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Abstract—Techniques that can introduce low-dimensional
feature representation with enhanced discriminatory power is of
paramount importance in face recognition (FR) systems. It is well
known that the distribution of face images, under a perceivable
variation in viewpoint, illumination or facial expression, is highly
nonlinear and complex. It is, therefore, not surprising that linear
techniques, such as those based on principle component analysis
(PCA) or linear discriminant analysis (LDA), cannot provide
reliable and robust solutions to those FR problems with complex
face variations. In this paper, we propose a kernel machine-based
discriminant analysis method, which deals with the nonlinearity
of the face patterns’ distribution. The proposed method also
effectively solves the so-called “small sample size” (SSS) problem,
which exists in most FR tasks. The new algorithm has been
tested, in terms of classification error rate performance, on
the multiview UMIST face database. Results indicate that the
proposed methodology is able to achieve excellent performance
with only a very small set of features being used, and its error rate
is approximately 34% and 48% of those of two other commonly
used kernel FR approaches, the kernel-PCA (KPCA) and the
generalized discriminant analysis (GDA), respectively.

Index Terms—Face recognition (FR), kernel direct discriminant
analysis (KDDA), linear discriminant analysis (LDA), principle
component analysis (PCA), small sample size problem (SSS),
kernel methods.

I. INTRODUCTION

W ITHIN the last decade, face recognition (FR) has found
a wide range of applications, from identity authentica-

tion, access control, and face-based video indexing/browsing,
to human-computer interaction/communication. As a result, nu-
merous FR algorithms have been proposed, and surveys in this
area can be found in [1]–[5]. Two issues are central to all these
algorithms: 1) feature selection for face representation and 2)
classification of a new face image based on the chosen feature
representation [6]. This work focuses on the issue of feature se-
lection. The main objective is to find techniques that can in-
troduce low-dimensional feature representation of face objects
with enhanced discriminatory power. Among various solutions
to the problem, the most successful are those appearance-based
approaches, which generally operate directly on images or ap-
pearances of face objects and process the images as two-dimen-
sional (2-D) holistic patterns, to avoid difficulties associated
with three-dimensional (3-D) modeling, and shape or landmark
detection [5].
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Principle component analysis (PCA) and linear discrimi-
nant analysis (LDA) are two classic tools widely used in the
appearance-based approaches for data reduction and feature
extraction. Many state-of-the-art FR methods, such as Eigen-
faces [7] and Fisherfaces [8], are built on these two techniques
or their variants. It is generally believed that when it comes
to solving problems of pattern classification, LDA-based
algorithms outperform PCA-based ones, since the former
optimizes the low-dimensional representation of the objects
with focus on the most discriminant feature extraction while
the latter achieves simply object reconstruction. However,
many LDA-based algorithms suffer from the so-called “small
sample size problem” (SSS) which exists in high-dimensional
pattern recognition tasks, where the number of available
samples is smaller than the dimensionality of the samples.
The traditional solution to the SSS problem is to utilize PCA
concepts in conjunction with LDA (PCALDA), as it was
done for example in Fisherfaces [8]. Recently, more effective
solutions, called direct LDA (D-LDA) methods, have been
presented [9], [10]. Although successful in many cases, linear
methods fail to deliver good performance when face patterns
are subject to large variations in viewpoints, which results
in a highly nonconvex and complex distribution. The limited
success of these methods should be attributed to their linear
nature [11]. As a result, it is reasonable to assume that a better
solution to this inherent nonlinear problem could be achieved
using nonlinear methods, such as the so-called kernel machine
techniques [12]–[15].

