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Abstract. This paper introduces a novel approach for face recognition using multiple face

patterns obtained in various views for robot vision. A face pattern may change dramatically

due to changes in the relation between the positions of a robot, a subject and light sources.

As a robot is not generally able to ascertain such changes by itself, face recognition in

robot vision must be robust against variations caused by the changes. Conventional methods

using a single face pattern are not capable of dealing with the variations of face pattern.

In order to overcome the problem, we have developed a face recognition method based on

the constrained mutual subspace method (CMSM) using multiviewpoint face patterns

attributable to the movement of a robot or a subject. The effectiveness of our method for robot

vision is demonstrated by means of a preliminary experiment.

1 Introduction

Person identification is a very important function for robots which work with humans

in the real world. Face recognition is one of the essential methods identification since

it is noncontact method and the subject can thus be unaware that recognition is being

performed.

Many face recognition methods based on image appearance have been developed

over the past few decades[6–8]. Most of these are based on a single face pattern and

recognize a face using the model for the expected change. Although these methods

have been in practical use for applications in which the lighting condition and face

direction are stable, it is difficult to apply them in general. This is because the

face pattern may change dramatically due to the changes of the relation between

the positions of robot, subject and light sources. As a robot is not generally able

to control such changes by itself, face recognition in robot vision must be robust

against such variations.

In order to overcome the problem, we introduce a novel approach for face recog

nition using multiple face image patterns obtained in various views. Our approach

exploits the following observations: (i) A robot can make a subject approach it or

turn his/her face toward it by the means of visual or audio alerts. (ii) The robot can

move to an advantageous position for capturing multiviewpoint face patterns by

itself. Face recognition by a robot is substantially different from that by a desktop

computer in that a robot has the ability to actively capture face patterns.

Fig.1 shows a comparison between our method and a conventional method using

a single face pattern. A face pattern obtained from one view can be represented
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Input multiple patterns
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Person B
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(a) Conventional method (b) Our method

Fig. 1. Basic idea: (a) using a single static pattern, (b) using multiple patterns

as a point in a highdimensional feature vector space where an n×n pixel pattern

is treated as an F (= n×n) dimensional vector. In the conventional method the

identification of a person is based on the minimum distance between an input pattern

and a distribution of reference patterns as shown in Fig.1(a). The minimum distance

is very unstable because the input face pattern varies easily due to the changes

in face direction, expression and lighting. On the other hand, we can see that the

similarity between the distributions of the input patterns and the reference patterns is

more stable as shown in Fig.1(b). Consequently, our method based on the similarity

between the two distributions is hardly affected by the changes mentioned above.

Moreover, it should be noted that the similarity between the two distributions of face

patterns implies implicitly the similarity between 3D shapes of faces[12]. This fact

is one reason for the higher recognition rate of our method compared to singleview

methods.

The distribution of face image patterns can be represented by a lowerdimensional

linear subspace of the highdimensional feature space. This subspace is generated us

ing the KarhunenLoève (KL) expansion, also known as principal component analy

sis (PCA). Moreover, the relationship between two subspaces is strictly defined by the

multiple canonical angles[9], which are an extension of the angle between two vec

tors. Therefore, we can measure the structural similarity between the distributions of

the face patterns by using the canonical angles between two subspaces. The canonical

angles are calculated by the framework of the mutual subspace method (MSM)[3].

The MSMbased face recognition method using the multiple canonical angles

can tolerate variations in the face patterns, considering the information due to the

3D face shape of each person and achieve a high recognition rate compared to the

conventional methods. However, its classification ability still appears insufficient for

face recognition because each subspace is created without considering the rival sub

spaces that are to be compared[2]. To overcome the problem, we consider employing

the constrained mutual subspace method (CMSM). The essence of CMSM is to

carry out the MSM framework in a constraint subspace C which satisfies the con

straint condition: “it includes only the essential component for classification. The

projection onto a constraint subspace enables CMSM to have a higher classification

ability besides the ability to tolerate variations in the face patterns.
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Fig. 2. Concept of SM and MSM

In the following sections, first, we explain the algorithm of MSM and CMSM.

Then, we construct the face recognition method using CMSM. Finally, the effective

ness of our method for robot vision is demonstrated by experiments.

