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ABSTRACT Recently, researchers found that the intended generalizability of (deep) face recognition

systems increases their vulnerability against attacks. In particular, the attacks based on morphed face images

pose a severe security risk to face recognition systems. In the last few years, the topic of (face) image

morphing and automated morphing attack detection has sparked the interest of several research laboratories

working in the field of biometrics and many different approaches have been published. In this paper,

a conceptual categorization and metrics for an evaluation of such methods are presented, followed by a

comprehensive survey of relevant publications. In addition, technical considerations and tradeoffs of the

surveyed methods are discussed along with open issues and challenges in the field.

INDEX TERMS Biometrics, face morphing attack, face recognition, image morphing, morphing attack

detection.

I. INTRODUCTION
Automated face recognition [1], [2] represents a long-

standing field of research in which a major break-though

has been achieved by the introduction of deep neural

networks [3], [4]. Due to the high generalization capabilities

of deep neural networks specifically and recognition systems

in general, the performance of operational face recognition

systems in unconstrained environments, e.g., regarding illu-

mination, poses, image quality or cameras, improved signif-

icantly. Resulting performance improvements paved the way

for deployments of face recognition technologies in diverse

application scenarios, ranging from video-based surveillance

and mobile device access control to Automated Border Con-

trol (ABC). However, recently researchers found that the

generalizability of (deep) face recognition systems increases

their vulnerability against attacks, e.g., spoofing attacks

(also referred to as presentation attacks) [5]. An additional

attack vector enabled by the high generalization capabilities

is a specific attack against face recognition systems based on

morphed face images, as introduced by Ferrara et al. [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Zahid Akhtar.

A. FACE MORPHING ATTACK

Image morphing has been an active area of image processing

research since the 80s [7], [8] with a wide variety of applica-

tion scenarios, most notably in the film industry. Morphing

techniques can be used to create artificial biometric samples,

which resemble the biometric information of two (or more)

individuals in image and feature domain. An example of

a morphed face image as the result of two non-morphed,

i.e., bona fide [9], face images, is depicted in Fig. 1. The cre-

ated morphed face image will be successfully verified against

probe samples of both contributing subjects by state-of-the-

art face recognition systems. This means, if a morphed face

image is stored as reference in the database of a face recog-

nition system, both contributing subjects can be successfully

verified against this manipulated reference. Thus, morphed

face images pose a severe threat to face recognition sys-

tems, as the fundamental principal of biometrics, the unique

link between the sample and its corresponding subject,

is violated.

In many countries, the face image used for the ePass-

port issuance process is provided by the applicant in either

analog or digital form. In a face morphing attack scenario,
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FIGURE 1. Example for a morphed face image (b) of subject 1 (a) and
subject 2 (c). The Morph was manually created using FantaMorph.

FIGURE 2. Example for the face morphing attack: different instances of
face images of both subjects contributing to a face morph are
successfully matched against it using a COTS face recognition software
with a default decision threshold of 0.5, resulting in an FMR of 0.1%.

a wanted criminal could morph his face image with one

of a lookalike accomplice. If the accomplice applies for an

ePassport with themorphed face image, hewill receive a valid

ePassport equipped with the morphed face image. It is impor-

tant to note, that morphed face images can be realistic enough

to fool human examiners [10], [11]. Both, the criminal and

the accomplice could then be successfully verified against

the morphed image stored on the ePassport, as visualized

in Fig. 2. This means, the criminal can use the ePassport

issued to the accomplice to pass ABC gates (or even human

inspections at border crossings). The risk posed by this attack,

referred to as face morphing attack, is amplified by the fact

that realistic morphed face images can be generated by non-

experts employing easy-to-use facemorphing software which

is either freely available or can be purchased at a reasonable

price, e.g., FaceMorpher,1 WinMorph2 or FantaMorph.3

1FaceMorpher, Luxand: http://www.facemorpher.com/
2WinMorph, DebugMode: http://www.debugmode.com/winmorph/
3FantaMorph, Abrasoft: http://www.fantamorph.com/

B. CONTRIBUTION AND ORGANIZATION

Ferrara et al. [6] were the first to thoroughly investigate

the vulnerability of commercial face recognition systems to

attacks based on morphed face images. Up to now, a signif-

icant amount of literature related to face morphing attacks

and their detection has already been published, while only

a rather brief overview has been given in [12]. This survey

provides a comprehensive overview and critical discussion

of published literature related to said topics. This survey

primarily addresses biometrics researchers and practitioners.

The remainder of this article is organized as follows: the

fundamentals of (face) image morphing and quality assess-

ment of face morphs are described in Sect. II and Sect. III,

respectively, along with an overview of available software

tools in Sect. IV. Subsequently, relevant metrics to assess

the vulnerability of face recognition systems against said

attack and the performance of morphing attack detection

methods are summarized in Sect. V. Proposed approaches

for automated morphing attack detection are surveyed and

discussed in Sect. VI. Open issues and challenges are outlined

in Sect. VII. Finally, a conclusion is given in Sect. VIII.

