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ABSTRACT 

We propose an appearance based face recognition method called the Laplacianface approach. By using Locality Preserving 

Projections (LPP), the face images are mapped into a face subspace for analysis. Different from Principal Component 

Analysis (PCA) and Linear Discriminant Analysis (LDA) which effectively see only the Euclidean structure of face space, 

LPP finds an embedding that preserves local information, and obtains a face subspace that best detects the essential face 

manifold structure. The Laplacianfaces are the optimal linear approximations to the eigenfunctions of the Laplace Beltrami 

operator on the face manifold. In this way, the unwanted variations resulting from changes in lighting, facial expression, and 

pose may be eliminated or reduced. Theoretical analysis shows that PCA, LDA and LPP can be obtained from different 

graph models. We compare the proposed Laplacianface approach with Eigenface and Fisherface methods on three different 

face datasets. Experimental results suggest that the proposed Laplacianface approach provides a better representation and 

achieves lower error rates in face recognition.  
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1. INTRODUCTION 

Many face recognition techniques have been developed over the past few decades. One of the 

most successful and well-studied techniques to face recognition is the appearance-based method 

[28][16]. When using appearance-based methods, we usually represent an image of size n×m pixels by a 

vector in an n×m dimensional space. In practice, however, these n×m dimensional spaces are too large to 

allow robust and fast face recognition. A common way to attempt to resolve this problem is to use di-

mensionality reduction techniques [1][2][8][11][12][14][22][26][28][32][35]. Two of the most popular 

techniques for this purpose are Principal Component Analysis (PCA) [28] and Linear Discriminant 

Analysis (LDA) [2].  

PCA is an eigenvector method designed to model linear variation in high-dimensional data. PCA 

performs dimensionality reduction by projecting the original n-dimensional data onto the k (<<n)-

dimensional linear subspace spanned by the leading eigenvectors of the data’s covariance matrix. Its 

goal is to find a set of mutually orthogonal basis functions that capture the directions of maximum vari-

ance in the data and for which the coefficients are pairwise decorrelated. For linearly embedded mani-

folds, PCA is guaranteed to discover the dimensionality of the manifold and produces a compact 

representation. Turk and Pentland [28] use Principal Component Analysis to describe face images in 

terms of a set of basis functions, or “eigenfaces”.  

LDA is a supervised learning algorithm. LDA searches for the project axes on which the data 

points of different classes are far from each other while requiring data points of the same class to be 

close to each other. Unlike PCA which encodes information in an orthogonal linear space, LDA encodes 

discriminating information in a linear separable space using bases are not necessarily orthogonal. It is 

generally believed that algorithms based on LDA are superior to those based on PCA. However, some 

recent work [14] shows that, when the training dataset is small, PCA can outperform LDA, and also that 

PCA is less sensitive to different training datasets. 
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Recently, a number of research efforts have shown that the face images possibly reside on a 

nonlinear submanifold [7][10][18][19][21][23][27]. However, both PCA and LDA effectively see only 

the Euclidean structure. They fail to discover the underlying structure, if the face images lie on a 

nonlinear submanifold hidden in the image space. Some nonlinear techniques have been proposed to 

discover the nonlinear structure of the manifold, e.g. Isomap [27], LLE [18][20], and Laplacian 

Eigenmap [3]. These nonlinear methods do yield impressive results on some benchmark artificial data 

sets. However, they yield maps that are defined only on the training data points and how to evaluate the 

maps on novel test data points remains unclear. Therefore, these nonlinear manifold learning techniques 

[3][5][18][20] [27][33] might not be suitable for some computer vision tasks, such as face recognition. 

In the meantime, there has been some interest in the problem of developing low dimensional rep-

resentations through kernel based techniques for face recognition [13][19]. These methods can discover 

the nonlinear structure of the face images. However, they are computationally expensive. Moreover, 

none of them explicitly considers the structure of the manifold on which the face images possibly reside.  

In this paper, we propose a new approach to face analysis (representation and recognition), which 

explicitly considers the manifold structure. To be specific, the manifold structure is modeled by a near-

est-neighbor graph which preserves the local structure of the image space. A face subspace is obtained 

by Locality Preserving Projections (LPP) [9]. Each face image in the image space is mapped to a low-

dimensional face subspace, which is characterized by a set of feature images, called Laplacianfaces. The 

face subspace preserves local structure, seems to have more discriminating power than the PCA ap-

proach for classification purpose. We also provide theoretical analysis to show that PCA, LDA and LPP 

can be obtained from different graph models. Central to this is a graph structure that is induced from the 

data points. LPP finds a projection that respects this graph structure. In our theoretical analysis, we show 

how PCA, LDA, and LPP arise from the same principle applied to different choices of this graph struc-

ture. 
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It is worthwhile to highlight several aspects of the proposed approach here: 

1. While the Eigenfaces method aims to preserve the global structure of the image space, and the Fisher-

faces method aims to preserve the discriminating information; our Laplacianfaces method aims to 

preserve the local structure of the image space. In many real world classification problems, the local 

manifold structure is more important than the global Euclidean structure, especially when nearest-

neighbor like classifiers are used for classification. LPP seems to have discriminating power although 

it is unsupervised. 

