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Abstract. In spite of over two decades of intense research, illumina-
tion and pose invariance remain prohibitively challenging aspects of face
recognition for most practical applications. The objective of this work is
to recognize faces using video sequences both for training and recognition
input, in a realistic, unconstrained setup in which lighting, pose and user
motion pattern have a wide variability and face images are of low reso-
lution. In particular there are three areas of novelty: (i) we show how a
photometric model of image formation can be combined with a statistical
model of generic face appearance variation, learnt offline, to generalize
in the presence of extreme illumination changes; (ii) we use the smooth-
ness of geodesically local appearance manifold structure and a robust
same-identity likelihood to achieve invariance to unseen head poses; and
(iii) we introduce an accurate video sequence “reillumination” algorithm
to achieve robustness to face motion patterns in video. We describe a
fully automatic recognition system based on the proposed method and
an extensive evaluation on 171 individuals and over 1300 video sequences
with extreme illumination, pose and head motion variation. On this chal-
lenging data set our system consistently demonstrated a nearly perfect
recognition rate (over 99.7% on all three databases), significantly out-
performing state-of-the-art commercial software and methods from the
literature.



1 Introduction

Automatic face recognition (AFR) has long been established as one of the most
active research areas in computer vision. In spite of the large number of de-
veloped algorithms, real-world performance of AFR has been, to say the least,
disappointing. Even in very controlled imaging conditions, such as those used for
passport photographs, the error rate has been reported to be as high as 10% [6],
while in less controlled environments the performance degrades even further [11].
We believe that the main reason for the apparent discrepancy between results
reported in the literature and observed in the real world is that the assumptions
that most AFR methods rest upon are hard to satisfy in practice.

In this paper, we are interested in recognition using video sequences. This
problem is of enormous interest as video is readily available in many applications,
while the abundance of information contained within it can help resolve some of
the inherent ambiguities of single-shot based recognition. In practice, video data
can be extracted from surveillance videos by tracking a face or by instructing a
cooperative to move the head in front of a mounted camera.

We assume that both the training and novel data available to an AFR sys-
tem is organized in a database where a sequence of images for each individual
contains some variability in pose, but is not obtained in scripted conditions or
in controlled illumination. The recognition problem can then be formulated as
taking a sequence of face images from an unknown individual and finding the
best matching sequence in the database of sequences labelled by the identity.

Our approach consists of using a weak photometric model of image forma-
tion with offline machine learning for modelling manifolds of faces. Specifically,
we show that the combined effects of face shape and illumination can be ef-
fectively learnt using Probabilistic PCA (PPCA) [43] from a small, unlabelled
set of video sequences of faces in randomly varying lighting conditions, while a
novel manifold-based “reillumination” algorithm is used to provide robustness
to pose and motion pattern. Given a novel sequence, the learnt model is used
to decompose the face appearance manifold into albedo and shape-illumination
manifolds, producing the classification decision by robust likelihood estimation.

2 Previous Work

Good general reviews of recent AFR literature can be found in [5, 17, 50]. In this
section, we focus on AFR literature that deals specifically with recognition from
image sequences, and with invariance to pose and illumination.

Compared to single-shot recognition, face recognition from image sequences
is a relatively new area of research. Some of the existing algorithms that deal
with multi-image input use temporal coherence within the sequence to enforce
prior knowledge on likely head movements [29, 30, 51]. In contrast to these, a
number of methods that do not use temporal information have been proposed.
Recent ones include statistical [3, 38] and principal angle-based methods with
underlying simple linear [19], kernel-based [48] or Gaussian mixture-based [27]



models. By their very nature, these are inherently invariant to changes in head
motion pattern. Other algorithms implement the “still-to-video” scenario [31,
34], not taking full advantage of sequences available for training.

Illumination invariance, while perhaps the most significant challenge for AFR
[1] remains a virtually unexplored problem for recognition using video. Most
methods focus on other difficulties of video-based recognition, employing simple
preprocessing techniques to deal with changing lighting [4, 15]. Others rely on
availability of ample training data but achieve limited generalization [3, 40].