2 Basic identification by MSM

2.1 Algorithm of MSM

The mutual subspace method (MSM) is an extension of the subspace method

(SM)[1,2] used widely for solving various pattern recognition problems. SM is for

calculating the similarity as the minimum angle θ1 between an input vector and a

reference subspace which represents the variation of the learning set as shown in

Fig.2(a). By contrast, in MSM, the similarity is defined by the minimum angle θ1

between the input subspace and the reference subspace as shown in Fig.2(b). MSM

utilizes only the minimum canonical angle. However, given an M dimensional

subspace P and an N dimensional subspace Q in the F dimensional feature space,

we can obtain N canonical angles (for convenience N ≤ M ) between P and Q[9].

Therefore, we use these canonical angles to define the similarity between these

subspaces. The canonical angle θi between P and Q is defined as

cos2θi = max
ui⊥uj(=1,...,i−1)

vi⊥vj(=1,...,i−1)

|(ui,vi)|
2

||ui||2||vi||2
(i = 1, . . . , N) (1)

where ui ∈ P,vi ∈ Q, ||ui|| 6= 0, and ||vi|| 6= 0. Let the F×F dimensinal

projection matrix corresponding to projection of a vector on the M dimensional

subspace P be P, and the F×F dimensional projection matrix corresponding to the

N dimensional subspace Q be Q. cos2θ of the angle θ between P and Q is equal

to the eigenvalue of PQP or QPQ[3]. The largest eigenvalue of these matrices

represents cos2θ1 of the smallest canonical angle θ1, whereas the second largest

eigenvalue represented cos2θ2 of the smallest angle θ2 in the direction perpendicular

to that of θ1. cos2θi for i = 3, . . . , N are calculated similarly.

The eigenvalue problem of PQP can be transformed to that of a matrix with

smaller dimensions[3]. Let Φi and Ψi denote the i th F dimensional orthogonal
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S[n]=1.0 0<S[n]<1.0 S[n]=0.0

Subspace 1 Subspace 2 Subspace 1

Subspace 2

Subspace 1
Subspace 2

Fig. 3. Similarity S[t] between two subspaces: it changes from 0.0 to 1.0 depending on the

relation between two subspaces

basis vectors of the subspace P and Q, respectively. The eigenvalue problem of

PQP is then attributed to that of the N×N matrix X1 as:

Xc = λc (2)

where X = (xij), xij =
∑M

k=1
(Ψi · Φk)(Φk · Ψj).

2.2 Definition of similarity using multiple canonical angles

We consider the value of the mean of the canonical angles, S[t] = 1

t

∑t

i=1
cos2 θi,

as the similarity between two subspaces. The similarity S[t] has the characteristic

shown in Fig.3. In the case that two subspaces coincide completely with each other,

S[t] is 1.0, since all canonical angles are zero. The similarity S[t] becomes smaller

as the two subspaces separate. Finally, the similarity S[t] is zero when the two

subspaces are orthogonal to each other.

For practical use of the similarity S[t], we should consider the situation in which

both subject and robot stand still. In this case, S[t] (t ≥ 2) can not be used, since

the distribution of input patterns degenerates and the canonical angles excepting the

minimum canonical angle are unreliable2

3 Highperformance identification by CMSM

3.1 Algorithm of CMSM

MSM does not have the ability to reject the influence of undesirable changes in

a face pattern, such as changes due to lighting condition, a face direction or an

expression. In Fig.4 the difference vector, d(|u| = |v| 6= 0), of the two vectors, u

and v, composing the minimum angle, θ, includes some components derived from

such changes and the angles between the subspaces will accordingly deviate from

what should be observed solely between individuals.

1 This matrix can be also derived by several other methods[9].
2 In such situation, a multicamera system is valid, since the system can obtain various face

patterns at the same time without depending on the movement of the subject and the robot.
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Fig. 4. Concept of CMSM

In order to attenuate the influence of such undesirable variation, we consider

employing the constrained mutual subspace method (CMSM). In CMSM, we

introduce a constraint subspace C which satisfies the constraint condition: “it includes

the effective component for recognition, that is the difference between people, but

does not include any unnecessary component for recognition, namely, undesirable

variation.”. Then, we calculate the canonical angles between the projected input

subspace Pc and the projected reference subspace Qc using MSM. The canonical

angle θc between the M dimensional projected input subspace Pc and the N 

dimensional projected reference subspace Qc is defined as:

cos2θi = max
u

c
i
⊥u

c
j(=1,...,i−1)

v
c
i
⊥v

c
j(=1,...,i−1)

|(uc
i ,v

c
i )|

2

||uc
i ||

2||vc
i ||

2
(i = 1, . . . , N) (3)

where uc
i ∈ Pc,vc

i ∈ Qc, ||uc
i || 6= 0, ||vc

i || 6= 0. The subspace Pc is calculated by

the following steps:

1. M orthogonal basis vectors of the subspace P are projected onto the constraint

subspace C.