II. MORPHING OF FACE IMAGES

Image morphing in general represents a well-investigated

field of research, for comprehensive surveys the reader is

referred to [7] and [8]. In this section, surveyed approaches

are limited to morphing techniques, which have been explic-

itly applied to (frontal) face images. Face images used to

create a morph should meet certain requirements. The best

results can be achieved with frontal images exhibiting a

neutral facial expression. In the context of the face morph-

ing attack it should be expected that not only for the input

face images (provided by the photographer) but also for the

resulting morph the prerequisites of the International Civil

Aviation Organization (ICAO) [13] for the production of

passport portrait photos have to be met. These specifications

ensure that all faces are represented equally with respect to

resolution, exposure, etc. Semi-profile recordings can indeed

be partially corrected, but then there is usually information

missing of the far side of the face. Furthermore, the quality

of the source images has a direct influence on the result. The

quality of the morph cannot be expected to be higher than

that of the source images. Distortions and scaling usually

negatively affect quality during the process chain. The quality

of morphed face images is further discussed in Sect. III.

In general, the morphing process of face images can be

divided into three steps. First, a correspondence between

the contributing samples is determined. In a second step,

calledwarping, both images are distorted, such that the corre-

sponding elements of both samples are geometrically aligned.

Finally, the color values of the warped images are merged,

referred to as blending, in order to create the morphed face

image. Said processing steps are described in detail in the

following subsections, along with post-processing, studies on

human perception of morphed face images and a summary of

available research resources.
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A. CORRESPONDENCE

The most common way of determining correspondences

between face images is by determining salient points in

both images, so-called landmarks. The simplest way is to

manually define the coordinates of prominent characteristics,

e.g., eyes, eyebrows, tip of the nose, etc., as for instance

done in the morphing process of [6] and [14]. The manual

annotation of images is very accurate (if done properly), but

time consuming. More convenient is the automated detec-

tion of landmarks. The established approach for landmark

detection is to detect each point separately, e.g., utilizing

geometric features [15]. Amore sophisticated solution is to fit

a predefined model, e.g., active shape models [16] or elastic

bunch graph models [17], [18] to the face image, whereas the

fitting of the model is the key issue. Zanella and Fuentes [19]

propose an untrained generic model, which is fit to the

contours of a binary image using evolutionary strategies.

Saragih et al. [20] propose a principled optimization strat-

egy where a non-parametric representation of the landmark

distributions is maximized within a hierarchy of smoothed

estimates. Further algorithms train multiple regression trees

for landmark detection [21], [22], of which the method of

Kazemi and Sullivan [22] was further implemented in the

widely used dlib landmark detector [23]. For detailed infor-

mation and benchmarks of different automated landmark

detection approaches the reader is referred to [24].

B. WARPING

If the landmarks are determined, the image should be dis-

torted in a manner, that corresponding landmarks are aligned.

A straight forward method for morphing is scattered data

interpolation [25]. The landmarks, also called control points,

are moved to a new position, the new position of all inter-

vening pixels is interpolated based on the nearby control

points. More advanced morphing techniques take the cor-

relation between the landmarks into account. For example,

Sederberg and Parry [26] propose a grid or mesh-based warp-

ing technique called Free-Form Deformation (FFD), which

was extended by Lee et al. [27] tomulti-level FFD. Thewhole

image is considered as a grid, which is deformed by the flow

of the landmarks. Another approach is field morphing intro-

duced by Beier and Neely [28], where grid lines are control-

ling the metamorphosis of the image in the transformation.

In particular, for manual morphing this approach has advan-

tages, as the user can position lines instead of points. For

automatic morphing the lines can be derived from detected

landmarks. In the work of Schaefer et al. [29] the moving

least squares are minimized in order to estimate the optimal

affine transformation. This approach can be employed to opti-

mize different warping methods based on landmarks or lines.

Choi andHwang [30] propose amorphing process by simulat-

ing the image as a mass spring system. Thus, each translated

landmark influences nearby pixels and landmarks.

Most state-of-the-art morphing algorithms, e.g., as used

for the morph-creation in [31]–[38], do not consider the

image as a grid, but apply a Delaunay triangulation on the

FIGURE 3. Examples of detected landmarks (using dlib landmark
detector) and corresponding Delaunay triangles.

landmarks in order to determine non overlapping triangles,

as depicted in Fig. 3. Delaunay triangulations maximize the

minimum angle of each triangle in the triangulation and can

be calculated efficiently. Subsequently, the triangles of both

contributing images are distorted, rotated and shifted until an

alignment is achieved.

The first step in traditional approaches for creating amorph

between a pair of face images I0 and I1 is to define a map φ

from I0 to I1. The contribution of each subject to the warping

process is defined by an αw-value, whereas an αw = 0

would be the landmark-position of the first subject, αw = 1

the landmark-position of the second subject and an αw
between 0 and 1 any combination of both. The impact of

different αw-values on the resulting face morph can be seen

by analyzing the first versus the last row of Fig. 4. One issue

that might occur are disocclusions which refers to regions

in the object space that are visible in I0, but disappear in I1
as described by Liao et al. [39]. For disocclusions in I0,

the map φ is typically undefined, for disocclusions in I1 it is

discontinuous. To obtain a more complete representation, one

can introduce a second map from I1 back to I0. Maintaining

consistency between the two maps during an optimization

process becomes quite expensive [39]. One approach solving

this issue is proposed by Wu and Liu [40]. The images are

warped forward and backward in order to obtain a com-

plete mapping φ. In addition, to obtain a more natural warp-

ing, the face images are projected into a 3D space and an

23014 VOLUME 7, 2019
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FIGURE 4. Matrix of the two variables in a morphing process (blending and warping). This morph
sequence was created using dlib for landmark detection, Delaunay triangulation and linear affine
transformation for warping and linear blending.

energy function is minimized to avoid ghost and blur artifacts.

