Face Recognition Using a Line Edge Map

Yongsheng Gao and Maylor K.H. Leung at
Nanyang Tech. University
IEEE Pattern Analysis and Machine Intelligence 2002

Interest Points Vs. Edge Maps

- Interest point detectors are popular
> SIFT, Harris/Forstner
- What about edge information?
$>$ Can carry distinguishing info too.
$>$ Interest points don't capture this info

Line Edge Map

- Humans recognize line drawings well.
$>$ Maybe computer algorithms can too.
- Benefits of using edge information:
> Advantages of template matching and geometrical feature matching:
- Partially illumination-invariant
- Low memory requirement
- Recognition performance of template matching

Line Edge Map

- Takács (1998) used edge maps for face recognition. $>$ Apply edge-detector to get a binary input image I
$>I$ is a set of edge points.
> Use Hausdorff distance to measure the similarity between two sets of points I_{1} and I_{2}.

Hausdorff Distance

$$
h\left(I_{1}, I_{2}\right)=\frac{1}{\left|I_{1}\right|} \sum_{i \in I_{1}} \min _{j \in I_{2}}\|i-j\|
$$

- i and j are edge pixel positions (x,y).
- For each pixel i in I_{1}

Find the closest corresponding pixel j in I_{2}
Take the average of all these distances $\|i-j\|$.

- Calculated without explicitly pairing the sets of points.
- Achieved a 92% accuracy in their experiments.

Line Edge Map

- Takács Edge Map doesn’t consider local structure.
- Authors introduce the Line Edge Map (LEM)
- Groups edge pixels into line segments.

> Apply polygonal line fitting to a thinned edge map

Line Edge Map

- LEM is a series of line segments.
$>$ LEM records only the endpoints of lines.
$>$ Further reduces storage requirements.

Line-Segment Hausdorff Distance

 (LHD)- Need a new distance measure between sets of line segments.
- Expect it to be better because it uses lineorientation.
- First we'll see an initial model...
- Add to the model to make it more robust
$>$ Encourage one-one mapping of lines
$>$ Encourage mapping of "similar" lines.

Line-Segment Hausdorff Distance

- Given two LEMs $S=\left(s_{1}, s_{2}, \ldots s_{p}\right)$ and $T=\left(t_{1}, t_{2}, \ldots s_{q}\right)$
- The LHD is built on the vector $d\left(s_{i} t_{j}\right)$
$\Rightarrow d()$ represents the distance between two lines segments

$$
\stackrel{\rightharpoonup}{d}\left(m_{i}^{l}, t_{j}^{l}\right)=\left[\begin{array}{l}
d_{\theta}\left(m_{i}^{l}, t_{j}^{l}\right) \\
d_{/ /}\left(m_{i}^{l}, t_{j}^{l}\right) \\
d_{\perp}\left(m_{i}^{l}, t_{j}^{l}\right)
\end{array}\right]
$$

Line-Segment Hausdorff

 Distance$$
\stackrel{\rightharpoonup}{d}\left(m_{i}^{l}, t_{j}^{l}\right)=\left[\begin{array}{l}
d_{\theta}\left(m_{i}^{l}, t_{j}^{l}\right) \\
d_{/ /}\left(m_{i}^{l}, t_{j}^{l}\right) \\
d_{\perp}\left(m_{i}^{l}, t_{j}^{l}\right)
\end{array}\right]
$$

$$
d_{\theta}\left(m_{i}^{l}, t_{j}^{l}\right)
$$

(a)
(b)

Line-Segment Hausdorff Distance

$$
d_{\theta}\left(m_{i}^{l}, t_{j}^{l}\right)=f\left(\theta\left(m_{i}^{l}, t_{j}^{l}\right)\right)
$$

- f() is a penalty function: $f(\theta)=\theta^{2} / W$
$>$ Higher penalty on large deviation
- W is determined in training.