2. The length of each projected vector is normalized.

3. GramSchmidt orthogonalization is applied to the normalized vectors to obtain

M orthogonal basis vectors of the subspace Pc.

Similarly Qc is calculated.

3.2 Generation of constraint subspace

How to generate the constraint subspace is an important problem. Here, we derive

the constraint subspace based on the concept of difference subspace that we have

proposed in [5]. First, the difference subspace is defined geometrically with the

canonical angles. Then, we redefine the difference subspace using the projection

matrices analytically. Finally, we generalize the concept of the difference subspace

for multiple subspaces and show that the generalized difference subspace is avail

able as the constraint subspace.
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Fig. 5. Concept of difference subspace: (a) difference vector, (b) difference subspace, (c)

generalized difference subspace for k subspaces

Definition of difference subspace Here, we formulate the difference subspace

between two subspaces. The difference subspace is an extension of the difference

vector between two vectors in multidimensional space as shown in Fig.5(a)(b). The

difference subspace is an effective component for discriminating two subspaces.

When MSM is applied to M dimensional subspace P and N dimensional sub

space Q, N canonical angle θi, i = 1, . . . , N (for convenience N ≤ M) are

obtained. Let di be the difference vector uivi between vector ui and vector vi

forming the i th canonical angle θi. All di are then orthogonal to each other. By nor

malizing the length of each difference vector di to 1.0, we regard these normalized

difference vectors d̄i as the basis vectors of the difference subspace D2.

We can redefine the difference subspace, defined geometrically, analytically

using the projection matrices. For this purpose, we show that half of all the eigen

vectors of matrix P + Q corresponding to eigenvalues smaller than 1.0 span the

difference subspace between the two subspaces. Let the ith largest eigenvalue of

matrix P + Q be λi(P + Q) and the ith largest eigenvalue of matrix PQ be

λi(PQ). Starting from λi(PQ)=(λi(P + Q) − 1)2, proved in [10], we can obtain

the relation between the eigenvalues of matrix P + Q, the difference subspace D2,

and principal component subspace Pc2 which represents the “principal component”

of multiple subspaces as follows

1. N eigenvectors of matrix P + Q corresponding to eigenvalues smaller than 1.0

span the difference subspace D.

2. N eigenvectors of matrix P + Q corresponding to eigenvalues larger than 1.0

span the principal component subspace Pc.

The relations lead us to the conclusion that the sum subspace S2 spanned by all

the eigenvectors of matrix P + Q is represented by the orthogonal direct sum of the

principal component subspace Pc2 and the difference subspace D2. In other words,

the difference subspace D2 can be defined as the subspace which is produced by

removing the principal component subspace Pc2 from the sum subspace S2.
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From the above discussion, we see that the difference subspace, defined as

the subspace which represents “difference” between two subspaces becomes at

the same time the subspace, which does not include the principal components of

the two subspaces. Thus, the difference subspace satisfies the constraint condition

mentioned in Section 3.1.

Generalization of difference subspace Now, we generalize the concept of the

difference subspace for multiple subspaces on the basis of the definition using pro

jection matrices. Given k(≥2) N dimensional subspaces, a generalized difference

subspace Dk can be defined as the subspace which is produced by removing the

principal component subspace Pck of all the subspaces from the sum subspace Sk of

that. According to this definition, the generalized difference subspace Dk is actually

spanned by Nc eigenvectors of the sum matrix G =
∑k

i=1
Pi of projection matrices

Pi, di(i = N×k − Nc, . . . , N×k).

Gd = λd, (4)

where eigenvectors di correspond to the ith eigenvalue λi in descending order and

an optimal dimension Nc of the difference subspace is set experimentally3.

Fig.5(c) shows the concept of the generalized difference subspace Dk for k

subspaces. We can see that the generalized difference subspace Dk includes only

the essential component for face recognition since it is orthogonal to the principal

component subspace Pck, which represents the intersections of reference subspaces

of each person.

3.3 Framework of face recognition using the CMSM

Fig.6 shows the framework of our face recognition based on CMSM. First, the pupils

and nostrils are directly detected from an input image using a feature detection

method based on a combination of separability filter and pattern matching[11].

The input subspace is updated, in real time, whenever a normalized face pattern is

extracted on the basis of the position of the four facial feature points, then projected

onto the constraint subspace. To update the input subspace we have adopted the

simultaneous iteration method[2]. Then, we compute the similarity between the

projected input subspace and the projected reference subspace on a database, and

the reference subspace that has the highest similarity is determined to be that of the

identified person given the similarity is above a threshold. The whole process from

inputting an image to identification can be executed at the speed of 25 frames/sec

using a PC (PentiumIII 800MHz).