Seitz and Dyer [41] also propose a projection into 3D-space,

in order to consider perspective effects during the morphing

process. Another technique formorphing in 3D-space is given

by Yang et al. [42]. In order to recover the face geometry,

the 2D face image is projected on a pre-learned 3D face

mask. In particular, for variances in pose and expression this

approach promises a higher quality.

Further, some warping algorithms do not need previously

detected landmarks. Bichsel [43] proposes to employ the

Bayesian framework in order to determine the optimal map-

ping function.

C. BLENDING

After the alignment of the two contributing images, the two

arranged textures are combined using blending, usually over

the entire image region. The most frequent way of blending

for face morph creation is linear blending, i.e. all color values

at same pixel positions are combined in the same manner.

Similar to the warping process the contribution to the blend-

ing of each image can be weighted by an αb-value, e.g. αb =

0.5 for averaging. The impact of a changing αb-value to the

morphed image can be seen in Fig. 4 on the vertical axis.

D. FURTHER APPROACHES

There are, however, some morphing algorithms, where a sub-

division into the steps described above is not feasible. In [44],

a morphing approach is proposed using generative morphing

to combine warping and blending. The resulting morphed

image is regenerated from small pieces of the source images.

Korshunova et al. [45] propose to train a Convolutional Neu-

ral Network (CNN) to swap the face image of one subject with

the face of a second one. A huge disadvantage of this method

is, that a new network has to be trained for each subject.

Beside the morphing of samples in image domain, it is

possible to morph in feature domain, as e.g., shown in [46] for
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minutiae sets and in [47] for iris-codes. It would be feasible

to also morph face representations in feature domain, e.g.,

by averaging the feature vector of a CNN [48]. In order to

use the morphed feature vector in a face recognition system,

a face image can be reconstructed from the feature domain,

as shown in [49]. However, it is most likely, that the recon-

structed morphed face image only works for the same feature

space, meaning an attack against the same face recognition

system, as used for creation of the morphed feature vector.

E. POST-PROCESSING

After the creation of the morphed face image, the image

might be further processed and altered. In order to obscure

the image manipulation, the image quality might be

enhanced or reduced on purpose.

In particular, the automated creation of morphed face

images can lead to morphing artifacts. Missing or misplaced

landmarks might cause shadow or ghost artifacts, as they

can be seen in Fig. 5 (a). This issue can be tackled by

swapping the facial area of the morphed face image with an

adapted outer area of one of the subjects [35], [50]. Artifacts

in the hair region can be concealed by an interpolation of

the hair region as proposed by Weng et al. [51]. Further,

unnatural color gradients and edges might occur, due to

inappropriate interpolation methods, which can be removed

by blurring or sharpening. Due to the averaging during the

blending process, the histograms of the color values might

get narrow. This artifact can be avoided by an adaptation

of the color histogram, e.g. by using histogram equaliza-

tion or an adaption of lumination, in order to achieve realistic

histogram shapes. Examples for sharpening and histogram

equalization are depicted in Fig. 5 (b) and (c).

In addition to the removal or reduction of morphing arti-

facts, further post-processing steps might be carried out,

which can sometimes be unavoidable, i.e., printing and scan-

ning of the image, in order to use it as a passport photo. Even

with high-end photo printer in the processing pipeline, some

information contained in the face image signal will always be

lost in the process, masking or reducing morphing artifacts,

as described in [36]. Once the image has been submitted to a

passport application office, it has to be scanned again. Again,

information can be lost, helping to hide or reduce erroneous

artifacts.

Further, information from or trace of the morphing process

can be lost when the image format is changed. By storing

the image in a lossy format, high-frequency information

is eliminated from the signal permanently. If the image is

loaded and stored multiple times as part of the process chain,

the accumulated compression error can significantly degrade

the image quality.

III. QUALITY ASSESSMENT OF FACE MORPHS

Generally speaking, automatically generated databases of

morphed face images are expected to differ in quality from

real world attack scenarios. Automatically generated morphs

might reveal artifacts, which can be avoidedwhen the attacker

FIGURE 5. Examples of different post-processing methods likely to be
applied by an attacker to conceal the morphing process. (a) Original
morph. (b) Sharpness. (c) Hist. equlization.

is producing only one single high quality morph between

himself and his accomplice and manually optimizing the

resulting image. When aiming to develop a robust detection

algorithm on such an automatically generated database, it is

crucial to assure high quality of morphed face images. Oth-

erwise, it is likely that a trained classifier might strongly rely

on these specific artifacts.

As described by Scherhag et al. [52] it is difficult to define

objectivemetrics for quality assessment of facemorphs due to

the large number of contributing factors. Basically, the output

image of the algorithms can be evaluated according to the

criteria summarized in the following subsections.

A. IMAGE QUALITY

Each processing step affects the quality of an image. In par-

ticular, factors such as image size, sharpness, color saturation,

aspect ratio and the overall natural appearance of the face

image should be influenced as little as possible by the morph-

ing algorithm. The minimum requirements for these factors

can be found in the specifications for passport images of

the ICAO [13]. Thus, for example, the minimum resolution of

the facial image is set to an inter eye distance of 90 pixels. If a

picture deviates from these minimum requirements, it is no

longer accepted in countries that comply with ICAO recom-

mendations to produce a passport or other machine readable

travel documents (e.g., citizen cards). Furthermore, the image

quality may be affected by compression of the image. In the

case of lossy compression, the storage of high-frequency

information is deliberately omitted in order to increase the

compression rate. At high compression rates, however, this

can lead to elimination of details and compression artifacts

in the image. Since poor image quality usually results from

lack of information, for example, too few pixels or too little

high-frequency information, it is often difficult to improve the

quality later.