Line-Segment Hausdorff Distance

Line-Segment Hausdorff Distance

-In general lines will not be parallel
-So rotate the shortest line

Line-Segment Hausdorff Distance

- Finally,

$$
d\left(m_{i}^{l}, t_{j}^{l}\right)=\sqrt{d_{\theta}^{2}\left(m_{i}^{l}, t_{j}^{l}\right)+d_{/ /}^{2}\left(m_{i}^{l}, t_{j}^{l}\right)+d_{\perp}^{2}\left(m_{i}^{l}, t_{j}^{l}\right)}
$$

- Primary line-segment Hausdorff Distance (LHD)

$$
H(I, J)=\max (h(I, J), h(J, I))
$$

where

$$
h(I, J)=\frac{1}{\sum_{i \in I}\|i\|} \sum_{i \in I}\|i\| \cdot \min _{j \in J} d(i, j)
$$

Some Problems...

- Say T is an input LEM, M is its matching model LEM, and N is some other nonmatching model.
- Due to segmentation problems it could be the case that

$$
H(T, M) \gg H(T, N)
$$

- Keeping track of matched line-pairs could help.

Neighborhoods

- Positional neighborhood N_{p}
- Angular neighborhood N_{a}
- Heuristic: lines that fall within the neighborhood are probably matches.

Line
Segment in I

Neighborhoods

- If ≥ 1 line falls into the neighborhoods we call the original line segment I, a high confidence line.

Line
Segment in I is a
High Confidence Line

High Confidence Ratio

- $N_{h c}$ is the num. of high confidence lines in a LEM.
- $N_{\text {total }}$ is the total num. of

$$
R=\frac{N_{h c}}{N_{t o t a l}}
$$

lines in a LEM.

New Hausdorff Distance

$$
H^{\prime}(T, M)=\sqrt{H^{2}(T, M)+\left(W_{n} D_{n}\right)^{2}}
$$

- W_{n} is a weight.
- D_{n} is the average number of lines (across input and model) that are not confidently-matched, i.e.

$$
\left.D_{n}=1-\frac{R_{M}+R_{T}}{2}=\frac{\left(1-R_{M}\right)+\left(1-R_{T}\right)}{2} \right\rvert\,
$$

R_{T} and R_{M} are the high confidence ratios for input and model respectively

Summary

- Start with to LEM's

- Calculate Hausdorff Distance

$$
\begin{aligned}
& H(I, J)=\max (h(I, J), h(J, I)) \\
& h(I, J)=\frac{1}{\sum_{i \in I}\|i\|} \sum_{i \in I}\|i\| \cdot \min _{j \in J} d(i, j)
\end{aligned}
$$

Summary

- $d\left(m_{i}^{l}, t_{j}^{\prime}\right)=\sqrt{d_{\theta}^{2}\left(m_{i}^{l}, t_{j}^{t_{j}}\right)+d_{j /}^{2}\left(m_{i}^{l}, t_{j}^{\prime}\right)+d_{-}^{2}\left(m_{i}^{l}, t_{j}^{l}\right)}$

$$
\vec{d}\left(m_{i}^{l}, t_{j}^{l}\right)=\left[\begin{array}{c}
d_{\theta}\left(m_{i}^{l}, t_{j}^{l}\right) \\
d_{/ /}\left(m_{i}^{l}, t_{j}^{l}\right) \\
d_{\perp}\left(m_{i}^{l}, t_{j}^{l}\right)
\end{array}\right]
$$

Summary

- Finally we take into account the effect of neighborhoods

$$
\begin{gathered}
H^{\prime}(T, M)=\sqrt{H^{2}(T, M)+\left(W_{n} D_{n}\right)^{2}} \\
\cdot \\
D_{n}=1-\frac{R_{M}+R_{T}}{2}=\frac{\left(1-R_{M}\right)+\left(1-R_{T}\right)}{2}
\end{gathered}
$$

Free Parameters

- We have four free parameters to fix
$>\left(W, W_{n}, N_{p}, N_{a}\right)$
- $\theta^{2} / W=f(\theta)=d_{\theta}$
- $H^{\prime}(T, M)=\sqrt{H^{2}(T, M)+\left(W_{n} D_{n}\right)^{2}}$
- Neighborhoods N_{p}, N_{a}
- Use simulated annealing to estimate
$>$ With probability $p=e^{\left.-\frac{\Delta E_{r r}}{t} \right\rvert\,}$

Results

Face Recognition under Controlled Conditions

Bern Database

AR Database

Face Recognition under Controlled Conditions

TABLE 1
Face Recognition Results of Edge Map (EM) [2], Eigenface (20-Eigenvectors), and LEM