2. An efficient subspace learning algorithm for face recognition should be able to discover the nonlinear 

manifold structure of the face space. Our proposed Laplacianfaces method explicitly considers the 

manifold structure which is modeled by an adjacency graph. Moreover, the Laplacianfaces are ob-

tained by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami op-

erator on the face manifold. They reflect the intrinsic face manifold structures. 

3. LPP shares some similar properties to LLE, such as a locality preserving character. However, their 

objective functions are totally different. LPP is obtained by finding the optimal linear approximations 

to the eigenfunctions of the Laplace Beltrami operator on the manifold. LPP is linear, while LLE is 

nonlinear. Moreover, LPP is defined everywhere, while LLE is defined only on the training data 

points and it is unclear how to evaluate the maps for new test points. In contrast, LPP may be simply 

applied to any new data point to locate it in the reduced representation space. 

The rest of this paper is organized as follows: Section 2 describes PCA and LDA. The Locality 

Preserving Projections (LPP) algorithm is described in Section 3. In Section 4, we provide a statistical 

view of LPP. We then give a theoretical analysis of LPP and its connections to PCA and LDA in Section 

5. Section 6 presents the manifold ways of face analysis using Laplacianfaces. A variety of experimental 

results are presented in Section 7. Finally, we provide some concluding remarks and suggestions for fu-

ture work in Section 8. 
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2. PCA and LDA 

One approach to coping with the problem of excessive dimensionality of the image space is to re-

duce the dimensionality by combining features. Linear combinations are particular attractive because 

they are simple to compute and analytically tractable. In effect, linear methods project the high-

dimensional data onto a lower dimensional subspace. 

Considering the problem of representing all of the vectors in a set of n d-dimensional samples x1, 

x2, …, xn, with zero mean, by a single vector y={y1, y2, …, yn} such that yi represent xi. Specifically, we 

find a linear mapping from the d-dimensional space to a line. Without loss of generality, we denote the 

transformation vector by w. That is, wTxi = yi. Actually, the magnitude of w is of no real significance, 

because it merely scales yi. In face recognition, each vector xi denotes a face image. 

Different objective functions will yield different algorithms with different properties. PCA aims to 

extract a subspace in which the variance is maximized. Its objective function is as follows, 
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genvectors of the sample covariance matrix associated with the k < d largest eigenvalues. 

While PCA seeks directions that are efficient for representation, Linear Discriminant Analysis 

seeks directions that are efficient for discrimination. Suppose we have a set of n d-dimensional samples 
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where m is the total sample mean vector, ni is the number of samples in the ith class, m(i) is the average 

vector of the ith class, and )(i
jx  is the jth sample in the ith class. We call SW the within-class scatter matrix 

and SB the between-class scatter matrix.  

3. LEARNING A LOCALITY PRESERVING SUBSPACE 

PCA and LDA aim to preserve the global structure. However, in many real world applications, the 

local structure is more important. In this section, we describe Locality Preserving Projection (LPP) [9], 

a new algorithm for learning a locality preserving subspace. The complete derivation and theoretical 

justifications of LPP can be traced back to [9]. LPP seeks to preserve the intrinsic geometry of the data 

and local structure. The objective function of LPP is as follows: 
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where ε is sufficiently small, and ε > 0. Here, ε defines the radius of the local neighborhood. In other 

words, ε defines the “locality”. The objective function with our choice of symmetric weights Sij (Sij = Sji) 

incurs a heavy penalty if neighboring points xi and xj are mapped far apart, i.e. if (yi − yj)2 is large. 

Therefore, minimizing it is an attempt to ensure that if xi and xj are “close” then yi and yj are close as 

well. Following some simple algebraic steps, we see that 
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where X = [x1, x2, …, xn], and D is a diagonal matrix; its entries are column (or row, since S is symmet-

ric) sums of S, Dii = ∑j Sji. L = D – S is the Laplacian matrix [6]. Matrix D provides a natural measure on 

the data points. The bigger the value Dii (corresponding to yi) is, the more “important” is yi. Therefore, 

we impose a constraint as follows: 
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Finally, the minimization problem reduces to finding: 
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The transformation vector w that minimizes the objective function is given by the minimum eigenvalue 

solution to the generalized eigenvalue problem: 

ww TT XDXXLX λ=  
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Note that the two matrices XLXT and XDXT are both symmetric and positive semi-definite, since the 

Laplacian matrix L and the diagonal matrix D are both symmetric and positive semi-definite. 