Quality metrics for images can be used to objectively

evaluate the output images based on quality measures derived

from the signal. Since no reference image is available in the

evaluation of the output image, the classical image quality

determination methods, such as signal-to-noise ratio or mean

square deviation, are not feasible. For the selection of the

quality metric, the quality properties to be considered have to

be determined. The metric proposed by Farias and Mitra [53]

23016 VOLUME 7, 2019
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FIGURE 6. Examples of BRISQUE scores for quality estimation (low values
indicate high image quality). The BRISQUE score of bona fide (a) and
uncompressed morphed images (b) are close to each other, the score of a
JPEG compressed morphed image (c) is noticeably higher.

FIGURE 7. Comparison between a manually created high quality (left)
and an automatically created low quality face morph (right).

evaluates the occurrence of image artifacts, such as block arti-

facts, blur or noise. If the authentic appearance of a submitted

passport image is to be evaluated for the human observer, then

metrics are recommended that take into account the human

perception, i.e., factors like sharpness [54] or perceptual qual-

ity [55] of the image. Another option is the automated assess-

ment of the naturalness of the image using some no-reference

image quality metrics, e.g., Blind / Referenceless Image

Spatial Quality Evaluator (BRISQUE) [56]. Fig. 6 shows

examples of BRISQUE values where low values indicated

high quality and vice versa. On the left a non-morphed face

image is shown, the associated BRISQUE value of 21 cor-

responds to a high quality. The middle image is a high

quality morph without compression, the BRISQUE value is

slightly worse. The image on the right shows the same morph

with JPEG compression. Even if no artifacts are visible,

the BRISQUE value is strongly influenced by the compres-

sion.

B. MORPHING ARTIFACTS

Morphing artifacts as illustrated in Fig. 7 (right) can appear

in the image during the multi-step morph process. Within

landmark-based methods artifacts are usually caused by the

absence or misplacement of landmarks. As a result, the cor-

responding image areas are not transformed correctly so that

they do not completely overlap. This creates shadow-like,

semi-transparent areas, so-called ghost artifacts. Fig. 7

depicts a manual morphed face image and an automatically

generated morph comprising said artifacts. On the right, one

can see a morphed facial image with poorly placed land-

marks. Especially, in the region of the neck, but also on

the hair and ears, strong ghost artifacts can be observed.

The iris proved to be particularly susceptible to artifacts

because algorithms for automatic landmark determination are

usually not able to provide the iris with correct landmarks.

As a workaround, the located left and right eye corner could

approximate the iris center half way between the two cor-

ners. Furthermore, shadow effects may occur in facial hair

(e.g., beards and eyelashes), in differently pigmented areas

(e.g., liver spots, tattoos), or by glasses and jewelry. Morph

artifacts, which are caused by landmark-based morphing, can

usually be remedied by manual post-processing in image

processing programs as shown by Ferrara et al. [6]. An addi-

tional cause of artifacts may be the differences in the source

images or inappropriate interpolation methods, which can

lead to unnatural color gradients and overly hard edges in

the target images. Further artifacts induced by morphing may

be low contrast and blur of the images, which may result

from the averaging and interpolation of pixel positions and

color values. Another type ofmorph artifact may be generated

using machine learning to create the morphed facial images.

Due to the opacity of the process of the training algorithms,

the errors might be difficult to narrow down or classify.

Some of the potential mistakes are missing or deformed

facial features, blurred areas and ghost artifacts. The emer-

gence of such artifacts can be reduced by appropriate learn-

ing methods and a large number of training data. Due

to the high agility of the relevant research area, a rapid

improvement in the quality of morph images that can be

achieved by the application of machine learning can also be

expected.

C. PLAUSIBILITY OF FACE MORPHS

The quality of a morph can also be assessed by how plau-

sible the image appears as a facial image. Here, on the one

hand, the natural appearance of the produced image plays

a role, and on the other hand, the similarity of the morph

with the contributing data subject. The natural appearance

can be adversely affected by strong artifacts. In addition,

the similarity of the contributing subjects, e.g., with respect to

gender, ethnicity or age group, influences the plausibility of

the resulting morph. e.g., the morph depicted in Fig.1 appears

less plausible since the age gap between the two contributing

subjects is more than 20 years. Thus, it is recommended

to select similar subjects as a basis. An approach for an

automatic selection of suitable subjects is given in [57].