	Bern database			AR database		
Mcthod	EM	Eigenfacc	LEM	EM	Eigenfacc	LEM
Recognition rate	96.7%	100%	100%	88.4%	55.4%	96.4%

Face Recognition under Controlled Conditions

TABLE 2
Performance Comparison on the AR Database

Method	Recognition rate
LEM	96.43%
Eigenface (20-eigenvectors)	55.36%
Eigenface (60-eigenvectors)	71.43%
Eigenface (112-eigenvectors)	78.57%

Face Recognition under Controlled Conditions

Sensitivity to Size Variation

TABLE 3
Recognition Results with Size Variations

	Top 1	Top 5	Top 10
Edge map	43.3%	56.0%	64.7%
Eigenface (112-eigenvectors)	44.9%	68.8%	75.9%
LEM (pLHD)	53.8%	67.6%	71.9%
LEM (LHD)	66.5%	75.9%	79.7%

- Used the AR data base.
- Applied a random scaling factor of $\pm 10 \%$

Recognition Under Varying Lighting

TABLE 4
Recognition Results under Varying Lighting

Testing faces	Eigenface		Edge map	LEM
Left light on	20-eigenvectors	6.25\%	82.14\%	92.86\%
	60 -eigenvectors	9.82\%		
	112-eigenvectors	9.82\%		
	112 -eigenvectors w/o $1^{\text {st }} 3$	26.79\%		
Right light on	20-eigenvectors	4.46%	73.21%	91.07\%
	60 -eigenvectors	7.14\%		
	112-eigenvectors	7.14%		
	112-eigenvectors w/o $1^{\text {st }} 3$	49.11\%		
Both lights on	20-eigenvectors	1.79\%	54.46%	74.11\%
	60 -eigenvectors	2.68\%		
	112-eigenvectors	2.68\%		
	112-eigenvectors w/o $1^{\text {st }} 3$	64.29\%		

Recognition Under Facial Expression Changes

TABLE 5
 Recognition Results under Different Facial Expressions

Testing faces	Eigenface		EM	LEM
Smiling expression	20-eigenvectors	87.85\%	52.68\%	78.57\%
	60 -eigenvectors	94.64\%		
	112-eigenvectors	93.97\%		
	112-eigenvectors w/o $1^{\text {st }} 3$	82.04\%		
Angry expression	20-eigenvectors	78.57\%	81.25\%	92.86\%
	60-eigenvectors	84.82\%		
	112-eigenvectors	87.50\%		
	112-eigenvectors w/o $1^{\text {st }} 3$	73.21\%		
Screaming expression	20-eigenvectors	34.82%	20.54\%	31.25\%
	60 -eigenvectors	41.96\%		
	112-eigenvectors	45.54\%		
	112-eigenvectors w/o ${ }^{\text {st }} 3$	32.14\%		

View Based Identification - "Leave One Out" Experiment.

TABLE 6
"Leave-One-Out" Test of Yale Face Database

Mcthod	Error Ratc
Edge map	$\mathbf{2 6 . 0 6 \%}$
Eigenface* $^{\text {Correlation* }}$	24.4%
Linear Subspace* *	23.9%
Eigenface w/o 1 $^{\text {st }} 3^{*}$	21.6%
LEM	15.3%
Fisherface* *	$\mathbf{1 4 . 5 5} \%$

Recognition Under Varying Pose

TABLE 7
Face Recognition Results under Pose Different Variations

	Recognition rate			
Method	Edge map	Eigenface (20-eigenvectors)	Eigenface (30-eigenvectors)	LEM
Looks left/right	50.00%	70.00%	$\underline{75.00 \%}$	74.17%
Looks up	65.00%	51.67%	56.67%	$\underline{70.00 \%}$
Looks down	67.67%	45.00%	55.00%	$\underline{70.00 \%}$
Average	$\mathbf{5 8 . 1 7 \%}$	$\mathbf{5 9 . 1 7 \%}$	$\mathbf{6 5 . 1 2 \%}$	$\underline{\mathbf{7 2 . 0 9 \%}}$

Additional Material...