3 Eq.(4) appears to be an equation of principal component analysis (PCA) in that basis vectors

of each subspace are considered as a sample vector. However, it is completely different

from PCA in that m subspaces Pij (j = 1∼m) which belong to ith class should be

integrated into the same subspace Pi∗ . Actually, Pi∗ can be generated as the subspace

which is spanned by all the eigenvectors of the sum matrix
∑m

j=1
Pij .
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Fig. 6. Flow of face recognition based on CMSM

(a)

(b)

Fig. 7. Data for evaluation: (a) the collected sequential face images, (b) the normalized face

patterns of subject1 in lighting condition L1L8 (from left)

4 Experiments

We have compared our method with conventional methods using a single face pattern:

the subspace method (SM) and the eigenface method (EFM)[6]4, in addition, MSM

in terms of the recognition rate and the separability5 which is a normalized index of

classification ability between subjects.

We have considered the situation in which a subject moves and a robot stands

still, for example, a subject approaches a robot or turns his/her face toward the

4 EFM is widely used as the base of various commercial products.
5 The higher the separability is, the higher is the classification ability allowing larger for

possible choice of rejection threshold.



200 K. Fukui and O. Yamaguchi

Table 1. Recognition performance of each method, similarity S[1]and S[3] are defined in

Section 2.2

Methods SM EFM MSMS[1] MSM/S[3] CMSM/S[1] CMSM/S[3]

Recognition rate 75% 75% 80% 89% 99% 99%

Separability 0.10 0.12 0.12 0.39 0.57 0.65

robot. A situation in which conversely the subject stands still and the robot moves

is fundamentally the same, although how to move to a position where the robot can

obtain various face patterns useful for face recognition is a difficult problem.

To simulate the first situation we collected sets of 320×240 pixels face images

while making the subject change position and direction of their face as shown in

Fig.7(a). The system for data collection consists of a PC (PentiumIII 800MHz),

an image capture board, and a CCD camera with a lens with focal length=7.5mm.

The camera is installed below the monitor so that it looks up at the face of the

subject. We have carried out the collection to obtain 80 face images for each subject

in each lighting condition and extracted the 15×15 pixels normalized face patterns

from these images as shown in Fig.7. The number of subjects was 25. The lighting

condition was changed by switching three lamps off/on: making eight combinations

(L1L8).

The normalized face patterns of subjecters 112 in lighting conditions L1L4

were used for generating the constraint subspace C. The face patterns extracted from

the images of the other subjects, 1325, in lighting conditions L5L8 were used

for evaluation. Using the normalized face patterns, we generated the 7dimensional

subspace Pij for each subject i in lighting condition j by the KL expansion.

The constraint subspace C was then generated as follows. First, for subject i, four

10dimensional subspaces Pij , (j=1∼4) are integrated into the 40dimensional Pi∗ .

Then, we calculated the sum matrix G from the projection matrices of the twelve

40dimensional subspaces Pi∗ of subject112. Finally, the eigenvectors of the matrix

G corresponding to the Nc smallest eigenvalues become the basis vectors of the Nc

dimensional constraint subspace C. Nc is set, experimentally, to 170.

In the evaluation of each methods, assuming that each subspace under lighting

condition j is an input subspace and all the subspaces under lighting condition

j∗ are reference subspaces, we calculated the similarity between the subspaces

while changing the combination of lighting conditions. The dimensions of an input

subspace and the reference subspaces are set at 5 based on a preliminary experiment.

The dimension of a reference subspace of SM is also set at 5. SM utilizes the mean

of the 80 face patterns as an input vector so that the number of face patterns used for

calculating the similarity is the same in all the methods. FEM also utilizes the mean

of the 80 face patterns as an input vector and a reference vector.

Table 1 shows the evaluation result of each method in terms of the recognition

rate and the separability. We can see that the method using CMSM is superior to the

others with regard to both indices. This result also shows that the performance of face

recognition has been further improved by using the multiple canonical angles. This
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is results from information on 3D face shape, from the multiple canonical angles,

being reflected in the recognition process.

5 Conclusion

This paper has presented a face recognition method on the basis of CMSM using

multiple face patterns. The effectiveness of our method for robot vision is demon

strated by means of a preliminary experiment, which shows improvement based on

the fact that our method is able to utilize various multiple face patterns. In future

work, we intend to consider in particular of planning function for data collection and

the actual implementation of our method in a robot.
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