The Laplacian matrix for finite graph is analogous to the Laplace Beltrami operator on compact 

Riemannian manifolds. While the Laplace Beltrami operator for a manifold is generated by the Rieman-

nian metric, for a graph it comes from the adjacency relation. Belkin and Niyogi [3] showed that the op-

timal map preserving locality can be found by solving the following optimization problem on the mani-

fold: 
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where L is the Laplace Beltrami operator on the manifold, i.e. L(f) = − div∇(f). Thus, the optimal f has to 

be an eigenfunction of L. If we assume f to be linear, we have f(x) = wTx. By spectral graph theory, the 

integral can be discretely approximated by wTXLXTw and the L2 norm of f can be discretely approxi-

mated by wTXDXTw, which will ultimately lead to the following eigenvalue problem: 

ww TT XDXXLX λ=  

The derivation reflects the intrinsic geometric structure of the manifold. For details, see [3][6][9]. 

4. STATISTICAL VIEW OF LPP 

LPP can also be obtained from statistical viewpoint. Suppose the data points follow some underly-

ing distribution. Let x and y be two random variables. We define that a linear mapping x → wT x best 

preserves the local structure of the underlying distribution in the L2 sense if it minimizes the L2 distances 

between wT x and wT y provided that || x – y || < ε. Namely: 
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where ε is sufficiently small, and ε > 0. Here, ε defines the “locality”. Define z = x – y, then we have the 

following objective function: 
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Given a set of sample points x1, x2, …, xn, we first define an indicator function Sij as follows: 





 <−

=
otherwise.        0

||||      ,1 2 εji
ijS

xx
 

Let d be the number of non-zero Sij, and D be a diagonal matrix whose entries are column (or row, since 

S is symmetric) sums of S, Dii=∑j Sji. By the Strong Law of Large Numbers, E(zzT | ||z||<ε) can be esti-
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where L = D – S is the Laplacian matrix. The ith column of matrix X is xi. By imposing the same con-

straint, we finally get the same minimization problem described in Section 3. 
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5. THEORETICAL ANALYSIS OF LPP, PCA AND LDA 

In this section, we present a theoretical analysis of LPP and its connections to PCA and LDA.  

5.1 Connections to PCA 

We first discuss the connections between LPP and PCA. 

It is worthwhile to point out that XLXT is the data covariance matrix, if the Laplacian matrix L 

is T
nn I ee2
11 − , where n is the number of data points, I is the identity matrix and e is a column vector 

taking 1 at each entry. In fact, the Laplacian matrix here has the effect of removing the sample mean 

from the sample vectors. In this case, the weight matrix S takes 1/n2 at each entry, i.e. Sij = 1/n2, ∀i, j. Dii  
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nn ISDL ee2
11 −=−= . Let m denote the sample mean, 
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where E[(x - m)(x - m)T] is just the covariance matrix of the data set.  

The above analysis shows that the weight matrix S plays a key role in the LPP algorithm. When 

we aim at preserving the global structure, we take ε (or k) to be infinity and choose the eigenvectors (of 

the matrix XLXT) associated with the largest eigenvalues. Hence the data points are projected along the 

directions of maximal variance. When we aim at preserving the local structure, we take ε to be suffi-

ciently small and choose the eigenvectors (of the matrix XLXT) associated with the smallest eigenvalues. 

Hence the data points are projected along the directions preserving locality. It is important to note that, 



 11

when ε (or k) is sufficiently small, the Laplacian matrix is no longer the data covariance matrix, and 

hence the directions preserving locality are not the directions of minimal variance. In fact, the directions 

preserving locality are those minimizing local variance. 

5.2 Connections to LDA 

LDA seeks directions that are efficient for discrimination. The projection is found by solving the 

generalized eigenvalue problem 

ww WB SS λ=  

where SB and SW are defined in section 2. Suppose there are l classes. The ith class contains ni sample 

points. Let m(i) denote the average vector of the ith class. Let x(i) denote the random vector associated to 
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It is interesting to note that we could regard the matrix W as the weight matrix of a graph with data 

points as its nodes. Specifically, Wij is the weight of the edge (xi, xj). W reflects the class relationships of 

the data points. The matrix L is thus called graph Laplacian, which plays key role in LPP [9].  

Similarly, we can compute the matrix SB as follows: 
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where e = (1,1,…,1)T is a n dimensional vector and TT
n XIXC )( 1 ee−=  is the data covariance matrix. 

