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Abstract

This paper presents a novel three-dimensional (3D) method for detecting, tracking and recognising
human faces using a time-of-flight camera. The system works by detecting a single central feature point,
typically the nose tip, and by intersecting the 3D point data with spheres centred at the central feature
point. The resulting spherical intersection profiles are used to perform face recognition and to track the
position and orientation of the face. The main benefit of this method is that it is fast and efficient in terms
or memory and computational expense. Furthermore, as the system utilises a time-of-flight camera and
topographical information, it is not affected by variations in illumination, face orientation or partial
occlusion of facial features. Experimental results are provided which show the potential of this method to
exceed the real-time performance of existing head-pose tracking and face recognition systems.
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Face Recognition using a Time-of-Flight Camera
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Abstract

This paper presents a novel three-dimensional (3D)
method for detecting, tracking and recognising human
faces using a time-of-flight camera. The system works by
detecting a single central feature point, typically the nose
tip, and by intersecting the 3D point data with spheres cen-
tred at the central feature point. The resulting spherical
intersection profiles are used to perform face recognition
and to track the position and orientation of the face. The
main benefit of this method is that it is fast and efficient
in terms or memory and computational expense. Further-
more, as the system utilises a time-of-flight camera and to-
pographical information, it is not affected by variations in
illumination, face orientation or partial occlusion of facial
features. Experimental results are provided which show
the potential of this method to exceed the real-time perfor-
mance of existing head-pose tracking and face recognition
systems.

1 Introduction

Systems that can recognise humans and transparently
interact with them are finding increasing application in var-
ious fields. Face tracking and face recognition are key ele-
ments in natural human-computer interaction and have re-
ceived considerable attention recently (e.g. [19, 7, 8, 17]).
However, most existing face tracking and recognition sys-
tems are computationally expensive and susceptible to in-
accuracies caused by variations in illumination, face orien-
tation and partial occlusion of facial features. In this paper
we present a three-dimensional (3D) method for detecting,
tracking and recognising human faces in real-time using a
time-of-flight camera. The main benefit of our system is
that it is fast and efficient in terms of computational ex-
pense and memory usage. As the system utilises a time-
of-flight camera and topographical information, it is not
affected by variations in illumination, face orientation and
partial occlusion of facial features.

In the following section we provide a brief summary
of existing face recognition and tracking systems together
with an overview of our system. This is followed by de-
tails of how we efficiently obtain a 3D ‘faceprint’ that can
be used for face recognition and face tracking purposes.

Experimental results are provided which prove the validity
of our method and its potential to provide fast and efficient
face tracking and face recognition in real-time.

2 Background

Due to the availability of the technology, face recog-
nition research has predominantly centred around two-
dimensional (2D) image processing, with a focus on fa-
cial feature detection. However, even the human brain can
have difficulty recognising faces with varying orientation
and illumination using 2D data alone [12]. The use of
3D data can eliminate viewpoint- and illumination-based
limitations. Furthermore, 2D face recognition systems are
unable to accurately determine the physical dimensions,
location and orientation of the face relative to the sensor,
whereas 3D sensors naturally integrate this information.

Research into face recognition using 3D sensors began
in the 1980s. For example, Cartoux et al. [4] pioneered re-
search into face profile matching using a laser range scan-
ner. Although laser scanners are still used by many sys-
tems, they have the disadvantage that the user is required
to remain motionless whilst the scan is completed. This
limits the utility of these sensors in most practical situa-
tions. Stereo cameras are also widely used, and have the
advantages of real-time data capture and integrated textu-
ral (2D) information. However, stereo camera systems re-
quire precise calibration, and rely upon surface features to
determine depth. Consequently, surface regions possess-
ing insufficient visual texture produce ‘holes’ in the depth
map, which reduces the accuracy of the sensor. Some re-
searchers overcome these issues by projecting structured
light patterns onto the subject (e.g. [2]), however such so-
lutions are too obtrusive and cumbersome for real-world
applications.

Time-of-flight cameras are a recent innovation which
provide accurate 3D data in real-time from a single, com-
pact solid-state camera. They are not affected by illumina-
tion or textureless regions, and provide integrated 2D am-
plitude and 3D range images [15]. Recently, researchers
have developed gesture recognition systems which utilise
time-of-flight cameras [13, 3]. Some effort has also been
applied to head detection [9], nose detection [11] and head-



pose tracking [14]. However, no work on face recogni-
tion using time-of-flight cameras has been published at this
point in time as far as we are aware.

