Face Recognition Using a Line Edge Map

Yongsheng Gao and Maylor K.H. Leung at Nanyang Tech. University

IEEE Pattern Analysis and Machine Intelligence 2002

Slides by David Anthony Torres Computer Science and Engineering — University of California at San Diego

Interest Points Vs. Edge Maps

- Interest point detectors are popular
 > SIFT, Harris/Forstner
- What about edge information?
 Can carry distinguishing info too.
 Interest points don't capture this info

Line Edge Map

- Humans recognize line drawings well.
 Maybe computer algorithms can too.
- Benefits of using edge information:
 - Advantages of template matching and geometrical feature matching:
 - Partially illumination-invariant
 - Low memory requirement
 - Recognition performance of template matching

Line Edge Map

- Takács (1998) used edge maps for face recognition.
 Apply edge-detector to get a binary input image *I I* is a set of edge points.
 - ➤ Use Hausdorff distance to measure the similarity between two sets of points *I*₁ and *I*₂.

Hausdorff Distance

$$h(I_1, I_2) = \frac{1}{|I_1|} \sum_{i \in I_1} \min_{j \in I_2} ||i - j||$$

- *i* and *j* are edge pixel positions (x,y).
- For each pixel *i* in *I*₁
 Find the closest corresponding pixel *j* in *I*₂
 Take the average of all these distances ||*i*-*j*||.
- Calculated without explicitly pairing the sets of points.
- Achieved a 92% accuracy in their experiments.

Line Edge Map

- Takács Edge Map doesn't consider local structure.
- Authors introduce the Line Edge Map (LEM)
- Groups edge pixels into line segments.
 - Apply polygonal line fitting to a thinned edge map

Line Edge Map

- LEM is a series of line segments.
 > LEM records only the endpoints of lines.
 - Further reduces storage requirements.

Line-Segment Hausdorff Distance (LHD)

- Need a new distance measure between sets of line segments.
- Expect it to be better because it uses lineorientation.
- First we'll see an initial model...
- Add to the model to make it more robust
 ≻Encourage one-one mapping of lines
 ≻Encourage mapping of "similar" lines.

Line-Segment Hausdorff Distance

- Given two LEMs $S = (s_1, s_2, ..., s_p)$ and $T = (t_1, t_2, ..., s_q)$
- The LHD is built on the vector *d*(*s_i*, *t_j*)
 b d() represents the distance between two lines segments

$$ec{d}(m_i^l, t_j^l) = egin{bmatrix} d_{ heta} \left(m_i^l, t_j^l
ight) \ d_{//} \left(m_i^l, t_j^l
ight) \ d_{\perp} \left(m_i^l, t_j^l
ight) \end{bmatrix}$$

Line-Segment Hausdorff Distance

Line-Segment Hausdorff Distance

$$d_{\theta}\left(m_{i}^{l}, t_{j}^{l}\right) = f\left(\theta\left(m_{i}^{l}, t_{j}^{l}\right)\right)$$

- f() is a penalty function: f(θ) = θ²/W
 ≻Higher penalty on large deviation
- W is determined in training.

Line-Segment Hausdorff Distance

$$d_{/\!/} \Big(m_i^l, t_j^l \Big) = \min ig(l_{/\!/1}, l_{/\!/2} ig)$$

Line-Segment Hausdorff Distance

In general lines will not be parallel
So rotate the shortest line

Line-Segment Hausdorff Distance

• Finally,

$$d\left(m_{i}^{l},t_{j}^{l}\right) = \sqrt{d_{\theta}^{2}\left(m_{i}^{l},t_{j}^{l}\right) + d_{//}^{2}\left(m_{i}^{l},t_{j}^{l}\right) + d_{\perp}^{2}\left(m_{i}^{l},t_{j}^{l}\right)}$$

• Primary line-segment Hausdorff Distance (LHD)

$$H(I,J) = \max(h(I,J),h(J,I))$$

where

$$h(I,J) = \frac{1}{\sum_{i \in I} ||i||} \sum_{i \in I} ||i|| \cdot \min_{j \in J} d(i,j)$$

Some Problems...

- Say *T* is an input LEM, *M* is its matching model LEM, and *N* is some other non-matching model.
- Due to segmentation problems it could be the case that

H(T,M) >> H(T,N)

• Keeping track of matched line-pairs could help.

Neighborhoods

- Positional neighborhood N_p
- Angular neighborhood N_a
- Heuristic: lines that fall within the neighborhood are probably matches.

Neighborhoods

 If ≥1 line falls into the neighborhoods we call the original line segment *I*, a *high confidence line*.