In this paper, motivated by the success that support vector ma-
chines (SVMs) [16]–[18], kernel PCA (KPCA) [19] and gen-
eralized discriminant analysis (GDA) [20] have in pattern re-
gression and classification tasks, we propose a new kernel dis-
criminant analysis algorithm for face recognition. The algorithm
generalizes the strengths of the recently presented D-LDA and
the kernel techniques while at the same time overcomes many
of their shortcomings and limitations. Therefore, the proposed
algorithm can be seen as an enhanced kernel D-LDA method
(hereafter KDDA). Following the SVM paradigm, we first non-
linearly map the original input space to an implicit high-dimen-
sional feature space, where the distribution of face patterns is
hoped to be linearized and simplified. Then, a new variant of
the D-LDA method is introduced to effectively solve the SSS
problem and derive a set of optimal discriminant basis vectors
in the feature space.

The rest of this paper is organized as follows. Since KDDA
is built on D-LDA and GDA, in Section II, we start the anal-
ysis by briefly reviewing the two latter methods. Following that,
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KDDA is introduced and analyzed. The relationship of KDDA
to D-LDA and GDA is also discussed. In Section III, two sets
of experiments are presented to demonstrate the effectiveness of
the KDDA algorithm on highly nonlinear highly complex face
pattern distributions. KDDA is compared, in terms of the classi-
fication error rate performance, to KPCA and GDA on the mul-
tiview UMIST face database. Conclusions are summarized in
Section IV.

II. M ETHODS

The problem to be solved is formally stated as follows: A set
of training face images is available. Each image is
defined as a vector of length , i.e., , where

is the face image size and denotes a -dimensional
real space. It is further assumed that each image belongs to one
of classes . The objective is to find a transformation

, based on optimization of certain separability criteria, which
produces a mapping , with that leads to an
enhanced separability of different face objects.

A. GDA

For solving nonlinear problems, the classic LDA has been
generalized to its kernel version, namely GDA [20]. Let

be a nonlinear mapping from the input space
to a high-dimensional feature space, where different classes
of objects are supposed to be linearly separable. The idea behind
GDA is to perform a classic LDA in the feature spaceinstead
of the input space .

Let and be the between- and within-class
scatter matrices in the feature space, respectively, expressed
as follows:

(1)

(2)

where is the mean

of class is the average of the
ensemble, and is the element number in , which leads
to . LDA determines a set of optimal discrim-
inant basis vectors, denoted by , so that the ratio of
the between- and within-class scatters is maximized [21]. As-
suming , the maximization can be achieved
by solving the following eigenvalue problem:

(3)

The feature space could be considered as a “linearization
space” [22], however, its dimensionality could be arbitrarily
large, and possibly infinite. Fortunately, the exact is not
needed and the feature space can become implicit by using
kernel methods, where dot products inare replaced with a
kernel function in the input space so that the nonlinear
mapping is performed implicitly in [23], [24].

In FR tasks, the number of training samples,, is in most
cases much smaller than the dimensionality of(for LDA) or

(for GDA) leading to a degenerated scatter matrix . Tra-
ditional methods, for example GDA and Fisherfaces [8], attempt
to solve the so-called SSS problem by using techniques such as
pseudo inverse or PCA to remove the null space of . How-
ever, it has been recently shown that the null space may contain
the most significant discriminant information [9], [10].

B. Direct LDA (D-LDA)

Recently, Chenet al. [9] and Yanget al. [10] proposed the
so-called direct LDA (D-LDA) algorithm that attempts to avoid
the shortcomings existing in traditional solutions to the SSS
problem. The basic idea behind the algorithm is that the null
space of may contain significant discriminant informa-
tion if the projection of is not zero in that direction, and
that no significant information will be lost if the null space of

is discarded. Assuming, for example, thatand repre-
sent the null spaces of and , respectively, the com-
plement spaces of and can be written as
and . Therefore, the optimal discriminant sub-
space sought by the D-LDA algorithm is the intersection space

.
The difference between Chen’s method [9] and Yang’s

method [10] is that Yang’s method first diagonalizes
to find when seek solution of (3), while Chen’s method
first diagonalizes to find . Although there is no
significant difference between the two approaches, it may be
intractable to calculate when the size of is large,
which is the case in most FR applications. For example,
the size of and amounts to 10 304 10 304
for face images of size 11292 such as those used in our
experiments. Fortunately, the rank of is determined by