Thus, the generalized eigenvector problem of LDA can be written as follows: 
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Thus, the projections of LDA can be obtained by solving the following generalized eigenvalue problem, 

ww CXLX T λ=  

The optimal projections correspond to the eigenvectors associated with the smallest eigenvalues. If the 

sample mean of the data set is zero, the covariance matrix is simply XXT which is close to the matrix 

XDXT in the LPP algorithm. Our analysis shows that LDA actually aims to preserve discriminating in-

formation and global geometrical structure. Moreover, LDA has a similar form to LPP. However, LDA 

is supervised while LPP can be performed in either supervised or unsupervised manner. 

Proposition 1: The rank of L is n – c. 

Proof: Without loss of generality, we assume that the data points are ordered according to which class 

they are in, so that },,{
11 nxx L  are in the first class, },,{

211 1 nnn ++ xx L  are in the second class, etc. 

Thus, we can write L as follows: 
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where Li is a square matrix, 
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By adding all but the first column vectors to the first column vector and then subtracting the first row 

vector from any other row vectors, we get the following matrix 
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whose rank is ni -1. Therefore, the rank of Li is ni -1 and hence the rank of L is n – c.   

Proposition 1 tells us that the rank of XLXT is at most n – c. However, in many cases in appear-

ance-based face recognition, the number of pixels in an image (or, the dimensionality of the image space) 

is larger than n-c, i.e. d>n-c. Thus, XLXT is singular. In order to overcome the complication of a singular 

XLXT, Belhumeur et. al. [1] proposed the Fisherface approach that the face images are projected from 

the original image space to a subspace with dimensionality n-c and then LDA is performed in this sub-

space. 

6. MANIFOLD WAYS OF VISUAL ANALYSIS 

In the above sections, we have described three different linear subspace learning algorithms. The 

key difference between PCA, LDA and LPP is that, PCA and LDA aim to discover the global structure 

of the Euclidean space, while LPP aims to discover local structure of the manifold. In this Section, we 

discuss the manifold ways of visual analysis. 

6.1 Manifold Learning via Dimensionality Reduction 
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In many cases, face images may be visualized as points drawn on a low-dimensional manifold 

hidden in a high-dimensional ambient space. Specially, we can consider that a sheet of rubber is crum-

pled into a (high-dimensional) ball. The objective of a dimensionality-reducing mapping is to unfold the 

sheet and to make its low-dimensional structure explicit. If the sheet is not torn in the process, the map-

ping is topology-preserving. Moreover, if the rubber is not stretched or compressed, the mapping pre-

serves the metric structure of the original space. In this paper, our objective is to discover the face mani-

fold by a locally topology-preserving mapping for face analysis (representation and recognition). 

6.2 Learning Laplacianfaces for Representation 

LPP is a general method for manifold learning. It is obtained by finding the optimal linear ap-

proximations to the eigenfunctions of the Laplace Betrami operator on the manifold [9]. Therefore, 

though it is still a linear technique, it seems to recover important aspects of the intrinsic nonlinear mani-

fold structure by preserving local structure. Based on LPP, we describe our Laplacianfaces method for 

face representation in a locality preserving subspace. 

In the face analysis and recognition problem one is confronted with the difficulty that the matrix 

XDXT is sometimes singular. This stems from the fact that sometimes the number of images in the train-

ing set (n) is much smaller than the number of pixels in each image (m). In such a case, the rank of 

XDXT is at most n, while XDXT is an m×m matrix, which implies that XDXT is singular. To overcome the 

complication of a singular XDXT, we first project the image set to a PCA subspace so that the resulting 

matrix XDXT is nonsingular. Another consideration of using PCA as preprocessing is for noise reduction. 

This method, we call Laplacianfaces, can learn an optimal subspace for face representation and recogni-

tion.  

The algorithmic procedure of Laplacianfaces is formally stated below: 

1. PCA projection: We project the image set {xi} into the PCA subspace by throwing away the small-

est principal components. In our experiments, we kept 98% information in the sense of reconstruction 



 16

error. For the sake of simplicity, we still use x to denote the images in the PCA subspace in the fol-

lowing steps. We denote by WPCA the transformation matrix of PCA.  

2. Constructing the nearest-neighbor graph: Let G denote a graph with n nodes. The ith node corre-

sponds to the face image xi. We put an edge between nodes i and j if xi and xj are “close”, i.e. xi is 

among k nearest neighbors of xi or xi is among k nearest neighbors of xj. The constructed nearest-

neighbor graph is an approximation of the local manifold structure. Note that, here we do not use the 

ε - neighborhood to construct the graph. This is simply because it is often difficult to choose the op-

timal ε in the real world applications, while k nearest neighbor graph can be constructed more stably. 