Two influential generative model-based approaches for illumination-invariant
single-shot recognition are the illumination cones [7, 21] and the 3D morphable
model [10, 49]. Both of these have significant shortcomings in practice. The for-
mer is not readily extended to deal with video, assuming accurately registered
face images, illuminated from several well-posed directions for each pose which
is difficult to achieve in practice (see §5 for data quality). Similar limitations
apply to the related method of Riklin-Raviv and Shashua [37]. On the other
hand, the 3D morphable model is easily extended to video-based recognition,
but it requires a (in our case prohibitively) high resolution [15], struggles with
non-Lambertian effects (such as specularities) and multiple light sources, and
has convergence problems in the presence of background clutter and partial oc-
clusion (glasses, facial hair).

Broadly speaking, there are three classes of algorithms aimed at achieving
pose invariance. The first, a model-based approach, uses an explicit 2D or 3D
model of the face, and attempts to estimate the parameters of the model from
the input [10, 26]. This is a view-independent representation. A second class of
algorithms consists of global, parametric models, such as the eigenspace method
[33] that estimates a single parametric (typically linear) subspace from all the
views for all the objects (also see [32]). In AFR tests, such methods are usually
outperformed by methods from the third class: view-based techniques e.g. the
view-based eigenspaces [35] (also [29, 30]), in which a separate subspace is con-
structed for each pose. These algorithms usually require an intermediate step in
which the pose of the face is determined, and then recognition is carried out us-
ing the estimated view-dependent model. A common limitation of these methods
is that they require a fairly restrictive and labour-intensive training data acqui-
sition protocol, in which a number of fixed views are collected for each subject
and appropriately labelled. This is not the case with the proposed method.

3 Face Motion (and Other) Manifolds

Concepts in this paper heavily rely on the notion of face manifolds. Briefly,
under the standard rasterized representation of an image, images of a given size
can be viewed as points in a Euclidean image space, its dimensionality being
equal to the number of pixels D. However, the surface and texture of a face is
mostly smooth making its appearance quite constrained and confining it to an
embedded face manifold of dimension d ≪ D [3, 9]. Formally, the distribution of



observed face images of the subject i can be written as the integral:

p(i)(X) =

∫

p
(i)
F (x)pn(fi(x) − X)dx. (1)

where pn is the noise distribution, f (i) : R
d → R

D the embedding function and x
an intrinsic face descriptor. Fig. 1 (a) illustrates the validity of the notion on an
example of a face motion image sequence. For the proposed method, the crucial
properties are their (i) continuity and (ii) smoothness.
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Fig. 1. Manifolds of (a) face appearance and (b) albedo-free appearance i.e. the effects
of illumination and pose changes, in a single motion sequence. Shown are projections to
the first 3 linear principal components, with a typical manifold sample on the top-right.

3.1 Synthetic Reillumination of Face Motion Manifolds

One of the key ideas of this paper is the reillumination of video sequences. Our
goal is to take two input sequences of faces and produce a third, synthetic one,
that contains the same poses as the first in the illumination of the second.

The proposed method consists of two stages. First, each face from the first
sequence is matched with the face from the second that corresponds to it best
in terms of pose. Then, a number of faces close to the matched one are used to
finely reconstruct the reilluminated version of the original face. Our algorithm
is therefore global, unlike most of the previous methods which use a sparse set
of detected salient points for registration, e.g. [4, 8, 19]. We found that facial
feature localization using trained Support Vector Machines (similar to [4, 8]),
as well as algorithms employed in commercial systems FacePassr [18, 44] and
FaceItr [25] failed on data sets used for evaluation in this paper (see §5) due to
the severity of illumination conditions. We next describe the two stages of the
proposed algorithm in detail.