, with the number of image
classes, usually a small value in most of FR tasks, e.g.,
in our experiments, resulting in . can be
easily found by solving eigenvectors of a 1919 matrix rather
than the original 10 304 10 304 matrix through the algebraic
transformation proposed in [7]. The intersection space
can be obtained by solving the null space of projection of

into , with the projection being a small matrix of
size 19 19. For the reasons explained above, we proceed by
first diagonalizing the matrix instead of in the
derivation of the proposed here algorithm.

C. KDDA

1) Eigen-Analysis of in the Feature
Space: Following the general D-LDA framework, we start
by solving the eigenvalue problem of , which can be
rewritten here as follows:

(4)
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where , and . Since
the dimensionality of the feature space, denoted as , could
be arbitrarily large or possibly infinite, it is intractable to directly
compute the eigenvectors of the matrix . For-
tunately, the first most significant eigenvectors of

, which correspond to nonzero eigenvalues, can be indi-
rectly derived from the eigenvectors of the matrix (with
size ) [7].

Computing , requires dot product evaluation in.
This can be done in a manner similar to the one used in
SVM, KPCA, and GDA by utilizing kernel methods. For any

, we assume that there exists a kernel function
such that . The introduction of

the kernel function allows us to avoid the explicit evaluation of
the mapping. Any function satisfying Mercer’s condition can
be used as a kernel, and typical kernel functions include poly-
nomial function, radial basis function (RBF) and multilayer
perceptrons [17].

Using the kernel function, for two arbitrary classesand
, a dot product matrix can be defined as

where

(5)

For all of classes , we then define a kernel
matrix

(6)

which allows us to express as follows:

(7)

where , is a matrix with
terms all equal to: one, is a
block diagonal matrix, and is a vector with all terms
equal to: (see Appendix I for a detailed derivation of
(7).).

Let and , be the th eigenvalue and cor-
responding eigenvector of , sorted indecreasingorder of
eigenvalues. Since is
the eigenvector of . In order to remove the null space
of , we only use its first eigenvectors:

where , whose
corresponding eigenvalues are greater than 0. It is not difficult
to see that , with , a

diagonal matrix.
2) Eigen-Analysis of in the Feature Space:Let

. Projecting and into the subspace
spanned by , it can easily be seen that while

can be expanded as

(8)

Using the kernel matrix , a closed-form expression of
can be obtained as follows:

(9)

with and defined in Appendix II along with the detailed
derivation of the expression in (9).

We proceed by diagonalizing , a tractable
matrix with size . Let be the th eigenvector of

, where , sorted inincreasingorder
of the corresponding eigenvalue . In the set of ordered
eigenvectors, those that correspond to the smallest eigenvalues
maximize the ratio in (3), and should be considered the most
discriminative features. Discarding the eigenvectors with the
largest eigenvalues, the selected eigenvectors are
denoted as . Defining a matrix , we
can obtain , with , a

diagonal matrix.
Based on the calculations presented above, a set of op-

timal discriminant feature vectors can be derived through
. The features form a low-dimensional subspace

in , where the ratio in (3) is maximized. Similar to the D-LDA
framework, the subspace obtained contains the intersection
space shown in Section II-B. However, it is possible
that there exist eigenvalues with in . To alleviate
the problem, threshold values were introduced in [10], where
any value below the threshold is promoted to (a very
small value). Obviously, performance heavily depends on the
heuristic evaluation of the parameter.

To robustify the approach, we propose a modified Fisher’s
criterion to be used instead of the conventional definition in
(3) when is singular. The new criterion can be ex-
pressed as

(10)

The modified Fisher’s criterion of (10) has been proved to be
equivalent to the conventional one (3) in [25]. The expression

which is used in (10) instead of the
can be shown to be nonsingular by the following

lemma.
Lemma 1: Suppose is a real matrix of size , and

can be represented by where is a real matrix of
size . Then, is positive definite, i.e., ,
where is a identity matrix.