The disadvantage is that the k nearest neighbor search will increase the computational complexity of 

our algorithm. When the computational complexity is a major concern, one can switch to the ε - 

neighborhood.   

3. Choosing the weights: If node i and j are connected, put 

tij

ji

eS

2
xx −

−
=  

where t is a suitable constant. Otherwise, put Sij = 0. The weight matrix S of graph G models the face 

manifold structure by preserving local structure. The justification for this choice of weights can be 

traced back to [3]. 

4. Eigenmap: Compute the eigenvectors and eigenvalues for the generalized eigenvector problem: 

                              ww TT XDXXLX λ=                         (1) 

where D is a diagonal matrix whose entries are column (or row, since S is symmetric) sums of S, 

∑= j jiii SD . L = D −  S is the Laplacian matrix. The ith row of matrix X is xi. 
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Let w0, w1, …, wk-1 be the solutions of equation (1), ordered according to their eigenvalues, 

0≤λ0≤λ1≤L≤λk-1. These eigenvalues are equal to or greater than zero, because the matrices XLXT and 

XDXT are both symmetric and positive semi-definite. Thus, the embedding is as follows: 

xyx TW=→  

LPPPCAWWW =  

],,,[ 110 −= kLPPW www L  

where y is a k-dimensional vector. W is the transformation matrix. This linear mapping best preserves 

the manifold’s estimated intrinsic geometry in a linear sense. The column vectors of W are the so called 

Laplacianfaces. 

6.3 Face Manifold Analysis 

Now consider a simple example of image variability. Imagine that a set of face images are gener-

ated while the human face rotates slowly. Intuitively, the set of face images correspond to a continuous 

curve in image space, since there is only one degree of freedom, viz. the angel of rotation. Thus, we can 

say that the set of face images are intrinsically one-dimensional. Many recent works [18][19][21][27] 

have shown that the face images do reside on a low-dimensional submanifold embedded in a high-

dimensional ambient space (image space). Therefore, an effective subspace learning algorithm should be 

able to detect the nonlinear manifold structure. The conventional algorithms, such as PCA and LDA, 

model the face images in Euclidean space. They effectively see only the Euclidean structure; thus, they 

fail to detect the intrinsic low-dimensionality. 

With its neighborhood preserving character, the Laplacianfaces seem to be able to capture the in-

trinsic face manifold structure to a larger extent. Figure 1 shows an example that the face images with 

various pose and expression of a person are mapped into two-dimensional subspace. The face image 

dataset used here is the same as that used in [18]. This dataset contains 1965 face images taken from se-



 18

quential frames of a small video. The size of each image is 20×28 pixels, with 256 gray levels per pixel. 

Thus, each face image is represented by a point in the 560-dimensional ambient space. However, these 

images are believed to come from a submanifold with few degrees of freedom. We leave out 10 samples 

for testing, and the remaining 1955 samples are used to learn the Laplacianfaces. As can be seen, the 

face images are mapped into a two-dimensional space with continuous change in pose and expression. 

Figure 1. Two-dimensional linear embedding of face images by Laplacianfaces. 

As can be seen, the face images are divided into two parts, the faces with open 

mouth and the faces with closed mouth. Moreover, it can be clearly seen that 

the pose and expression of human faces change continuously and smoothly, 

from top to bottom, from left to right. The bottom images correspond to points 

along the right path (linked by solid line), illustrating one particular mode of 

variability in pose. 
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The representative face images are shown in the different parts of the space. The face images are divided 

into two parts. The left part includes the face images with open mouth, and the right part includes the 

face images with closed mouth. This is because in trying to preserve local structure in the embedding, 

the Laplacianfaces implicitly emphasizes the natural clusters in the data. Specifically, it makes the 

neighboring points in the image face nearer in the face space, and faraway points in the image face far-

ther in the face space. The bottom images correspond to points along the right path (linked by solid line), 

illustrating one particular mode of variability in pose.  

The ten testing samples can be simply located in the reduced representation space by the Lapla-

cianfaces (column vectors of the matrix W). Figure 2 shows the result. As can be seen, these testing 

Figure 2. Distribution of the 10 testing samples in the reduced representation 

subspace. As can be seen, these testing samples optimally find their coordi-

nates which reflect their intrinsic properties, i.e. pose and expression. 
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samples optimally find their coordinates which reflect their intrinsic properties, i.e. pose and expression. 

This observation tells us that the Laplacianfaces are capable of capturing the intrinsic face manifold 

structure to some extent.  