D. HUMAN PERCEPTION OF MORPHED FACE IMAGES

The issue of morphed face images in face comparison scenar-

ios (e.g., border control) does not only affect automated face

recognition systems, but also human observers. In general,

humans are rather weak in recognizing unfamiliar faces as

reported by Megreya and Burton [58] and Bruce et al. [59],
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TABLE 1. Overview of publicly available morphing tools.

independent of comparing two face images or a face image to

a live data subject [60]–[62]. In particular, for border control

scenarios, it is of relevance, that the difficulty to successfully

verify a subject against its reference face image increases

with the age of the taken image [63]. Depending on the

individual, the face comparison capabilities vary. Hereby it

is not relevant, if the human examiner is a border guard or an

untrained student, the ratio of false negative to false positive

remains the same [64], thus, it is uncertain whether a human

expert can effectively detect morphed face images unless he is

explicitly trained on morphing attacks. Recently, it has been

shown that training makes a huge difference for a human

observer. Robertson et al. [65] showed, that without the

knowledge of the morphing issues, a human observer would

accept 68% of morphed images created with an α factor

of 0.5. After a briefing, the false acceptance rate of morphed

images dropped as low as 21%. Further, examiners that are

better in distinguishing faces have a higher success chance

to detected morphed face image [11]. Another parameter to

consider is the weight (α) of the two subjects contributing to

the morphed face image which represents a key factor in mor-

phing attack scenario [66]. The role of the two subjects could

be asymmetric, since the accomplice has to fool a human

examiner, e.g., at the passport application office, and the

criminal must fool the face verification algorithm, e.g., at an

ABC gate. A higher weight of the accomplice is expected to

hamper a successful detection of the morphed face image by a

human examiner during presentation at enrolment, e.g., at the

time of the passport issuance.

IV. MORPHING SOFTWARE

Table 1 lists available proprietary/open source morphing

software and their properties. Applications were consid-

ered for the common desktop operating systems (Windows,

Linux, Mac) and mobile operating systems (Android, iOS).

Excluded from the list are web services available on the

internet. These web services provide an easy way to manu-

ally create morphed images. However, firstly, an automated

generation of face morphs is difficult and secondly, it is

unclear how the uploaded images are processed and stored,

which would make it impossible for researchers to upload

face images of their models/volunteers and to comply with

privacy regulations at the same point in time.

In order to enable well-founded and efficient experiments,

it is generally advisable to use applications that can produce

morphs in an automatedmanner in good quality without man-

ual post-processing. Open source algorithms have the advan-

tage that they can be much better automated and adapted
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to the needs than commercial applications. For commercial

programs, automation is generally more difficult to achieve.

A. MORPHING MORE THAN TWO FACE IMAGES

The procedures described above for morphing two face

images are easily extended to any number of source images.

The contributing images may be weighted similarly to the

α-factor, each image having its own factor such that the

sum of the factors is 1. The more images included in an

equally weighted morph, the smaller the weights will be.

The more subjects are contributing to the image, the higher

is the risk of quality issues described in Sect. III. Further-

more, the morphing of more than two images can also be

done iteratively in pairs, i.e. the morphs are used as source

images for the next morph process. Generally, no difference

is visually discernible between the morphs created by both

methods, i.e., the difference between artifacts resulting from

a direct or iterative morphing process is below the perception

threshold of a human observer. For this reason, the represen-

tation of sample images is omitted.

V. METRICS FOR MORPHING ATTACK EVALUATIONS

Standardized metrics are vital to enable direct benchmarks

and comparative assessments of proposed methods. Regard-

ing the topic of face morphing attacks efforts to define evalu-

ation metrics for morphing attack detection and vulnerability

analysis have already been made, e.g., in [33] and [52]. Met-

rics suggested by Scherhag et al. [52] are briefly summarized

in the following subsections.

A. VULNERABILITY ASSESSMENT

In their well-established guidelines Mansfield and

Wayman [67] recommended that all comparisons in a bio-

metric system’s evaluation should be uncorrelated. That is,

the samples compared to the morphed face images should

not be the same as the ones used for the morphing process

since such a comparison would ignore the natural biometric

variance.

Regarding evaluation metrics the Impostor Attack Presen-

tation Match Rate (IAPMR) introduced in ISO/IEC 30107-3

on Presentation Attack Detection evaluation [9] represents a

standardized metric for attack success evaluation:

IAPMR: in a full-system evaluation of a verifi-

cation system, the proportion of impostor attack

presentations using the same Presentation Attack

Instrument (PAI) species in which the target refer-

ence is matched.

However, for the evaluation of face morphing attacks,

the aforementioned IAPMRmetric presents some drawbacks,

as a morphing attack might only be considered successful if

all contributing subjects are successfully matched against the

morphed face image. The comparison of a morphed sample

to another independent sample of one contributing subject

is referred to as mated morph comparison. Motivated by

the ISO/IEC 30107-3 [9], the impact of a morphing attack

in a full-system evaluation is referred to as Mated Morph

Presentation Match Rate (MMPMR) as introduced in [52].

As themorphing attack succeeds if all contributing subjects

are verified successfully, only the minimum (for similarity

scores) or maximum (for dissimilarity scores) of all mated

morph comparisons of one morphed sample are of interest.

TheMMPMR for similarity scores is defined as:

MMPMR =
1

M
·

M
∑

m=1

{[

min
n=1,...,Nm

Snm

]

> τ

}

, (1)

where τ is the decision threshold, Snm is the mated morph

comparison score of the n-th subject of morph m, M is the

total number of morphed images and Nm the total number

of subjects constituting to morph m. Decisions of human

examiners could be integrated to the above equation to eval-

uate a scenario with human inspection in the loop. Further,

Scherhag et al. [52] proposed adaptations of the metric for

evaluations where multiple samples of one subject are com-

pared to one morphed face image.