Stage 1: Pose Matching Let {Xi}
(1) and {Xi}

(2) be two motion sequences

of a person’s face in two different illuminations. Then, for each X
(1)
i we are



(a) Original (b) Reilluminated

Fig. 2. (a) Original images from a novel video sequence and (b) the result of reillumina-
tion using the proposed genetic algorithm with nearest neighbour-based reconstruction.

interested in finding X
(2)
c(i) that corresponds to it best in pose. Finding the un-

known mapping c on a frame-by-frame basis is difficult. Instead, we formulate
the problem as a minimization task with the fitness function taking the form:

f(c) =
∑

j
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where n(i, j) is the j-th of K nearest neighbours of face i, dE a pose dissimilarity

function and d
(k)
G a geodesic distance estimate along the FMM of sequence k.

The first term is easily understood as a penalty for dissimilarity of matched pose-
signatures. The latter enforces a globally good matching by favouring mappings
that map geodesically close points from the domain manifold to geodesically
close points on the codomain manifold.

Pose-matching function: The performance of function dE in (2) at estimating the
goodness of a frame match is crucial for making the overall optimization scheme
work well. Our approach consists of filtering the original face image to produce a
quasi illumination-invariant pose-signature, which is then compared with other
pose-signatures using the Euclidean distance. Note that these signatures are only

used for frame matching and thus need not retain any power of discrimination
between individuals – all that is needed is sufficient pose information. We use a
distance-transformed edge map of the face image as a pose-signature, motivated
by the success of this representation in object-configuration matching across
other computer vision applications, e.g. [20, 41].

Minimizing the fitness function: Exact minimization of the fitness function (2)
over all functions c is an NP-complete problem. However, since the final synthesis
of novel faces (Stage 2) involves an entire geodesic neighbouring of the paired
faces, it is inherently robust to some non-optimality of this matching. Therefore,
in practice, it is sufficient to find a good match, not necessarily the optimal one.

We propose to use a genetic algorithm (GA) [14] as a particularly suitable
approach to minimization for our problem. GAs rely on the property of many
optimization problems that sub-solutions of good solutions are good themselves.
Specifically, this means that if we have a globally good manifold match, then local
matching can be expected to be good too. Hence, combining two good matches is
a reasonable attempt at improving the solution. This motivates the chromosome
structure we use, depicted in Fig. 3 (a), with the i-th gene in a chromosome
being the value of c(i). GA parameters were determined experimentally from a
small training set and are summarized in Fig. 3 (b,c).



Property Value

Population size 20
Elite survival no. 2
Mutation (%) 5
Migration (%) 20
Crossover (%) 80
Max. generations 200
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Fig. 3. (a) The chromosome structure used in the proposed GA optimization, (b) its pa-
rameters and (c) population fitness (see (2)) in a typical evolution. Maximal generation
count of 200 was chosen as a trade-off between accuracy and matching speed.

Estimating geodesic distances: The definition of the fitness function in (2) in-
volves estimates of geodesic distances along manifolds. Due to the nonlinearity of
FMMs [3, 30] it is not well approximated by the Euclidean distance. We estimate
the geodesic distance between every two faces from a manifold using the Floyd’s
algorithm [12] on a constructed undirected graph whose nodes correspond to
face images (also see [42]). Then, if Xi is one of the K nearest neighbours of Xj :

dG(Xi,Xj) = ‖Xi − Xj‖2 . (3)

Otherwise:

dG(Xi,Xj) = min
k

[dG(Xi,Xk) + dG(Xk,Xj)] . (4)

Stage 2: Fine Reillumination Having computed a pose-matching function

c∗, we exploit the smoothness of FMMs by computing Y
(1)
i , the reilluminated

frame X
(1)
i , as a linear combination of K nearest-neighbour frames of X

(2)
c∗(i).