 Recall that both Laplacian Eigenmap and LPP aim to find a map which preserves the local struc-

ture. Their objective function is as follows: 

( )∑ −
ij

ijji
f

Sff 2)()(min xx  

The only difference between them is that, LPP is linear while Laplacian Eigenmap is non-linear. Since 

they have the same objective function, it would be important to see to what extent LPP can approximate 

Laplacian Eigenmap. This can be evaluated by comparing their eigenvalues. Figure 3 shows the eigen-

values computed by the two methods. As can be seen, the eigenvalues of LPP is consistently greater 

than those of Laplacian Eigenmaps, but the difference between them is small. The difference gives a 

measure of the degree of the approximation. 

Figure 3. The eigenvalues of LPP and Laplacian Eigenmap. 
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7. EXPERIMENTAL RESULTS 

Some simple synthetic examples given in [9] show that LPP can have more discriminating power 

than PCA and be less sensitive to outliers. In this section, several experiments are carried out to show 

the effectiveness of our proposed Laplacianfaces method for face representation and recognition. 

7.1 Face Representation Using Laplacianfaces 

As we described previously, a face image can be represented as a point in image space. A typical 

image of size m×n describes a point in m×n-dimensional image space. However, due to the unwanted 

variations resulting from changes in lighting, facial expression, and pose, the image space might not be 

an optimal space for visual representation. 

In Section 3, we have discussed how to learn a locality preserving face subspace which is insensi-

tive to outlier and noise. The images of faces in the training set are used to learn such a locality preserv-

ing subspace. The subspace is spanned by a set of eigenvectors of equation (1), i.e. w0, w1, …, wk-1. We 

can display the eigenvectors as images. These images may be called Laplacianfaces. Using the Yale 

face database as the training set, we present the first 10 Laplacianfaces in Figure 4, together with Eigen-

faces and Fisherfaces.  A face image can be mapped into the locality preserving subspace by using the 

Laplacianfaces. It is interesting to note that the Laplacianfaces are somehow similar to Fisherfaces. 

Figure 4. The first 10 Eigenfaces (first row), Fisherfaces (second row) and 

Laplacianfaces (third row) calculated from the face images in the YALE da-

tabase. 
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7.2 Face Recognition Using Laplacianfaces 

Once the Laplacianfaces are created, face recognition [2][14][28][29] becomes a pattern classifica-

tion task. In this section, we investigate the performance of our proposed Laplacianfaces method for face 

recognition. The system performance is compared with the Eigenfaces method [28] and the Fisherfaces 

method [2], two of the most popular linear methods in face recognition.  

In this study, three face databases were tested. The first one is the PIE (pose, illumination, and ex-

pression) database from CMU [25], the second one is the Yale database [30], and the third one is the 

MSRA database collected at the Microsoft Research Asia. In all the experiments, preprocessing to locate 

the faces was applied. Original images were normalized (in scale and orientation) such that the two eyes 

were aligned at the same position. Then, the facial areas were cropped into the final images for matching. 

The size of each cropped image in all the experiments is 32×32 pixels, with 256 grey levels per pixel. 

Thus, each image is represented by a 1024-dimensional vector in image space. No further preprocessing 

is done. Figure 5 shows an example of the original face image and the cropped image. Different pattern 

classifiers have been applied for face recognition, including nearest-neighbor [2], Bayesian [15], Sup-

port Vector Machine [17], etc. In this paper, we apply the nearest-neighbor classifier for its simplicity. 

In short, the recognition process has three steps. First, we calculate the Laplacianfaces from the 

training set of face images; then the new face image to be identified is projected into the face subspace 

spanned by the Laplacianfaces; finally, the new face image is identified by a nearest-neighbor classifier. 

Figure 5. The original face image and the cropped image.  
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7.2.1 YALE DATABASE 

The Yale face database [30] was constructed at the Yale Center for Computational Vision and 

Control. It contains 165 grayscale images of 15 individuals. The images demonstrate variations in light-

ing condition (left-light, center-light, right-light), facial expression (normal, happy, sad, sleepy, sur-

prised, and wink), and with/without glasses.  

A random subset with six images per individual (hence 90 images in total) was taken with labels 

to form the training set. The rest of the database was considered to be the testing set. The training sam-

ples were used to learn the Laplacianfaces. The testing samples were then projected into the low-

dimensional representation subspace. Recognition was performed using a nearest neighbor classifier. 

We averaged the results over 20 random splits.  

Figure 6. Recognition accuracy vs. dimensionality reduction on Yale database.

Table 1.  Performance comparison on the Yale database  

Approach Dims Error Rate 

Eigenfaces 33 25.3% 

Fisherfaces 14 20.0% 

Laplacianfaces 28 11.3% 
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Note that, for LDA, there are at most c-1 nonzero generalized eigenvalues, and so an upper bound 

on the dimension of the reduced space is c-1, where c is the number of individuals [2]. In general, the 

performance of the Eigenfaces method and the Laplacianfaces method varies with the number of dimen-

sions. We show the best results obtained by Fisherfaces, Eigenfaces, and Laplacianfaces.  