Matching Time for LEM

- LEM takes longer than eigenface
> Time $O(N n)>O(N m)$
- N is \# of faces
- n is avg. \# LEM-features
- m is \# eigenvectors
- Authors propose a face pre-filtering scheme
$>$ Idea: filter out faces before performing matching.

Face Prefiltering

- Quantize an LEM into :

$$
\vec{s}=\left[\begin{array}{c}
\Gamma \\
\theta
\end{array}\right]
$$

- Where Γ is the sum of line segment lengths

where v is the angle if the angle is <90 degrees.

Face Pre-filtering

$$
\Delta \bar{s} \sim N_{2}(\bar{u}, \overline{\bar{v}}) .
$$

where

$$
\vec{\mu}=\left[\begin{array}{c}
\mu_{l} \\
\mu_{\theta}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad \vec{\Sigma}=\left[\begin{array}{cc}
\sigma_{l}^{2} & \sigma_{l \theta} \\
\sigma_{\theta l} & \sigma_{\theta}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{l}^{2} & \sigma_{l} \sigma_{\theta} \rho \\
\sigma_{\theta} \sigma_{l} \rho & \sigma_{\theta}^{2}
\end{array}\right]
$$

and the correlation coefficient

$$
\rho=\frac{\sigma_{l \theta}}{\sigma_{l} \sigma_{\theta}}
$$

Face Pre-filtering

Then, the density function of the error vector can be represented as

$$
\begin{aligned}
& f(\Delta \vec{S})= \\
& \frac{1}{2 \pi|\vec{\Sigma}|^{1} / 2} \exp \left\{-\frac{1}{2}(\Delta \stackrel{\rightharpoonup}{S}-\vec{\mu})^{T} \vec{\Sigma}^{-1}(\Delta \stackrel{\rightharpoonup}{S}-\vec{\mu})\right\}, \Delta \vec{S} \in \Re^{2}
\end{aligned}
$$

Face Pre-filtering

Since $|\vec{\Sigma}|=\sigma_{l}^{2} \sigma_{\theta}^{2}\left(1-\rho^{2}\right)$, the inverse of $\vec{\Sigma}$ exists if and only if $|\rho|<1$. Straightforward calculation shows that

$$
\stackrel{\rightharpoonup}{\Sigma}^{-1}=\frac{1}{\sigma_{l}^{2} \sigma_{\theta}^{2}\left(1-\rho^{2}\right)}\left[\begin{array}{cc}
\sigma_{l}^{2} & -\sigma_{l} \sigma_{\theta} \rho \tag{15}\\
-\sigma_{\theta} \sigma_{l} \rho & \sigma_{\theta}^{2}
\end{array}\right] .
$$

Face Pre-filtering

Thus, the density function of ΔS becomes
$f(\Delta \vec{S})=$

$\left.\left.-2 \rho\left(\frac{\Delta \Gamma-\mu_{l}}{\sigma_{l}}\right)\left(\frac{\Delta \Theta-\mu_{\theta}}{\sigma_{\theta}}\right)+\left(\frac{\Delta \Theta-\mu_{\theta}}{\sigma_{\theta}}\right)^{2}\right]\right\}$

Face Pre-filtering

The constant density contours for a bivariate normal are a series of ellipses with different values of d as shown in the following equation:

$$
(\Delta \bar{S}-\bar{\mu})^{T} \vec{\Sigma}^{-1}(\Delta \vec{S}-\vec{\mu})=d^{2}
$$

or

$$
\begin{align*}
\left(\frac{\Delta \Gamma-\mu_{l}}{\sigma_{l}}\right)^{2} & -2 \rho\left(\frac{\Delta \Gamma-\mu_{l}}{\sigma_{l}}\right)\left(\frac{\Delta \Theta-\mu_{\theta}}{\sigma_{\theta}}\right) \tag{17}\\
& +\left(\frac{\Delta \Theta-\mu_{\theta}}{\sigma_{\theta}}\right)^{2}=d^{2}\left(1-\rho^{2}\right) .
\end{align*}
$$

