in the linear space spanned
by the (output) examples.

One way to express the result is the following. If the
transformed view of an object cannot be represented as

a linear combination of transformed views of prototypes

(in smaller number than view dimensionality) then no

learning module (under quite weak conditions) can learn

that transformations from example pairs.

The basic result is implied by Girosi, Jones and Poggio
(1995) and by Beymer, Shashua and Poggio (1993). We
reproduce it here for completeness.

The simplest version of a regularization network ap-
proximates a vector �eld y(x) as

y(x) =

NX
i=1

ciG(x� xi) (15)

which we rewrite in matrix terms as

y(x) = Cg(x); (16)

where g is the vector with elements gi = G(x� xi).
De�ning as G is the matrix of the chosen basis function
(Gi;j = G(xi�xj)) evaluated at the examples we obtain

(G)cm = ym (17)

and also

C = YG
y: (18)

It follows that the vector �eld is approximated as the
linear combination of example �elds, that is

y(x) = YG
y
g(x) (19)

that is

y(x) =

NX
l=1

bl(x)yl; (20)

where the bl depend on the chosen G, according to

b(x) = YG
y
g(x): (21)

Thus for any choice of the regularization network the
output (vector) image is always a linear combination of
example (vector) images with coe�cients b that depend
(nonlinearly) on the desired input value. This is true
for a large class of networks trained with the L2 error
criterion, including many types of Neural Networks (the
observation is by F. Girosi).

Thus, the virtual views that can be generated by a
large class of learning techniques are always contained
in the linear subspace of the examples. This non trivial
observation means that the latter property is rather gen-

eral and does not depend on the linear class assumption

of Poggio and Vetter.
Notice that for these results to hold we assume cor-

respondence between all input vectors and all output
vectors separately. Strictly speaking correspondence is
not needed between input and output vectors (this ob-
servation is due to T. Vetter).

Let us de�ne separately the shape component of our
images and the texture components. The shape is a vec-
tor y of all x1; y1; � � � ; xn; yn describing the image po-
sition of each of n pixels. We consider separately the
vector of corresponding textures for the same n pixels
as t consisting of the grey values I1; � � � ; In. We could
also consider the extended vector E obtained by concate-
nating y and t. The previous result show that that the
output rotated shape image obtained for a new frontal
image yr is in the linear space spanned by the examples.
Thus

yr =
X

ciy
i

r
: (22)

Of course in general the c are not identical to the
coe�cients of the input representation (as in the linear
class case described in the text) and will be a nonlinear
function of them. In the linear class case the c can be
learned by a simple linear network without hidden layers
(see main text).
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Since the linear class argument can also be extended
to the texture component t (see main text and Vetter
and Poggio, 1995), the same observations stated here for
shape can also be applied to texture.

One could impose linear class conditions on E: the
dimensionality of the space will however be quite larger.
In general, one should keep separate the shape and the
texture components and to span them with independent
basis.

Notice (see also Beymer, Poggio and Shashua, 1993)
that in many situations it may be advantageous to trans-
form the output representation from

yr =
X
n

ciy
i

r
(23)

to

yr =
X
q

c�
i
y
�i

r
; (24)

where the y� are the basis of a KL decomposition and
q << n.

B Appendix: linear classes

As explained in section 4.1, linear classes is a technique
for synthesizing new views of an object using views of
prototypical objects belonging to the same object class.
The basic idea is to decompose the novel object as a
linear combination of the prototype objects. This de-
composition is performed separately for the shape and
texture of the novel object. In this appendix, we explain
the mathematical detail behind the linear class approach
for shape and texture. Please refer to sections 3 and 4.1
for de�nitions of the example prototype images, mathe-
matical operators, etc.

B.1 Shape (Poggio and Vetter, 1992)

In this section, we reformulate the description of linear
classes for shape that originally appeared in Poggio and
Vetter [39]. The development here makes explicit the
fact that the vectorized y vectors need not be in corre-
spondence between the standard and virtual poses.