The recognition results are shown in Table 1. It is found that the Laplacianfaces method signifi-

cantly outperforms both Eigenfaces and Fisherfaces methods. The recognition approaches the best re-

sults with 14, 28, 33 dimensions for Fisherfaces, Laplacianfaces, and Eigenfaces respectively. The error 

rates of Fisherfaces, Laplacianfaces, and eigenfaces are 20%, 11.3%, and 25.3% respectively. The corre-

sponding face subspaces are called optimal face subspace for each method. There is no significant im-

provement if more dimensions are used. Figure 6 shows the plots of error rate vs. dimensionality reduc-

tion.  

7.2.2 PIE DATABASE 

Figure 7. The sample cropped face images of one individual from PIE database. The 

original face images are taken under varying pose, illumination, and expression. 

Table 2.  Performance comparison on the PIE database 

Approach Dims Error Rate 

Eigenfaces 150 20.6% 

Fisherfaces 67 5.7% 

Laplacianfaces 110 4.6% 
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The CMU PIE face database contains 68 subjects with 41,368 face images as a whole. The 

face images were captured by 13 synchronized cameras and 21 flashes, under varying pose, 

illumination and expression. We used 170 face images for each individual in our experiment, 85 

for training and the other 85 for testing. We averaged the results over 20 random splits. Figure 

7 shows some of the faces with pose, illumination and expression variations in the PIE database.  

Table 2 shows the recognition results. As can be seen, Fisherfaces performs comparably to our al-

gorithm on this database, while Eigenfaces performs poorly. The error rate for Laplacianfaces, Fisher-

Figure 8. Recognition accuracy vs. dimensionality reduction on PIE database

Figure 9. The sample cropped face images of 8 individuals from MSRA data-

base. The face images in the first row are taken in the first session, which are 

used for training. The face images in the second row are taken in the second 

session, which are used for testing. The two images in the same column are 

corresponding to the same individual. 
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faces, and Eigenfaces are 4.6%, 5.7%, and 20.6%, respectively. Figure 8 shows a plot of error rate vs. 

dimensionality reduction. As can be seen, the error rate of our Laplacianfaces method decreases fast as 

the dimensionality of the face subspace increases, and achieves the best result with 110 dimensions. 

There is no significant improvement if more dimensions are used. Eigenfaces achieves the best result 

with 150 dimensions. For Fisherfaces, the dimension of the face subspace is bounded by c-1, and it 

achieves the best result with c-1 dimensions. The dashed horizontal line in the figure shows the best re-

sult obtained by Fisherfaces. 

7.2.3  MSRA DATABASE 

This database was collected at Microsoft Research Asia. It contains 12 individuals, captured in 

two different sessions with different backgrounds and illuminations. 64 to 80 face images were collected 

Figure 10. Recognition accuracy vs. dimensionality reduction on MSRA database

Table 3.  Performance comparison on the MSRA database 

Approach Dims Error Rate 

Eigenfaces 142 35.4% 

Fisherfaces 11 26.5% 

Laplacianfaces 66 8.2% 
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for each individual in each session. All the faces are frontal. Figure 9 shows the sample cropped face 

images from this database. In this test, one session was used for training and the other was used for test-

ing. Table 3 shows the recognition results. Laplacianfaces method has lower error rate (8.2%) than those 

of eigenfaces (35.4%) and fisherfaces (26.5%). Figure 10 shows a plot of error rate vs. dimensionality 

reduction. 

7.2.4 IMPROVEMENT WITH THE NUMBER OF TRAINING SAMPLES 

In the above subsections, we have shown that our Laplacianfaces approach outperforms the Eigen-

faces and Fisherfaces approaches on three different face databases. In this section, we evaluate the per-

Figure 11. Performance comparison on the MSRA database with different 

number of traning samples. The training samples are from the set MSRA-

S1. The images in MSRA-S2 are used for testing exclusively. As can be 

seen, our Laplacianfaces method takes advantage of more training sam-

ples. The error rate reduces from 26.04% with 10% training samples to 

8.17% with 100% training samples. There is no evidence for fisherfaces 

that it can take advantage of more training samples.  
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formances of these three approaches with different number of training samples. We expect that a good 

algorithm should be able to take advantage of more training samples. 

We used the MSRA database for this experiment. Let MSRA-S1 denote the image set taken in the 

first session, and MSRA-S2 denote the image set taken in the second session. MSRA-S2 was exclusively 

used for testing. 10%, 40%, 70%, and 100% face images were randomly selected from MSRA-S1 for 

training. For each of the first three cases, we repeated 20 times and computed the error rate on average. 