Our research has utilised a Mesa Imaging Swiss-
Ranger SR3000 time-of-flight camera [15] (see Figure 1).
The array of infrared LEDs shown on the front of the
unit illuminates the scene with frequency-modulated light
which is used for making time-of-flight measurements.
The SR3000 captures simultaneous infrared amplitude
(greyscale) and depth images at QCIF (176x144) resolu-
tion.

Despite the obvious advantages of time-of-flight cam-
eras, they are not without limitations. When capturing
range and image data in a stationary environment they per-
form well, providing adequate steps are taken to reduce
any noise in the range data [5]. But any rapid motion in
the environment causes significant noise problems. This is
due to the fact that the SR3000 requires four samples per
pixel to calculate the depth based on the phase, offset and
amplitude of the incoming signal, but the hardware is only
capable of storing one at a time [16]. Thus the four sam-
ples must be acquired consecutively for each frame cap-
tured, and therefore any motion during this process will
cause noise artefacts. ‘4-tap’ sensors capable of acquiring
the four samples in parallel are currently available, and it
is anticipated that these will be utilised in future models,
thereby eliminating this problem.

Figure 1: SwissRanger SR3000 time-of-flight camera

3 Face Recognition with Spherical Intersec-
tion Profiles

Our system works by detecting a single central feature
point, (the nose tip), and by intersecting the 3D data with
spheres centred at this point. The tip of the nose is ideal for
this purpose because it is the only facial feature which can

be (almost) guaranteed to be visible to an observer, and
not obscured by glasses, facial hair, orientation, etc. The
nose tip is also an important feature because of its central
position within the face, and relative ease of detection us-
ing both amplitude- and depth-based approaches [10, 11].
However detecting the nose tip alone is not sufficient to de-
termine the 3D orientation of the face, since at least three
points are required. To solve this problem without requir-
ing the detection of additional features, we introduced the
concept of spherical intersection profiles: paths of inter-
section of the facial surface with spheres centred at the de-
tected feature (see Figure 2).

3.1 Spherical Intersection Profiles

The use of spherical intersection profiles for detection,
tracking and recognition provides a number of advantages
over alternative techniques. As each spherical intersection
is comprised of 3D data points which have preset distance
(radius) from the nose tip, they can be obtained with just
one iteration through the 3D point data. It is therefore
much faster than alternative rigid registration methods such
as Iterative Closest Point (ICP) [1] used in other systems
(e.g. [6]), and does not suffer from convergence problems.
It also retains spatial information unlike approaches which
utilise transformations such as Extended Gaussian Images
(e.g. [18]).
3.2 Preprocessing

The raw data from the SR3000 is preprocessed to reduce
noise as much as possible and to isolate the 3D points com-
prising the subject’s head. Noise reduction is performed
by median filtering. Erroneous data is also eliminated by
applying correlations between the depth image and the am-
plitude image. The frame is then reduced to the 3D region
of interest by first applying distance thresholds to eliminate
unwanted foreground and background data. The horizontal
and vertical limits are then determined by detecting the top
of the head, sampling its distance from the depth map and
applying anthropometric data to determine its maximum
possible dimensions at that distance.

3.3 Locating the nose tip

The nose tip is detected within the 3D data by search-
ing for specific illumination and geometric characteristics.
Given that the tip of the human nose is an approximately
spherical surface, and that the illumination angle is known
(i.e. direct infrared from the SR3000), likely nose tip fea-
tures can be found in the amplitude image data by testing
the data for spherical reflective features. Any false nose
tip features detected in the illumination data are eliminated
by using the depth image to analyse the differential land-
scape to determine if the candidate region has the appropri-
ate curvature. This technique has proven to be robust and
produce accurate results [14].



3.4 Performing Spherical Intersections

The spherical intersection profiles are obtained by
traversing the 3D point data to find the intersection paths of
spheres with the desired radii (see Figure 2). The traversal
of the 3D point data is performed by interpolating between
the points to obtain sub-pixel accuracy. Supersampling is
also applied to reduce the effects of noise on the intersec-
tion profiles.

Figure 2: Illustration of tracing a spherical intersection

profile starting from the nose tip

3.5 Orientation calculation

Once a set of spherical intersection profiles (faceprint)
has been found in the 3D data, it must be normalised by a
rotation transformation so that it is ‘facing’ a set direction
(i.e. down the z-axis in our system). Incidentally, this trans-
formation provides a measure of the head-pose or ‘gaze’
direction of the subject and can be used to implement a
head-pose tracking system. The following subsections de-
scribe this process.