High Confidence Ratio

- N_{hc} is the num. of high confidence lines in a LEM.
- N_{total} is the total num. of lines in a LEM.

New Hausdorff Distance

$$H'(T,M) = \sqrt{H^2(T,M) + (W_n D_n)^2}$$

- W_n is a weight.
- D_n is the average number of lines (across input and model) that are not confidently-matched, i.e.

$$D_n = 1 - \frac{R_M + R_T}{2} = \frac{(1 - R_M) + (1 - R_T)}{2}$$

 R_T and R_M are the high confidence ratios for input and model respectively

Summary

• Start with to LEM's

• Calculate Hausdorff Distance

$$H(I,J) = \max(h(I,J), h(J,I))$$

$$h(I,J) = \frac{1}{\sum_{i \in I} ||i||} \sum_{i \in I} ||i|| \cdot \min_{j \in J} d(i,j)$$

Summary

•
$$d\left(m_i^l, t_j^l\right) = \sqrt{d_\theta^2\left(m_i^l, t_j^l\right) + d_{//}^2\left(m_i^l, t_j^l\right) + d_\perp^2\left(m_i^l, t_j^l\right)}$$

$$egin{aligned} &ec{d}\left(m_{i}^{l},t_{j}^{l}
ight) = egin{bmatrix} d_{ heta}\left(m_{i}^{l},t_{j}^{l}
ight) \ d_{//}\left(m_{i}^{l},t_{j}^{l}
ight) \ d_{\perp}\left(m_{i}^{l},t_{j}^{l}
ight) \end{bmatrix} \end{aligned}$$

Summary

• Finally we take into account the effect of neighborhoods

$$H'(T,M) = \sqrt{H^2(T,M) + (W_n D_n)^2}$$

•
$$D_n = 1 - \frac{R_M + R_T}{2} = \frac{(1 - R_M) + (1 - R_T)}{2}$$

Free Parameters

- We have four free parameters to fix
 - (W, W_n, N_p, N_a) $= \frac{\theta^2}{W} = f(\theta) = d_\theta$ $= H'(T, M) = \sqrt{H^2(T, M) + (W_n D_n)^2}$

• Neighborhoods N_p , N_a

• Use simulated annealing to estimate >With probability $p = e^{-\frac{\Delta Err}{t}}$

Results

Bern Database

AR Database

TABLE 1 Face Recognition Results of Edge Map (EM) [2], Eigenface (20-Eigenvectors), and LEM

		Bern databas	e	AR database		
Method	EM	Eigenface	LEM	EM	Eigenface	LEM
Recognition rate	96.7%	100%	100%	88.4%	55.4%	96.4%

TABLE 2

Performance Comparison on the AR Database

Method	Recognition rate
LEM	96.43%
Eigenface (20-eigenvectors)	55.36%
Eigenface (60-eigenvectors)	71.43%
Eigenface (112-eigenvectors)	78.57%

w/o

Sensitivity to Size Variation

TABLE 3 Recognition Results with Size Variations

	Top 1	Top 5	Top 10
Edge map	43.3%	56.0%	64.7%
Eigenface (112-eigenvectors)	44.9%	68.8%	75.9%
LEM (pLHD)	53.8%	67.6%	71.9%
LEM (LHD)	66.5%	75.9%	79.7%

- Used the AR data base.
- Applied a random scaling factor of $\pm 10\%$

Recognition Under Varying Lighting

TABLE 4 Recognition Results under Varying Lighting

Testing faces	Eigenface		Edge map	LEM
Left light on	20-eigenvectors	6.25%		
	60-eigenvectors	9.82%	82 140/	02.8694
	112-eigenvectors	9.82%	82.14%	92.86%
	112-eigenvectors w/o 1st 3	112-eigenvectors w/o 1st 3 26.79%		
Right light on	20-eigenvectors	4.46%		
	60-eigenvectors	7.14%	72 210/	01.07%
	112-eigenvectors	7.14%	73.21%	91.07%
	112-eigenvectors w/o 1st 3	49.11%		
Both lights on	20-eigenvectors	1.79%		
	60-eigenvectors	60-eigenvectors 2.68%		74 1107
	112-eigenvectors	2.68%	54.46%	74.11%
	112-eigenvectors w/o 1st 3	64.29%		

Recognition Under Facial Expression Changes

TABLE 5 Recognition Results under Different Facial Expressions

Testing faces	Eigenface	EM	LEM	
Smiling expression	20-eigenvectors	87.85%		
	60-eigenvectors 94.64% 112-eigenvectors 93.97%		52 (90/	78.57%
			52.68%	
	112-eigenvectors w/o 1st 3	82.04%		
Angry expression	20-eigenvectors	78.57%		
	60-eigenvectors	ors 84.82%		02.8697
	112-eigenvectors	87.50%	81.25%	92.86%
	112-eigenvectors w/o 1st 3	73.21%		
Screaming expression	20-eigenvectors	34.82%		
	60-eigenvectors	41.96%	20 5 10/	21.250/
	112-eigenvectors	45.54%	20.54% 31.25%	
	112-eigenvectors w/o 1st 3	32.14%		

View Based Identification — "Leave One Out" Experiment.