Linear combining coefficients α1, . . . αK are found from the corresponding pose-
signatures by solving the following constrained minimization problem:

{αj} = arg min
{αj}

∥

∥

∥

∥

∥

x
(1)
i −

K
∑

k=1

αkx
(2)

n(c∗(i),k)

∥

∥

∥

∥

∥

2

(5)

subject to
∑K

k=1 αk = 1.0, where x
(j)
i is the pose-signature corresponding to

X
(j)
i . In other words, the pose-signature of a novel face is first reconstructed

using the pose-signatures of K training faces (in target illumination), which are
then combined in the same fashion to synthesize a reilluminated face, see Fig. 2
and 4. Optimization of (5) is readily performed by differentiation.

4 The Shape-Illumination Manifold

In most practical applications, specularities, multiple or non-point light sources
significantly affect the appearance of faces. We believe that the difficulty of



Fig. 4. Face reillumination: the coefficients for linearly combining face appearance
images (bottom row) are computed using the corresponding pose-signatures (top row).

dealing with these effects is one of the main reasons for poor performance of
most AFR systems when put to use in a realistic environment. In this work
we make a very weak assumption on the process of image formation: the only
assumption made is that the intensity of each pixel is a linear function of the
albedo a(j) of the corresponding 3D point:

X(j) = a(j) · s(j) (6)

where s is a function of illumination, shape and other parameters not modelled
explicitly. This is similar to the reflectance-lighting model used in Retinex-based
algorithms [28], the main difference being that we make no further assumptions
on the functional form of s. Note that the commonly-used (e.g. see [10, 21, 37])
Lambertian reflectance model is a special case of (6) [7]:

s(j) = max(nj · L, 0) (7)

where ni is the surface normal and L the intensity-scaled illumination direction.
The image formation model introduced in (6) leaves the image pixel intensity

as an unspecified function of face shape or illumination parameters. Instead
of formulating a complex model of the geometry and photometry behind this
function (and then needing to recover a large number of model parameters),
we propose to learn it implicitly. Consider two images, X1 and X2 of the same
person, in the same pose, but different illuminations. Then from (6):

∆ log X(j) = log s2(j) − log s1(j) ≡ ds(j) (8)

In other words, the difference between these logarithm-transformed images is not
a function of face albedo. As before, due to the smoothness of faces, as the pose
of the subject varies the difference-of-logs vector ds describes a manifold in the
corresponding embedding vector space. These is the Shape-Illumination manifold
(SIM) corresponding to a particular pair of video sequences, see Fig. 1 (b).

The Generic SIM: A crucial assumption of our work is that the Shape-Illumination
Manifold of all possible illuminations and head poses is generic for human faces

(gSIM). This is motivated by a number of independent results reported in the lit-
erature that have shown face shape to be less discriminating than albedo across
different models [13, 23] or have reported good results in synthetic reillumina-
tion of faces using the constant-shape assumption [37]. In the context of face



manifolds this means that the effects of illumination and shape can be learnt
offline from a training corpus containing typical modes of pose and illumination
variation.

It is worth emphasizing the key difference in the proposed offline learning
from previous approaches in the literature which try to learn the albedo of human
faces. Since offline training is performed on persons not in the online gallery, in
the case when albedo is learnt it is necessary to have means of generalization i.e.
learning what possible albedos human faces can have from a small subset. In [37],
for example, the authors demonstrate generalization to albedos in the rational
span of those in the offline training set. This approach is not only unintuitive, but
also without a meaningful theoretical justification. On the other hand, previous
research indicates that illumination effects can be learnt directly without the
need for generalization [3].

Training data organization: The proposed AFR method consists of two training
stages – a one-time offline learning performed using offline training data and
a stage when gallery data of known individuals with associated identities is
collected. The former (explained next) is used for learning the generic face shape
contribution to face appearance under varying illumination, while the latter is
used for subject-specific learning.