3.5.1 Initial Alignment

The most obvious method of calculating the orientation is
to find the centroid of each spherical intersection profile,
and then project a line through the centroids from the cen-
tre of the spheres using a least-squares fit. This provides
a reasonable approximation in most cases but performs
poorly when the face orientation occludes considerable re-
gions of the spherical intersection profiles from the camera.
A spherical intersection profile which is 40% occluded will
produce a poor approximation of the true centroid and ori-
entation vector using this method.

Instead, we find the average of the latitudinal extrema of
each spherical intersection profile (i.e. the topmost and bot-
tommost points). This proved effective over varying face

orientations for two reasons. Firstly, these points are un-
likely to be occluded due to head rotation. Secondly, in
most applications the subject’s head is unlikely to ‘roll’
much (as opposed to ‘pan’ and ‘tilt’), so these points are
likely to be the true vertical extremities of the face. If the
head is rotated so far that these points are not visible on
the spherical intersection profile, the system detects that
the spherical intersection profile is still rising/falling at the
upper/lower terminal points and therefore dismisses it as
insufficient. A least-squares fit of a vector from the nose
tip passing through the latitudinal extrema midpoints pro-
vides a good initial estimate of the face orientation. Several
further optimisations are subsequently performed by util-
ising additional information, as discussed in the following
sections.

3.5.2 Symmetry Optimisation

Given that human faces tend to be highly symmetric, the
orientation of a faceprint can be optimised by detecting the
plane of bilateral symmetry. Note that this does not require
the subject’s face to be perfectly symmetric in order to be
recognised. This is performed by first transforming the
faceprint using the technique described above, to produce
good orientation estimation. Given the observation of lim-
ited roll discussed in Section 3.5.1, it is reasonable to as-
sume that the orientation plane will intersect the faceprint
approximately vertically. The symmetry of the faceprint is
then measured using Algorithm 1. This algorithm returns
a set of midpoints for each spherical intersection profile,
which can be used to measure the symmetry of the cur-
rent faceprint orientation. Algorithm 1 also provides an
appropriate transformation which can be used to optimise
the symmetry by performing a least-squares fit to align the
plane of symmetry approximated by the midpoints. Fig-
ure 3 illustrates an example faceprint with symmetry mid-
points visible.

3.6 Temporal Optimisation

Utilising data from more than one frame provides op-
portunities to increase the quality and accuracy of the
faceprint tracking and recognition. This is achieved by
maintaining a faceprint model over time, where each new
frame contributes to the model by an amount weighted by
the quality of the current frame compared to its predeces-
sors. The quality of a frame is assessed using two param-
eters. Firstly, the noise in the data is measured during the
median filtering process mentioned in Section 3.2. This is
an important parameter, as frames captured during fast mo-
tions will be of substantially lower quality due to the sen-
sor issues discussed in Section 2. In addition, the measure
of symmetry of the faceprint (see Section 3.5.2) provides
a good assessment of the quality of the frame. These pa-



Algorithm 1 Calculate the symmetry of a set of STPs

midpoints < new Vector[length(S1Ps)]
for s < 0to length(SIPs) — 1 do
for p < 0 to length(SIPs[s]) — 1 do
other < ()
Find other point on SIPs[s] at same ‘height’ as p:
for ¢ < 0 to length(SIPs[s]) — 1 do
nert <= q—+1
if next >= length(SIPs[s| then
next < 0 {Wrap}
end if
if g = p V next = p then
continue
end if
if (¢.y < p.y < next.y)V(q.y > p.y > next.y)
then
other < interpolate(q, next)
break
end if
end for
if other # () then
midpoints[s].append((p + other)/2)
end if
end for
end for
return midpoints

rameters are combined to create an estimate of the overall
quality of the frame using Equation 1.

quality = \/noiseFactor x symmetryFactor (1)

Thus for each new frame captured, the accuracy of the
stored faceprint model can be improved. Our system main-
tains a collection of the n highest quality faceprints cap-
tured up to the current frame, and calculates the optimal
average faceprint based on the quality-weighted average of
those n frames. This average faceprint quickly evolves as
the camera captures the subject in real-time, and forms a
robust and symmetric representation of the subject’s 3D
facial profile (see Figure 4).