TABLE 6 "Leave-One-Out" Test of Yale Face Database

Method	Error Rate
Edge map	26.06%
Eigenface*	24.4%
Correlation*	23.9%
Linear Subspace*	21.6%
Eigenface w/o 1 st 3*	15.3%
LEM	14.55%
Fisherface*	7.3%

Recognition Under Varying Pose

TABLE 7

Face Recognition Results under Pose Different Variations

Method	Recognition rate				
	Edge map	Eigenface (20-eigenvectors)	Eigenface (30-eigenvectors)	LEM	
Looks left/right	50.00%	70.00%	75.00%	74.17%	
Looks up	65.00%	51.67%	56.67%	70.00%	
Looks down	67.67%	45.00%	55.00%	70.00%	
Average	58.17%	59.17%	65.12%	72.09%	

Additional Material...

Matching Time for LEM

- LEM takes longer than eigenface
 - Time O(Nn) > O(Nm)
 - *N* is # of faces
 - n is avg. # LEM-features
 - *m* is # eigenvectors
- Authors propose a face pre-filtering scheme
 ≻Idea: filter out faces before performing matching.

• Quantize an LEM into :

• Where Γ is the sum of line segment lengths

where v is the angle if the angle is <90 degrees.

Face Pre-filtering $\Delta \vec{S} \sim N_2 \left(\vec{\mu}, \vec{\Sigma} \right),$

where

$$\overline{\mu} = \begin{bmatrix} \mu_l \\ \mu_\theta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \qquad \overline{\Sigma} = \begin{bmatrix} \sigma_l^2 & \sigma_{l\theta} \\ \sigma_{\theta l} & \sigma_{\theta}^2 \end{bmatrix} = \begin{bmatrix} \sigma_l^2 & \sigma_l \sigma_{\theta} \rho \\ \sigma_{\theta} \sigma_l \rho & \sigma_{\theta}^2 \end{bmatrix},$$

and the correlation coefficient

$$\rho = \frac{\sigma_{l\theta}}{\sigma_l \sigma_{\theta}}.$$

Then, the density function of the error vector can be represented as

$$\begin{split} f(\Delta \overrightarrow{S}) &= \\ \frac{1}{2\pi |\overrightarrow{\Sigma}|^{\frac{1}{2}}} \exp \Biggl\{ -\frac{1}{2} \Biggl(\Delta \overrightarrow{S} - \overrightarrow{\mu} \Biggr)^T \overrightarrow{\Sigma}^{-1} \Biggl(\Delta \overrightarrow{S} - \overrightarrow{\mu} \Biggr) \Biggr\}, \Delta \overrightarrow{S} \in \Re^2. \end{split}$$

Since $|\Sigma| = \sigma_l^2 \sigma_{\theta}^2 (1 - \rho^2)$, the inverse of Σ exists if and only if $|\rho| < 1$. Straightforward calculation shows that

$$\overline{\Sigma}^{-1} = \frac{1}{\sigma_l^2 \sigma_{\theta}^2 (1 - \rho^2)} \begin{bmatrix} \sigma_l^2 & -\sigma_l \sigma_{\theta} \rho \\ -\sigma_{\theta} \sigma_l \rho & \sigma_{\theta}^2 \end{bmatrix}.$$
(15)

Thus, the density function of ΔS becomes

$$\begin{aligned} f(\Delta \overline{S}) &= \\ \frac{1}{2\pi\sigma_l\sigma_\theta\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{\Delta\Gamma-\mu_l}{\sigma_l}\right)^2 - 2\rho\left(\frac{\Delta\Gamma-\mu_l}{\sigma_l}\right)\left(\frac{\Delta\Theta-\mu_\theta}{\sigma_\theta}\right) + \left(\frac{\Delta\Theta-\mu_\theta}{\sigma_\theta}\right)^2\right]\right\} \end{aligned}$$