Proof: Since is a real symmetric matrix.
For any nonzero real vector:

. According to [26], the
matrix that satisfies the above conditions is positive
definite.

Following a procedure similar to can
be expressed as , with

. Since and
satisfies the conditions on discussed in Lemma 1,

is positive definite. As a result,
is nonsingular.
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3) Dimensionality Reduction and Feature Extraction:For
any input pattern , its projection into the set of feature vectors,

, derived in Section II-C2, can be calculated by

(11)

where . Since

(12)

we have

(13)
where is a
kernel vector.

Combining (11) and (13), we obtain

(14)

where
is a matrix which can be calculated of-

fline. Thus, through (14), a low-dimensional representation
on with enhanced discriminant power, suitable for classifica-
tion tasks, has been introduced.

4) Comments:The KDDA method implements an improved
D-LDA in a high-dimensional feature space using a kernel ap-
proach. Its main advantages can be summarized as follows.

1) KDDA introduces a nonlinear mapping from the input
space to an implicit high-dimensional feature space,
where the nonlinear and complex distribution of patterns
in the input space is “linearized” and “simplified” so that
conventional LDA can be applied. It is not difficult to
see that KDDA reduces to D-LDA for . Thus,
D-LDA can be viewed as a special case of the proposed
KDDA framework.

2) KDDA effectively solves the SSS problem in the high-di-
mensional feature space by employing an improved
D-LDA algorithm. Unlike the original D-LDA method of
[10], zero eigenvalues of the within-class scatter matrix
are never used as divisors in the improved one. In this
way, the optimal discriminant features can be exactly
extracted from both of inside and outside of ’s null
space.

3) In GDA, to remove the null space of , it is re-
quired to compute the pseudo inverse of the kernel ma-
trix , which could be extremely ill-conditioned when
certain kernels or kernel parameters are used. Pseudoin-
version is based on inversion of the nonzero eigenvalues.

Fig. 1. Some face samples of one subject from the UMIST face database.

Due to round-off errors, it is not easy to identify the true
null eigenvalues. As a result, numerical stability prob-
lems often occur [14]. However, it can been seen from
the derivation of KDDA that such problems are avoided
in KDDA. The improvement can be observed also in ex-
perimental results reported in Figs. 4(a) and 5(a).

The detailed steps for implementing the KDDA method are
summarized in Fig. 6.

III. EXPERIMENTAL RESULTS

Two sets of experiments are included in this paper to illus-
trate the effectiveness of the KDDA algorithm. In all experi-
ments reported here, we utilize the UMIST face database [27],
[28], a multiview database, consisting of 575 gray-scale images
of 20 subjects, each covering a wide range of poses from pro-
file to frontal views as well as race, gender and appearance. All
input images are resized into 11292, a standardized image
size commonly used in FR tasks. The resulting standardized
input vectors are of dimensionality . Fig. 1 depicts
some sample images of a typical subset in the UMIST database.

A. Distribution of Multiview Face Patterns

The distribution of face patterns is highly nonconvex and
complex, especially when the patterns are subject to large varia-
tions in viewpoints as is the case with the UMIST database. The
first experiment aims to provide insights on how the KDDA al-
gorithm linearizes and simplifies the face pattern distribution.

For the sake of simplicity in visualization, we only use a
subset of the database, which contains 170 images of five ran-
domly selected subjects (classes). Four types of feature bases
are generalized from the subset by utilizing the PCA, KPCA,
D-LDA, and KDDA algorithms, respectively. In the four sub-
spaces produced, two are linear, produced by PCA and D-LDA,
and two are nonlinear, produced by KPCA and KDDA. In the
sequence, all of images are projected onto the four subspaces.
For each image, its projections in the first two most significant
feature bases of each subspace are visualized in Figs. 2 and 3.