Temporal information can also be gained by analysing
the motion of the subject’s head-pose over a sequence of
frames. The direction, speed and acceleration of the mo-
tion can be analysed, and used to predict the nose posi-
tion, head-pose and the resultant ‘gaze’ position for the
next frame. This is particularly useful when the system is
used as a ‘gaze’-tracker as the system can utilise this data
to smooth the ‘gaze’ path and further eliminate noise.

Figure 3: Example faceprint with symmetry midpoints (in
yellow), and per-sphere midpoint averages (cyan)

3.7 Comparing Faceprints

Using the averaging technique discussed in the previ-
ous section, a single faceprint can be maintained for each
subject. These are stored by the system and accessed
when identifying a subject, which requires efficient and
accurate comparison of faceprints. In order to standardise
the comparison of faceprints and increase the efficiency,
quantisation is performed prior to storage and compari-
son. Each spherical intersection profile is sampled at a
set number of angular divisions, and the resultant interpo-
lated points form the basis of the quantised faceprint. Thus
each faceprint point has a direct relationship to the corre-
sponding point in every other faceprint. Comparison of
faceprints can then be simplified to the average Euclidean
distance between corresponding point pairs.

4 Results

Figure 5 shows some actual 2D transforms of faceprints
taken from different subjects. Although our system is yet
to be tested with a large sample of subjects, our preliminary
results suggest that faceprints derived from spherical inter-
section profiles vary considerably between individuals.

The number of spherical intersection profiles compris-
ing faceprints, their respective radii and the number of
quantised points in each spherical intersection profile are
important parameters that define how a faceprint is stored
and compared. Our experiments have shown that increas-
ing the number of spherical intersection profiles beyond six
and the number of quantised points in each spherical inter-
section profile beyond twenty did not significantly improve
the system’s ability to differentiate between faceprints. We
believe this is due mainly to the continuous nature of



Figure 4: Faceprint from noisy sample frame (white) with
running-average faceprint (red) superimposed

Figure 5: Example faceprints

the facial landscape and residue noise in the processed
data. Consequently, our experiments were conducted with
faceprints comprised of six spherical intersection profiles.
Each spherical intersection profile was divided into twenty
points. All faceprints were taken from ten human subjects
positioned approximately one metre from the camera and
at various angles.

Our experiments showed that 120-point faceprints pro-
vided accurate recognition of the test subjects from most
view points. We found it takes an average of 6.7us to pro-
cess and compare two faceprints with an Intel dual-core
1.8GHz Centrino processor. This equates to faceprint com-
parison rate of almost 150,000 per second which clearly
demonstrates the potential search speed of the system. The
speed of the each procedure (running on the same pro-
cessor) involved in capturing faceprints from the SR3000
camera is outlined in Table 1.

Our experiments also showed that tracking the head-
pose (face orientation) of subjects was tracked relatively
accurately. Figure 6 shows the ‘gaze’ of a subject being
projected onto a ‘Virtual Screen’. The head-pose tracking
was found to be accurate to within approximately three to
five degrees, even when significant portions of the faceprint
were occluded by the camera angle.

Processing Stage | Execution Time

Distance Thresholding 210us

Brightness Thresholding 148us

Noise Filtering 6,506s

Region of Interest 122us

Locate Nose 17,385us

Trace Profiles 1,201 us

Quantise Faceprint 6,330us

Face Recognition 91us

Update Average Faceprint 69448
’ Total per frame ‘ 32,687 us ‘

Table 1: Average execution times for each processing stage

Figure 6: Example ‘gaze’ projected onto a “Virtual Screen’

Conclusion

This paper presents the details and preliminary experi-
mental results of a novel 3D method for detecting, track-
ing and recognising human faces by using a time-of-flight
camera. Our experimental results show that 3D faceprints
comprised of spherical intersection profiles are capable dif-
ferentiating human faces with minimal processing and stor-
age. Our results also show that faceprints can be captured
quickly (at frame rates) and compared with minimal pro-
cessing. Furthermore, the faceprint capturing procedure
enables head-pose tracking to be performed in real-time
with reasonable accuracy. Although our system is yet to
be tested with a large sample of subjects, our prelimi-
nary results indicate that fast searching of large faceprint
databases is achievable with reasonable accuracy using
currently available time-of-flight cameras. Improvements
to time-of-flight cameras, to reduce noise, would also re-
duce the processing required in our system and further im-
prove accuracy.
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