MMPMR, as well as IAPMR, are directly dependent on

the threshold τ of the biometric system. In order to achieve

a more generalized metric in relation to the False Non-

Match Rate (FNMR) of the system, Scherhag et al. pro-

pose to compute the difference between 1 − FNMR and

MMPMR or IAPMR, respectively. The RelativeMorphMatch

Rate (RMMR) is defined as follows:

RMMR(τ ) = 1 + (MMPMR(τ ) − (1 − FNMR(τ )))

= 1 + (MMPMR(τ ) − TMR(τ )). (2)

Different relevant examples for combinations of score

distributions, thresholds and resulting RMMR values are

depicted in Fig. 8.

Gomez-Barrero et al. [68], [69] proposed a theoretical

framework to predict the vulnerability of biometric systems

to attacks based on morphed biometric samples. Further, key

factors which take a major influence on a system’s vulner-

ability to such attacks have been identified, e.g., the shape

of mated (genuine) and non-mated (impostor) score dis-

tributions or the False Match Rate (FMR) the system is

operated at.

B. DETECTION PERFORMANCE REPORTING

Given multiple procedures for preparing morphed images

and/ or multiple morph detectors these can be benchmarked

employing metrics defined in [9], in particular, Attack Pre-

sentation Classification Error Rate (APCER) and Bona Fide

Presentation Classification Error Rate (BPCER). The APCER

is defined as the proportion of attack presentations using the

same presentation attack instrument species incorrectly clas-

sified as bona fide presentations in a specific scenario. The

BPCER is defined as the proportion of bona fide presentations

incorrectly classified as presentation attacks in a specific sce-

nario. Further, the BPCER-10 and BPCER-20 representing

the operation points related to an APCER of 10% and 5%,

respectively, can be used to rank the tested morphing attack

VOLUME 7, 2019 23019



U. Scherhag et al.: Face Recognition Systems Under Morphing Attacks

FIGURE 8. Behavior of RMMR for different decision thresholds and score distributions.

detection mechanisms. Additionally, it is recommend to plot

the BPCER over the APCER in a Detection Error Trade-

off (DET) curve. In order to achieve reproducible and compa-

rable performance evaluations of morphing attack detection

systems, a common comprehension of the training and testing

methodology is needed. In general, the standards defined

in ISO/IEC 19795-1 on biometric performance testing and

reporting [70] should be followed, e.g., a disjoint subdivi-

sion of the data into training and testing set. In particular

a strict separation of the morphed samples with respect to

the originating subjects is important, in order to avoid an

unrealistic high detection performance. It should be noted,

that onemorphed sample is related to at least two subjects and

each subject might contribute to several morphing samples.

VI. FACE MORPHING ATTACK DETECTION

Proposed approaches can be coarsely categorized with

respect to the considered morphing attack detection scenario.

The two classes of detection methods, i.e., no-reference and

differential, are described in the following subsection. Subse-

quently, the state-of-the-art with respect to morph detection

algorithms is surveyed.

A. DETECTION SCENARIOS

Two automated morph detection scenarios depicted in Fig. 9

can be distinguished:

• No-reference morphing attack detection: the detector

processes a single image, e.g., an off-line authenticity

check of an electronic travel document (this scenario is

also referred to as single image morphing attack detec-

tion or forensic morphing attack detection);

• Differential morphing attack detection: a trusted live

capture from an authentication attempt serves as addi-

tional source of information for the morph detector,

e.g., during authentication at an ABC gate (this sce-

nario is also referred to as image pair-based morphing

attack detection). Note that all information extracted by

no-referencemorph detectors might as well be leveraged

within this scenario [38].

B. STATE-OF-THE-ART

In the past years, numerous approaches to automated face

morphing attack detection have been proposed. Published

FIGURE 9. Morphing attack detection scenarios. (a) No-reference
morphing attack detection. (b) Differential morphing attack detection.

methods and their properties are summarized in Table 2.

In some works, more than one system was presented, in such

cases only those approaches, which were reported to reveal

best morphing attack detection performance are listed. The

majority of works assume the challenging no-reference sce-

nario while some implement a differential morphing attack

detection. Despite promising results reported in many works,

a reliable detection of morphed face images still represents

an open research challenge. It is important to note that the

generalizability/robustness of published approaches has not

been shown. So far, there are no publicly available large-

scale databases of bona fide and morphed face images and

no publicly available morph detection algorithms, which

allow for a comprehensive experimental evaluation. Hence,

the vast majority of methods has been mostly trained and

tested on different in-house databases. In addition, face

morph detection methods are mostly trained and tested on a

single database using a single morph generation algorithm.

Further, the likely appliance of image post-processing tech-

niques by an attacker, e.g., image sharpening, is neglected

in most works. Due to these facts, a comparison of pub-

lished approaches in terms of reported detection performance

would potentially be misleading and is purposely avoided in

this survey. However, planned benchmark tests, e.g., by the
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TABLE 2. Overview of published morph detection algorithms.

National Institute of Standards and Technology (NIST) [71],

are expected to facilitate a meaningful quantitative compari-

son of published approaches in the near future.