Face Pre-filtering

The probability that $\Delta \bar{S}$ falls in the elliptic region Ω of parameter d is given by

$$
\begin{aligned}
F(d)= & \operatorname{Pr}(\Delta \vec{S} \in \Omega)=\iint_{\Omega} f(\Delta \vec{S}) d(\Delta \Gamma) d(\Delta \Theta) \\
= & \iint_{\Omega} \frac{1}{2 \pi \sigma_{l} \sigma_{\theta} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{\Delta \Gamma-\mu_{l}}{\sigma_{l}}\right)^{2}\right.\right. \\
& -2 \rho\left(\frac{\Delta \Gamma-\mu_{l}}{\sigma_{l}}\right)\left(\frac{\Delta \Theta-\mu_{\theta}}{\sigma_{\theta}}\right) \\
& \left.\left.+\left(\frac{\Delta \Theta-\mu_{\theta}}{\sigma_{\theta}}\right)^{2}\right]\right\} d(\Delta \Gamma) d(\Delta \Theta)
\end{aligned}
$$

Face Pre-filtering

Let

$$
\begin{equation*}
u=\frac{\Delta \Gamma-\mu_{l}}{\sigma_{l}}, \quad v=\frac{\Delta \Theta-\mu_{\theta}}{\sigma_{\theta}} \tag{19}
\end{equation*}
$$

The equation of constant density contour can be rewritten as

$$
\begin{equation*}
u^{2}-2 \rho u v+v^{2}=d^{2}\left(1-\rho^{2}\right) \tag{20}
\end{equation*}
$$

Face -Prefiltering

$$
\begin{aligned}
& F(d)= \\
& \iint_{\Omega} \frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[u^{2}-2 \rho u v+v^{2}\right]\right\} d u d v
\end{aligned}
$$

Now for some hand-waving action...

- Rotate the Gaussian so that its axis aligned
- Perform a change of coordinates into a polar system
- $F(d)=\int_{0}^{d} \int_{0}^{2 \pi} \frac{1}{2 \pi a b} \exp \left\{-\frac{1}{2} r^{2}\right\}|J| d r d \theta$

$$
=1-e^{-\frac{1}{2} d^{2}}
$$

- $d=\sqrt{-2 \ln [1-F(d)]}$

To summarize

- Given a probability $\mathrm{F}(\mathrm{d})$ we can obtain a constant density ellipse of the form:

$$
\begin{aligned}
\left(\frac{\Delta \Gamma-\mu_{l}}{\sigma_{l}}\right)^{2} & -2 \rho\left(\frac{\Delta \Gamma-\mu_{l}}{\sigma_{l}}\right)\left(\frac{\Delta \Theta-\mu_{\theta}}{\sigma_{\theta}}\right) \\
& +\left(\frac{\Delta \Theta-\mu_{\theta}}{\sigma_{\theta}}\right)^{2}=d^{2}\left(1-\rho^{2}\right)
\end{aligned}
$$

- where

$$
d=\sqrt{-2 \ln [1-F(d)]}
$$

To summarize

- So if the error vector satisfies:
$\left(\frac{\Delta \Gamma}{\sigma_{l}}\right)^{2}-2 \rho\left(\frac{\Delta \Gamma}{\sigma_{l}}\right)\left(\frac{\Delta \Theta}{\sigma_{\theta}}\right)+\left(\frac{\Delta \Theta}{\sigma_{\theta}}\right)^{2}<d^{2}\left(1-\rho^{2}\right)$
- then the model is classified as a potential face.

Pre-Filtering Results

TABLE 11
 AR Face Database Training Results

ρ	$\epsilon_{\boldsymbol{l}}$	ϵ_{θ}	$\mu_{\boldsymbol{I}}$	μ_{θ}
0.02	145.36	4.33	26.42	0.27

- Train to find parameter above.
- Small rho indicates vector components are nearly independent.

TABLE 12
 Prefiltering Results on AR Face Database

$F(d)$	d^{2}	Truc acceptance rate	Filter out rate
90%	4.61	88.39%	50.31%
95%	5.99	92.86%	41.37%
99%	9.21	97.32%	26.58%
99.5%	10.60	99.11%	22.02%
99.7%	12.43	100%	17.06%

TABLE 13
 Prefiltering Results on Bern University Face Database

$F(d)$	d^{2}	True acceptance rate	Filter out rate
90%	4.61	96.67%	61.55%
95%	5.99	96.67%	53.91%
96%	6.44	100%	51.95%