In Fig. 2, the visualized projections are the first two most
significant principal components extracted by PCA and
KPCA, and they provide a low-dimensional representation
for the samples, which can be used to capture the structure
of data. Thus, we can roughly learn the original distribution
of face samples from Fig. 2(a), which is nonconvex and
complex as we expected based on the analysis presented in
the previous sections. In Fig. 2(b), KPCA generalizes PCA
to its nonlinear counterpart using a RBF kernel function:
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Fig. 2. Distribution of 170 samples of five subjects in PCA- and KPCA-based
subspaces. (A) PCA-based subspace(� ). (B) KPCA-based subspace(�
).

Fig. 3. Distribution of 170 samples of five subjects in D-LDA- and
KDDA-based subspaces. (A) D-LDA-based subspace(� ). (B)
KDDA-based subspace(� ).

with . How-
ever, it is hard to find any useful improvement for the purpose
of pattern classification from Fig. 2(b). It can be concluded,
therefore, that the low-dimensional representation obtained by
PCA like techniques, achieve simply object reconstruction,
and they are not necessarily useful for discrimination and
classification tasks [8], [29].

Unlike PCA approaches, LDA optimizes the low-dimen-
sional representation of the objects based on separability
criteria. Fig. 3 depicts the first two most discriminant features
extracted by utilizing D-LDA and KDDA, respectively. Simple
inspection of Figs. 2 and 3 indicates that these features out-
perform, in terms of discriminant power, those obtained using
PCA like methods. However, subject to limitation of linearity,
some classes are still nonseparable in the D-LDA-based
subspace as shown in Fig. 3(a). In contrast to this, we can
see the linearization property of the KDDA-based subspace,
as depicted in Fig. 3(b), where all of classes are well linearly
separable when a RBF kernel with is used.

B. Comparison With KPCA and GDA

The second experiment compares the classification error rate
performance of the KDDA algorithm to two other commonly
used kernel FR algorithms, KPCA and GDA. The FR procedure
is completed in two stages:

1) Feature extraction. The overall database is randomly par-
titioned into two subsets: the training set and test set. The
training set is composed of 120 images: Six images per
person are randomly chosen. The remaining 455 images

are used to form the test set. There is no overlapping be-
tween the two. After training is over, both sets are pro-
jected into the feature spaces derived from the KPCA,
GDA and KDDA methods.

2) Classification. This is implemented by feeding feature
vectors obtained in Step 1) into a nearest neighbor clas-
sifier. It should be noted at this point that, since the focus
in this paper is on feature extraction, a simple classifier is
always prefered so that the FR performance is not mainly
contributed by the classifier but the feature selection al-
gorithms. We anticipate that the classification accuracy
of all the three methods compared here will improve if a
more sophisticated classifier such as SVM is used instead
of the nearest neighbor. However, such an experiment is
beyond the scope of this paper. To enhance the accuracy
of performance evaluation, the classification error rates
reported in this work are averaged over eight runs. Each
run is based on a random partition of the database into
the training and test sets. Following the framework intro-
duced in [30], [6], [31], the average error rate, denoted as

, is given as follows:

(15)

where is the number of runs, is the number of mis-
classifications for theth run, and is the number of total
test samples of each run.

To evaluate the overall performance of the three methods, two
typical kernel functions: namely the RBF and the polynomial
function, and a wide range of parameter values are tested. Sen-
sitivity analysis is performed with respect to the kernel param-
eters and the number of used feature vectors. Figs. 4 and 5
depict the average error rates of the three methods com-
pared when the RBF and polynomial kernels are used.