4.1 Offline Stage: Learning the Generic SIM (gSIM)

Let X
(j,k)
i be the i-th face of the j-th person in the k-th illumination, same in-

dexes corresponding in pose, as ensured by the proposed reillumination algorithm
in §3.1. Then from (8), samples from the generic Shape-Illumination manifold
can be computed by logarithm-transforming all images and subtracting those
corresponding in identity and pose:

d = log X
(j,p)
i − log X

(j,q)
i (9)

Provided that training data contains typical variations in pose and illumination
(i.e. that the p.d.f. confined to the generic SIM is well sampled), this becomes a
standard statistical problem of high-dimensional density estimation. We employ
the Gaussian Mixture Model (GMM). In the proposed framework, this represen-
tation is motivated by: (i) the assumed low-dimensional manifold model (1), (ii)
its compactness and (iii) the existence of incremental model parameter estima-
tion algorithms (e.g. [24]).

Briefly, we estimate multivariate Gaussian components using the Expectation
Maximization (EM) algorithm [14], initialized by k-means clustering. Automatic
model order selection is performed using the well-known Minimum Description
Length criterion [14] while the principal subspace dimensionality of PPCA com-
ponents was estimated from eigenspectra of covariance matrices of a diagonal
GMM fit, performed first. Fitting was then repeated using a PPCA mixture. We
obtained 12 components, each with a 6D principal subspace. Fig. 5 shows an
example of subtle illumination effects learnt with this model.



Fig. 5. Learning complex illumination effects: Shown is the variation along the 1st
mode of a single PPCA space in our SIM mixture model. Cast shadows (e.g. from the
nose) and the locations of specularities (on the nose and above the eyes) are learnt as
the illumination source moves from directly overhead to side-overhead.

4.2 Robust Likelihood for Novel Sequence Classification

Let gallery data consist of sequences {Xi}
1, . . . , {Xi}

N , corresponding to N in-
dividuals, {Xi}

0 be a novel sequence of one of these individuals and G (x;Θ)
a Mixture of Probabilistic PCA corresponding to the generic SIM. Using the
reillumination algorithm of §3.1, the novel sequence can be reilluminated with
each from the gallery, producing samples {di}, assumed identically and inde-
pendently distributed, from a postulated subject-specific SIM. We compute the
probability of these observations under G (x;Θ):

pi = G (di;Θ) (10)

Instead of classifying {Xi}
0 using the likelihood given the entire set of obser-

vations {di}, we propose a more robust measure. To appreciate the need for
robustness, consider the histograms in Fig. 6 (a). It can be observed that the
probability of the most similar faces in an inter-personal comparison, in terms of
(10), approaches that of the most dissimilar faces in an intra-personal compari-
son (sometimes even exceeding it). This occurs when the correct gallery sequence
contains poses that are very dissimilar to even the most similar ones in the novel
sequence, or vice versa (note that small dissimilarities are extrapolated well from
local manifold structure in (5)). In our method, the robustness to these, unseen
modes of pose variation is achieved by considering the mean log-likelihood given
only the most probable faces. In our experiments we used the top 15% of faces,
but we found the algorithm to exhibit little sensitivity to the exact choice of this
number, see Fig. 6 (b). A summary of proposed algorithms is shown in Fig. 7.

5 Empirical Evaluation

Methods in this paper were evaluated on three databases:

– FaceDB100, with 100 individuals of varying age and ethnicity, and equally
represented genders. For each person in the database we collected 7 video
sequences of the person in arbitrary motion (significant translation, yaw and
pitch, negligible roll), each in a different illumination setting, see Fig. 8 (a)
and 9, at 10fps and 320 × 240 pixel resolution (face size ≈ 60 pixels).
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Fig. 6. (a) Histograms of intra-personal likelihoods across frames of a sequence when
two sequences compared correspond to the same (red) and different (blue) people. (b)
Recognition rate as a function of the number of frames deemed ‘reliable’.

– FaceDB60, kindly provided to us by Toshiba Corp. This database contains
60 individuals of varying age, mostly male Japanese, and 10 sequences per
person. Each sequence corresponds to a different illumination setting, at
10fps and 320 × 240 pixel resolution (face size ≈ 60 pixels), see Fig. 8 (b).