The constant density contours for a bivariate normal are a series of ellipses with different values of d as shown in the following equation:

$$\left(\Delta \overline{S} - \overline{\mu}\right)^T \overline{\Sigma}^{-1} \left(\Delta \overline{S} - \overline{\mu}\right) = d^2$$

or

$$\left(\frac{\Delta\Gamma - \mu_l}{\sigma_l}\right)^2 - 2\rho \left(\frac{\Delta\Gamma - \mu_l}{\sigma_l}\right) \left(\frac{\Delta\Theta - \mu_{\theta}}{\sigma_{\theta}}\right) + \left(\frac{\Delta\Theta - \mu_{\theta}}{\sigma_{\theta}}\right)^2 = d^2 (1 - \rho^2).$$
(17)

The probability that ΔS falls in the elliptic region Ω of parameter *d* is given by

$$\begin{split} F(d) &= \Pr\left(\Delta \overline{S} \in \Omega\right) = \iint_{\Omega} f\left(\Delta \overline{S}\right) d(\Delta \Gamma) d(\Delta \Theta) \\ &= \iint_{\Omega} \frac{1}{2\pi \sigma_{l} \sigma_{\theta} \sqrt{1 - \rho^{2}}} \exp\left\{-\frac{1}{2(1 - \rho^{2})} \left[\left(\frac{\Delta \Gamma - \mu_{l}}{\sigma_{l}}\right)^{2} \right. \\ &\left. - 2\rho\left(\frac{\Delta \Gamma - \mu_{l}}{\sigma_{l}}\right) \left(\frac{\Delta \Theta - \mu_{\theta}}{\sigma_{\theta}}\right) \right. \\ &\left. + \left(\frac{\Delta \Theta - \mu_{\theta}}{\sigma_{\theta}}\right)^{2} \right] \right\} d(\Delta \Gamma) d(\Delta \Theta). \end{split}$$

Let

$$u = \frac{\Delta \Gamma - \mu_l}{\sigma_l}, \qquad v = \frac{\Delta \Theta - \mu_\theta}{\sigma_\theta}.$$
 (19)

The equation of constant density contour can be rewritten as

$$u^{2} - 2\rho uv + v^{2} = d^{2}(1 - \rho^{2}).$$
(20)

$$\begin{aligned} F(d) &= \\ \iint_{\Omega} \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[u^2 - 2\rho uv + v^2\right]\right\} du dv \end{aligned}$$

Now for some hand-waving action...

- Rotate the Gaussian so that its axis aligned
- Perform a change of coordinates into a polar system

•
$$F(d) = \int_{0}^{d} \int_{0}^{2\pi} \frac{1}{2\pi ab} \exp\left\{-\frac{1}{2}r^{2}\right\} |J| dr d\theta$$

= $1 - e^{-\frac{1}{2}d^{2}}$.

•
$$d = \sqrt{-2\ln[1 - F(d)]}$$

To summarize

• Given a probability F(d) we can obtain a constant density ellipse of the form:

$$\left(\frac{\Delta\Gamma - \mu_l}{\sigma_l}\right)^2 - 2\rho \left(\frac{\Delta\Gamma - \mu_l}{\sigma_l}\right) \left(\frac{\Delta\Theta - \mu_\theta}{\sigma_\theta}\right) + \left(\frac{\Delta\Theta - \mu_\theta}{\sigma_\theta}\right)^2 = d^2 \left(1 - \rho^2\right)$$

• where

$$d = \sqrt{-2\ln[1 - F(d)]}$$

To summarize

• So if the error vector satisfies:

$$\left(\frac{\Delta\Gamma}{\sigma_l}\right)^2 - 2\rho\left(\frac{\Delta\Gamma}{\sigma_l}\right)\left(\frac{\Delta\Theta}{\sigma_\theta}\right) + \left(\frac{\Delta\Theta}{\sigma_\theta}\right)^2 < d^2\left(1-\rho^2\right)$$

• then the model is classified as a potential face.

Pre-Filtering Results

TABLE 11 AR Face Database Training Results

ρ	<i>c</i> ,	ζ,	μ_{i}	$\mu_{ heta}$
0.02	145.36	4.33	26.42	0.27

- Train to find parameter above.
- Small rho indicates vector components are nearly independent.

TABLE 12 Prefiltering Results on AR Face Database

F(d)	d^2	True acceptance rate	Filter out rate
90%	4.61	88.39%	50.31%
95%	5.99	92.86%	41.37%
99%	9.21	97.32%	26.58%
99.5%	10.60	99.11%	22.02%
99.7%	12.43	100%	17.06%

TABLE 13 Prefiltering Results on Bern University Face Database

<i>F(d)</i>	d^2	True acceptance rate	Filter out rate
90%	4.61	96.67%	61.55%
95%	5.99	96.67%	53.91%
96%	6.44	100%	51.95%