1) NO-REFERENCE MORPHING ATTACK DETECTION

Several researchers have suggested the use of general

purpose image descriptors, e.g., Local Binary

Patterns (LBP) [102] or Binarized Statistical Image Fea-

tures (BSIF) [103], which have been employed widely for

biometric recognition. Ramachandra et al. [14] proposed

a no-reference detection system based on a Support Vec-

tor Machine (SVM) trained on extracted BSIF-features of

gray-scale images. For training and evaluation of the SVMs

an in-house database of morphed face images was cre-

ated. On a derivate version of the same database, Scherhag

et al. [36] investigated the accuracy of morphing detection

on printed and scanned images employing the proposed

algorithm. Further, a Probabilistic Collaborative Represen-

tation Classifier (Pro-CRC) [104] trained on LBP-feature

extracted from the color channels was proposed in [72].

As database an in-house database based on FRGCv2 [73]

was used. The authors focus on the differences between

morphed and averaged images in the evaluation. In [48]

the suitability of LBP features for the detection of morphs

generated by Generative Adversarial Networks (GANs) was

tested.

The features extracted by texture descriptors can be further

processed. A more complex method for morphing detection

is proposed in [75] and [76], where a Vietoris-Rips complex

is built of the responses of uniform LBP extractors on the

image. In [100], a high detection performance was shown for

a linear SVM trained on high-dimensional LBP features [105]

extracted from the FEI database [87]. Agarwal et al. [74]

propose to train an SVM with Weighted Local Magnitude

Pattern. Similar to LBP, the proposed descriptor encodes

the differences between a center pixel and it’s neighbors.

However, instead of binarizing them, it assigns the weights

inversely in proportion to the difference from the center pixel.
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Depending on the feature representation of texture descriptors

the inputs of classifiers have to be adapted. E.g., for Scale-

Invariant Feature Transform (SIFT) [106] the number of

extracted keypoints has been shown to be suitable for the task

ofmorph detection [38], [78]. A score-level fusion ofmultiple

image descriptors might even improve the detection rate [79].

Therefore, LBP, BSIF, SIFT, Speeded Up Robust Features

(SURF) [107], Histogram ofOrientedGradients (HOG) [108]

and the deep features of Openface [109] were fused and

evaluated in [79].

In particular, in the no-reference scenario, classifiers may

overfit to distinctmicro texture features. These can be dataset-

specific features, which are altered or introduced by the

applied morphing process. In particular the combination

of features reflecting different information, e.g., LBP and

SIFT, leads to improvements. It has been shown that the

performance of morph detectors based on general purpose

image descriptors might significantly decrease if training

and test images stem from a different source, i.e., face

database [37], [82]. In order to adapt the no-reference general

purpose image descriptors a differential scenario, differences

between feature vectors can (additionally) be employed [38].

During the morphing process, not only the texture, but the

whole signal of the image is manipulated. Thus, a further

detection approach is to analyze the changes in noise pat-

terns, e.g., Photo Response Non-Uniformity (PRNU) [84].

Therefore, the PRNU-patterns, that are originating from the

camera and which are distinct not only for each model but

for each single camera, are extracted from a face image,

the discrete Fourier magnitudes are computed. Subsequently,

the mean and variance are derived from the resulting his-

togram. A very similar approach was presented in [86].

Recently, an improved version of this scheme based on

PRNU variance analysis across image blocks was proposed

in [85]. Morphing attack detection methods based on contin-

uous image degradation have been proposed in [78], [110],

and [111]. The basic idea behind these methods is to

continuously degrade the image quality, e.g., by using

JPEG compression, to create multiple artificial self-

references of a face image. The distances from these refer-

ences to the original image are then analyzed formorph detec-

tion. Ramachandra et al. [89] propose the analysis of high

frequencies in grayscale images. Therefore, the images are

converted to grayscale according their luminance, a steerable

pyramid is build and a Collaborative Representation Classi-

fier (CRC) is trained on the high frequencies. The employed

database was printed and scanned, but no further post-

processing was tested. An alternative to handcrafted feature

extractors is to employ statistical machine learning on the

unprocessed image in order to distinguish between morphed

and bona fide images. Ramachandra et al. [94] proposed

to adapt two CNNs (VGG19 [112] and AlexNet [113])

by transfer-learning and combine the intermediate features

to train a CRC. In [35], three CNNs, namely VGG19,

AlexNet and GoogLeNet [114], are benchmarked as pre-

trained and non-pre-trained models regarding their morph

detection capabilities. Again, with these methods there is

a potential problem of overfitting. In particular, resulting

deep classifiers may favor image locations where artifacts,

e.g., shadows around the iris region, are likely to appear

due to an imperfect automated morph creation process,

as described in Sect. III-B. As an attempt to avoid overfitting,

Seibold et al. [95] trained a VGG19-net on a set of diverse

images with two different databases, morphing algorithms

and post-processings (motion blur, Gaussian blur, salt-and-

pepper noise, Gaussian noise). To avoid a focusing of the

CNN on specific regions, images with specific regions

covered (eyes, nose, mouth) were added to the training

set. As the CNN was trained on all kind of databases,

morphing algorithms and post-processings a statement

about the resulting robustness of the classifier is difficult.

Wandzik et al. [100] proposed to employ pre-trained face

recognition networks, e.g. VGG-Face [4] or FaceNet [3], for

morphing attack detection. The high-level features generated

by the networks are classified using a linear SVM.