In Figure 11 and Table 4 we show the experimental results of the improvement of the performance of 

our algorithm with the number of training samples. As can be seen, our algorithm takes advantage of 

more training samples. The performance improves significantly as the number of training sample in-

creases. The error rate of recognition reduces from 26.04% with 10% training samples to 8.17% with 

100% training samples. This is due to the fact that, our algorithm aims at discovering the underlying 

face manifold embedded in the ambient space and more training samples help to recover the manifold 

structure.  Eigenfaces also takes advantage of more training samples to some extent. The error rate of 

Eigenfaces reduces from 46.48% with 10% training samples to 35.42% with 100% training samples. But 

its performance starts to converge at 40% (training samples) and little improvement is obtained if more 

training samples are used. For Fisherfaces, there is no convincing evidence that it can take advantage of 

more training samples.  

Table 4.  Recognition error rate with different number of training samples 

Percentage of training samples in MSRA-S1  

10% 40% 70% 100% 

Laplacianfaces 26.04% 14.71% 13.15% 8.17% 

Fisherfaces 26.96% 20.05% 29.43% 26.43% 

Eigenfaces 46.48% 37.76% 38.54% 35.42% 
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7.3  Discussions 

Three experiments on three databases have been systematically performed. These experiments re-

veal a number of interesting points: 

1. All these three approaches performed better in the optimal face subspace than in the original im-

age space. 

2. In all the three experiments, Laplacianfaces consistently performs better than Eigenfaces and Fish-

erfaces. Especially, it significantly outperforms Fisherfaces and Eigenfaces on Yale database and 

MSRA database.  These experiments also show that our algorithm is especially suitable for frontal 

face images. Moreover, our algorithm takes advantage of more training samples, which is impor-

tant to the real world face recognition systems.  

3. Comparing to the Eigenfaces method, the Laplacianfaces method encodes more discriminating in-

formation in the low-dimensional face subspace by preserving local structure which is more im-

portant than the global structure for classification, especially when nearest neighbor like classifiers 

are used. In fact, if there is a reason to believe that Euclidean distances (||xi – xj||) are meaningful 

only if they are small (local), then our algorithm finds a projection that respects such a belief. An-

other reason is that, as we show in Figure 1, the face images probably reside on a nonlinear mani-

fold. Therefore, an efficient and effective subspace representation of face images should be capa-

ble of charactering the nonlinear manifold structure, while the Laplacianfaces are exactly derived 

by finding the optimal linear approximations to the eigenfunctions of the Laplace Betrami operator 

on the face manifold. By discovering the face manifold structure, Laplacianfaces can identify the 

person with different expressions, poses, and lighting conditions. 

8. CONCLUSION AND FUTURE WORK 

The manifold ways of face analysis (representation and recognition) is introduced in this paper in 

order to detect the underlying nonlinear manifold structure in the manner of linear subspace learning. To 
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the best of our knowledge, this is the first devoted work on face representation and recognition which 

explicitly considers the manifold structure. The manifold structure is approximated by the adjacency 

graph computed from the data points. Using the notion of the Laplacian of the graph, we then compute a 

transformation matrix which maps the face images into a face subspace. We call this the Laplacianfaces 

approach. The Laplacianfaces are obtained by finding the optimal linear approximations to the eigen-

functions of the Laplace Beltrami operator on the face manifold. This linear transformation optimally 

preserves local manifold structure. Theoretical analysis of the LPP algorithm and its connections to PCA 

and LDA are provided. Experimental results on PIE, Yale and MSRA databases show the effectiveness 

of our method.  

One of the central problems in face manifold learning is to estimate the intrinsic dimensionality of 

the nonlinear face manifold, or, degrees of freedom. We know that the dimensionality of the manifold is 

equal to the dimensionality of the local tangent space. Some previous works [33][34] show that the local 

tangent space can be approximated using points in a neighbor set. Therefore, one possibility is to esti-

mate the dimensionality of the tangent space.  

Another possible extension of our work is to consider the use of the unlabeled samples. It is im-

portant to note that the work presented here is a general method for face analysis (face representation 

and recognition) by discovering the underlying face manifold structure. Learning the face manifold (or, 

learning Laplacianfaces) is essentially an unsupervised learning process. And in many practical cases, 

one finds a wealth of easily available unlabeled samples. These samples might help to discover the face 

manifold. For example, in [4], it is shown how unlabeled samples are used for discovering the manifold 

structure and hence improving the classification accuracy. Since the face images are believed to reside 

on a sub-manifold embedded in a high-dimensional ambient space, we believe that the unlabeled sam-

ples are of great value. We are currently exploring these problems in theory and practice. 
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