The only kernel parameter for RBF is the scale value.
Fig. 4(a) shows the error rates as functions ofwithin the range
from to , when the optimal number of feature vec-
tors, , is used. The optimal feature number is a result
of the existence of the peaking effect in the feature selection pro-
cedure. It is well known that the classification error initially de-
clines with the addition of new features, attains a minimum, and
then starts to increase [32]. The optimal number can be found by
searching the number of used feature vectors that results in the
minimal summation of the error rates over the variation range of

. In Fig. 4(a), is the value used for KPCA, while
is used for GDA and KDDA. Fig. 4(b) depicts the

error rates as functions of within the range from 5 to 19, when
optimal is used. Similar to is defined as
the scale parameter that results in the minimal summation of
the error rates over the variation range offor the experiment
discussed here. In Fig. 4(b), a value is found for
KPCA, for GDA and for
KDDA.

As such, the average error rates of the three methods with
polynomial kernel are shown
in Fig. 5. For the sake of simplicity, we only test the influence
of , while and are fixed. Fig. 5(a) depicts the
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(a) (b)

Fig. 4. Comparison of error rates based on RBF kernel function. (a) Error rates as functions of� . (b) Error rate as functions ofM .

(a) (b)

Fig. 5. Comparison of error rates based on Polynomial kernel function. (a) error rates as functions ofa. (b) Error rate as functions ofM .

TABLE I
AVERAGE PERCENTAGES OF THEERROR

RATE OF KDDA OVER THOSE OFOTHERS

error rates as functions of within the range from to
, where for KPCA, for GDA

and KDDA. Fig. 5(b) shows the error rates as functions of
within the range from 5 to 19 with for KPCA,

for GDA and for KDDA,
determined similarly to and .

Let and be the average error rates of KDDA and any
one of other two methods respectively, where .
From Figs. 4(b) and 5(b), we can obtain an interesting quan-
tity comparison: the average percentages of the error rate of
KDDA over those of other methods by . The
results are tabulated in Table I. The average error rate of KDDA
to KPCA and GDA are only about 34.375% and 47.765% re-
spectively. It should be also noted that Figs. 4(a) and 5(a) reveal
the numerical stability problems existing in practical implemen-
tations of GDA. Comparing the GDA performance to that of
KDDA we can easily see that the later is more stable and pre-

dictable, resulting in a cost effective determination of parameter
values during the training phase.

IV. CONCLUSION

A new FR method has been introduced in this paper. The pro-
posed method combines kernel-based methodologies with dis-
criminant analysis techniques. The kernel function is utilized
to map the original face patterns to a high-dimensional feature
space, where the highly nonconvex and complex distribution of
face patterns is linearized and simplified, so that linear discrim-
inant techniques can be used for feature extraction. The small
sample size problem caused by high dimensionality of mapped
patterns, is addressed by an improved D-LDA technique which
exactly finds the optimal discriminant subspace of the feature
space without any loss of significant discriminant information.
Experimental results indicate that the performance of the KDDA
algorithm is overall superior to those obtained by the KPCA
or GDA approaches. In conclusion, the KDDA algorithm is a
general pattern recognition method for nonlinearly feature ex-
traction from high-dimensional input patterns without suffering
from the SSS problem. We expect that in addition to face recog-
nition, KDDA will provide excellent performance in applica-
tions where classification tasks are routinely performed, such
as content-based image indexing and retrieval as well as video
and audio classification.
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Fig. 6. KDDA pseudocode implementation.

APPENDIX I
COMPUTATION OF

Expanding , we have

(16)
where

(17)

We develop each term of (17) according to the kernel matrix
as follows:

•

•

•

Applying the above derivations into (17), we obtain the (7).

APPENDIX II
COMPUTATION OF

Expanding , we have

(18)
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where

(19)

First, expand the term in (19), and
have

(20)

We develop each term of (20) according to the kernel matrix
as follows:

•

•

•

•

Defining , we con-

clude

(21)

Expanding the term in (19), we obtain

(22)

Using the kernel matrix , the terms in (22) can be developed
as follows:

•

•
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•

•

where is a block diagonal
matrix, and is a matrix with terms all equal to: .

Defining , and

using the above derivations, we conclude that

(23)

Thus

(24)
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