Linear classes begins with the assumption that a novel
object is a linear combination of a set of prototype ob-
jects in 3D

Yn =
P

N

j=1�jYpj
: (25)

From this assumption, it is easy to see that any 2D view
of the novel object will be the same linear combination
of the corresponding 2D views of the prototypes. That
is, the 3D linear decomposition is the same as the 2D
linear decomposition. Using equation (2) which relates
3D and 2D shape vectors, let yn;r be a 2D view of a
novel object

yn;r = LYn (26)

and let ypj;r be 2D views of the prototypes

ypj ;r = LYpj
1 � j � N: (27)

Apply the operator L to both sides of equation (25)

LYn = L(
P

N

j=1�jYpj
): (28)

We can bring L inside the sum since L is linear

LYn =
P

N

j=1 �jLYpj
: (29)

Substituting equations (26) and (27) yields

yn;r =
P

N

j=1 �jypj ;r:

Thus, the 2D linear decomposition uses the same set of
linear coe�cients as with the 3D vectorization.

Next, we show that under certain assumptions, the
novel object can be analyzed at standard pose and the
virtual view synthesized at virtual pose using a single set
of linear coe�cients. Again, assume that a novel object
is a linear combination of a set of prototype objects in
3D

Yn =
P

N

j=1 �jYpj
: (30)

Say that we have 2D views of the prototypes at standard
pose ypj , 2D views of the prototypes at virtual pose
ypj;r , and a 2D view of the novel object yn at standard
pose. Additionally, assume that the 2D views ypj are
linearly independent. Project both sides of equation (30)
using the rotation for standard pose, yielding

yn =
P

N

j=1 �jypj :

A unique solution for the �j exist since the ypj are lin-
early independent. Now, since we have solved for the
same set of coe�cients in the 3D linear class assumption,
the decomposition at virtual pose must use the same co-
e�cients

yn;r =
P

N

j=1 �jypj ;r:

That is, we can recover the �j's from the view at stan-
dard pose and use the �j 's to generate the virtual view
of the novel object.

B.2 Texture

Virtually the same argument can be applied to the ge-
ometrically normalized texture vectors t. The idea of
applying linear classes to texture was thought of by the
authors and independently by Vetter and Poggio [51].

With the texture case, assume that a novel object
texture Tn is a linear combination of a set of prototype
textures

Tn =
P

N

j=1 �jTpj
: (31)

As with shape, we show that the 3D linear decomposi-
tion is the same as the 2D linear decomposition. Using
equation (3) which relates 3D and 2D texture vectors,
let tn;r be a 2D texture of a novel object

tn;r = DTn (32)

and let tpj;r be 2D textures of the prototypes

tpj;r = DTpj
1 � j � N: (33)

Apply the operator D to both sides of equation (31)

DTn = D(
P

N

j=1 �jTpj
): (34)

We can bring D inside the sum since D is linear

DTn =
P

N

j=1 �jDTpj
: (35)
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Substituting equations (32) and (33) yields

tn;r =
P

N

j=1 �jtpj;r:

Thus, as with shape, the 2D linear decomposition for
texture uses the same set of linear coe�cients as with
the 3D vectorization.

Next, we show that under certain linear independence
assumptions, the novel object texture can be analyzed at
standard pose and the virtual view synthesized at vir-
tual pose using a single set of linear coe�cients. Again,
assume that a novel object texture T is a linear combi-
nation of a set of prototype objects

Tn =
P

N

j=1 �jTpj
: (36)

Say that we have 2D textures of the prototypes at stan-
dard pose tpj , the 2D prototype textures at virtual pose
tpj;r, and a 2D texture of the novel object at standard
pose tn. Additionally, assume that the 2D textures tpj
are linearly independent. Project both sides of equation
(36) using the rotation for standard pose, yielding

tn =
P

N

j=1 �jtpj :

A unique solution for the �j exist since the tpj are lin-
early independent. Now, since we have solved for the
same set of coe�cients in the 3D linear class assumption,
the decomposition at virtual pose must use the same co-
e�cients

tn;r =
P

N

j=1 �jtpj;r:

That is, we can recover the �j 's from the view at stan-
dard pose and use the �j's to generate the virtual view
of the novel object.
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