– FaceVideoDB, freely available and described in [22]. Briefly, it contains 11
individuals and 2 sequences per person, little variation in illumination, but
extreme and uncontrolled variations in pose and motion, acquired at 25fps
and 160 × 120 pixel resolution (face size ≈ 45 pixels), see Fig. 8 (c).

Data acquisition: The discussion so far focused on recognition using fixed-scale
face images. Our system uses a cascaded detector [45] for localization of faces
in cluttered images, which are then rescaled to the unform resolution of 50× 50
pixels (approximately the average size of detected faces).

Methods and representations: We compared the performance of our recognition
algorithm with and without the robust likelihood of §4.2 (i.e. using only the
most reliable vs. all detected faces) to that of:

– State-of-the-art commercial system FaceItr by Identix [25] (the best per-
forming software in the most recent Face Recognition Vendor Test [36]),

– Constrained MSM (CMSM) [19] used in a state-of-the-art commercial sys-
tem FacePassr [44],

– Mutual Subspace Method (MSM) [19], and

– KL divergence-based algorithm of Shakhnarovich et al. (KLD) [38].

In all tests, both training data for each person in the gallery, as well as test data,
consisted of only a single sequence. Offline training of the proposed algorithm



Algorithm 1: Offline training Algorithm 2: Recognition (online)

Input: database of sequences {Xi}
j Input: sequences {Xi}

G, {Xi}
N

Output: model of gSIM G (d;Θ) Output: same-identity likelihood ρ

1: gSIM iteration 1: Reilluminate using {Xi}
G

for all j, k {Yi}
N = reilluminate

(

{Xi}
N

)

2: Reilluminate using {Xi}
k 2: Postulated SIM samples

{Yi}
j = reilluminate

(

{Xi}
j
)

di = log XN
i − log YN

i

3: Add gSIM samples 3: Compute likelihoods of {di}
D = D

⋃

({Yi}
j − {Xi}

j) pi = G (di;Θ)

4: Computed gSIM samples 4: Order {di} by likelihood
end for ps(1) ≥ · · · ≥ ps(N) ≥ . . .

5: GMM G from gSIM samples 5: Inter-manifold similarity ρ

G (d;Θ) =EM GMM(D) ρ =
∑N

i=1 log ps(i)/N

Fig. 7. A summary of the proposed offline learning and recognition algorithms.

was performed using 20 individuals in 5 illuminations from the FaceDB100 – we
emphasize that these were not used as test input for the evaluations reported in
this section. The methods were evaluated using 3 face representations:

– raw appearance images X,

– Gaussian high-pass filtered images – already used for AFR in [4, 16]:

XH = X − (X ∗ Gσ=1.5), (11)

– local intensity-normalized high-pass filtered images – similar to the Self Quo-
tient Image [46]:

XQ = XH/(X − XH), (12)

the division being element-wise.

5.1 Results

A summary of experimental results is shown in Table 5.1. The proposed algo-
rithm greatly outperformed other methods, achieving a nearly perfect recogni-
tion (99.7+%) on all 3 databases. This is an extremely high recognition rate
for such unconstrained conditions (see Fig. 8), small amount of training data
per gallery individual and the degree of illumination, pose and motion pattern
variation between different sequences. This is witnessed by the performance of
Simple KLD method which can be considered a proxy for gauging the difficulty
of the task, seeing that it is expected to perform well if imaging conditions are



(a) FaceDB100

(b) FaceDB60

(c) FaceVideoDB

Fig. 8. Frames from typical video sequences from the 3 databases used for evaluation.

not greatly different between training and test [38]. Additionally, it is important
to note the excellent performance of our algorithm on the Japanese database,
even though offline training was performed using Caucasian individuals only.