Focusing on the no-reference scenario diverse approaches

related to media forensics have been presented. In dif-

ferent works, the detection of JPEG double-compression

artifacts has been suggested for the purpose of morph detec-

tion [32], [33]. However, the presence of such artifacts

implies a strong assumption on the image format of face

images used for morph generation as well as the resulting

morphed face image. The ICAO suggests face image data to

be stored in accordance with the specifications established

by the International Standard ISO/IEC 19794-5 [115]. More

specifically, the ICAO requires face images to be stored in

electronic travel documents at an average compressed sizes

of 15kB to 20kB in JPEG or JPEG 2000 format [13]. How-

ever, JPEG 2000 is the de-facto-standard for electronic travel

documents, as it maintains a higher quality when compressing

face images to 15 kB. Hence, depending on the image size and

the employed compression algorithm the detection of JPEG

double-compression artifacts might not be feasible. In [88],

a morph detection method based on reflection analysis in

face images is presented. The lightning direction is estimated

based on reflections detected in the eyes of a potentially

morphed image. Subsequently, reflections on the nose of the

face are analyzed. However, ISO/IEC standard requires hot

spots and specular reflections to be absent in face images

used in electronic travel documents. In particular, diffused

lighting, multiple balanced sources or other lighting methods

shall be used, i.e., a single bare ‘‘point’’ light source like a

camera mounted flash is not acceptable for imaging [115].

2) DIFFERENTIAL MORPHING ATTACK DETECTION

Morphing detection algorithms based on general purpose

image descriptors, signal or quality analysis are mostly

no-reference algorithms, but can be adapted to differen-

tial morphing attack detection scenarios. However, there

are some algorithms, that can solely be used in differential

scenarios, as they require a trusted live capture. In [90],

a morph detection algorithm based on landmark positions
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and angles is introduced. Therefore, the landmarks between

both, the passport image and the trusted live capture are

determined, the angle between all combinations of landmarks

per image are computed and compared over both images. Due

to the high intra-class variance of landmarks, the detection

performance of this algorithm is rather moderate.

Another differential morph detection method referred to

as de-morphing was proposed by Ferrara et al. [91]. In this

approach a trusted live capture is aligned to a potential morph

and ‘‘subtracted’’ from it in the image domain by applying

a reverse morphing operation. The resulting image is then

compared against the trusted live capture. The assumption is,

that, if two subjects are morphed into one image, and one of

the subjects is subtracted, the second subject remains. If there

is only one subject in the image, this subject will remain after

the subtraction. Thus, a morph is detected if the biometric

decision changes from ‘‘accept’’ to ‘‘reject’’ when using the

de-morphed image as reference. Robustness of de-morphing

against slight face pose variations has been confirmed in [92].

Nevertheless, the authors indicate that in an ABC scenario the

performance of de-morphing might degrade due to potential

variations of quality and environmental conditions.

VII. ISSUES AND CHALLENGES

Several open issues and challenges exist in research related

to face morphing and face morphing attack detection. The

most relevant issues and challenges, which have already been

pointed out throughout this survey, can be briefly summarized

as follows:

• Quality: the automated generation of high-quality face

morphs remains a challenging issue and of utmost

importance in order to enable statistically significant

testing of developed morphing attack detection methods

under realistic conditions, see Sect. III.

• Comparability/benchmarks: the lack of publicly avail-

able large-scale databases comprising bona fide as well

as morphed face images and open-source face morphing

attack detection software prevents from a meaningful

comparative benchmark of the current state-of-the-art in

this field, see Sect. V.

• Result reporting: while first efforts have been made

to apply standardized metrics for reporting the per-

formance of morphing attack detection mechanisms

equivalent measures for the vulnerability of face recog-

nition systems w.r.t morphing attacks are non-existent;

however, these would be vital in order to enable an

unambiguous comparisons of proposed approaches,

see Sect. V.

• Over-fitting/robustness analysis: like any other image-

based classification task, approaches to morphing attack

detection are prone to overfitting, i.e., rigorous eval-

uations including face morphs from unseen databases

created by unseen morphing techniques are necessary,

see Sect. VI.

• Print-scan databases: to simulate real-world scenarios

where potentially morphed portrait images are printed

and scanned, publicly available large-scale databases of

printed and scanned bona fide and morphed face images

are required, see Sect. VI.

VIII. CONCLUSION

This survey provides a comprehensive overview of published

literature in the field of (face) image morphing and face

morphing attack detection as well as a detailed discussion of

open issues and challenges. The research in this important

field is only in its infancy while not being limited to face

recognition systems. The feasibility of morphing biometric

samples has also been shown for other biometric character-

istics, e.g. fingerprint [46], [116] or iris [47], which might

as well be morphed in feature domain. The possibility of

morphing biometric features and subsequently reconstructing

a biometric sample from morphed feature vectors underlines

the importance of data protection mechanisms, i.e. biomet-

ric template protection [117], [118] or conventional crypto-

graphic techniques [119], [120]. Similar to face, for other

characteristics certain aspects require more in-depth analy-

sis, e.g., biometric quality estimation of (morphed) finger-

print [121], [122] or iris samples [123], [124], respectively.

The reported face image morphing attack detection accuracy

is yet not reflecting generalization to datasets incorporating

the real world variety of capture conditions. This will change,

once benchmark portals such as the NIST Face Recognition

Vendor Test (FRVT) MORPH competition [71] are estab-

lished. Nevertheless, robust algorithms must also anticipate

the large variety of image post-processing as well as printing

and scanning technology that could be used in the govern-

mental procedures for the application of electronic travel

documents. Morphing attack detection mechanisms that are

robust against all those factors, will require a significant

amount of future research.
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