As expected, when plain likelihood was used instead of the robust version
proposed in §4.2, the recognition rate was lower, but still significantly higher than
that of other methods. The high performance of non-robust gSIM is important as
an estimate of the expected recognition rate in the “still-to-video” scenario of the
proposed method. We conclude that the proposed algorithm’s performance seems
very promising in this setup as well. Finally, note that the standard deviation
of our algorithm’s performance across different training and test illuminations is
much lower than that of other methods, showing less dependency on the exact
imaging conditions used for data acquisition.

Representations: Both the high-pass and even further Self Quotient Image rep-
resentations produced an improvement in recognition for all methods over the
raw grayscale. This is consistent with previous findings in the literature [1, 4, 16,
46].

However, unlike in previous reports of performance evaluation of these fil-
ters, we also ask the question of when they help and how much in each case.
To quantify this, consider “performance vectors” sR and sF , corresponding to
respectively raw and filtered input, whose each component is equal to the recog-



(a) FaceDB100

(b) FaceDB60

Fig. 9. Different illumination conditions in databases FaceDB100 and FaceDB60.

nition rate of a method on a particular training/test data combination. Then
the vector ∆sR ≡ sR − sR contains relative recognition rates to its average on
raw input, and ∆s ≡ sF − sR the improvement with the filtered representation.
We then considered the angle φ between vectors ∆sR and ∆s, using both the
high-pass and Self Quotient Image representations. In both cases, we found the
angle to be φ ≈ 136◦. This is an interesting result: it means that while on aver-
age both representations increase the recognition rate, they actually worsen it in
“easy” recognition conditions. The observed phenomenon is well understood in
the context of energy of intrinsic and extrinsic image differences and noise (see
[47] for a thorough discussion). Higher than average recognition rates for raw
input correspond to small changes in imaging conditions between training and
test, and hence lower energy of extrinsic variation. In this case, the two filters
decrease the SNR, worsening the performance. On the other hand, when the
imaging conditions between training and test are very different, normalization
of extrinsic variation is the dominant factor and performance is improved.

This is an important observation: it suggests that the performance of a
method that uses either of the representations can be increased further in a
straightforward manner by detecting the difficulty of recognition conditions [2].

Imaging conditions: Finally, we were interested if the evaluation results on our
database support the observation in the literature that some illumination con-
ditions are intrinsically more difficult for recognition than others [39]. An in-
spection of the performance of the evaluated methods has shown a remarkable
correlation in relative performance across illuminations, despite the very differ-
ent models used for recognition. We found that relative recognition rates across
illuminations correlate on average with ρ = 0.96.

6 Summary and Conclusions

The proposed method for AFR from video has been demonstrated to achieve
a nearly perfect recognition on 3 databases containing extreme illumination,
pose and motion pattern variation, significantly outperforming state-of-the-art
commercial software and methods in the literature.



Table 1. Average recognition rates (%) and their standard deviations (if applicable).

gSIM, rob. gSIM FaceIt CMSM MSM KLD

FaceDB100

X 99.7/0.8 97.7/2.3 64.1/9.2 73.6/22.5 58.3/24.3 17.0/8.8
XH – – – 85.0/12.0 82.8/14.3 35.4/14.2
XQ – – – 87.0/11.4 83.4/8.4 42.8/16.8

FaceDB60

X 99.9/0.5 96.7/5.5 81.8/9.6 79.3/18.6 46.6/28.3 23.0/15.7
XH – – – 83.2/17.1 56.5/20.2 30.5/13.3
XQ – – – 91.1/8.3 83.3/10.8 39.7/15.7

FaceVideoDB

X 100.0 91.9 91.9 91.9 81.8 59.1
XH – – – 100.0 81.8 63.6
XQ – – – 91.9 81.8 63.6

The main direction for future work is to make a further use of offline train-
ing data, by taking into account probabilities of both intra- and inter-personal
differences confined to the gSIM. This is the focus of our current work. Addi-
tionally, we would like to improve the computational efficiency of the method by
representing each FMM by a strategically chosen set of sparse samples.
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