
RESEARCH Open Access

Face recognition using nonparametric-weighted
Fisherfaces
Dong-Lin Li1, Mukesh Prasad2, Sheng-Chih Hsu1, Chao-Ting Hong1* and Chin-Teng Lin1

Abstract

This study presents an appearance-based face recognition scheme called the nonparametric-weighted Fisherfaces

(NW-Fisherfaces). Pixels in a facial image are considered as coordinates in a high-dimensional space and are

transformed into a face subspace for analysis by using nonparametric-weighted feature extraction (NWFE).

According to previous studies of hyperspectral image classification, NWFE is a powerful tool for extracting

hyperspectral image features. The Fisherfaces method maximizes the ratio of between-class scatter to that of

within-class scatter. In this study, the proposed NW-Fisherfaces weighted the between-class scatter to emphasize

the boundary structure of the transformed face subspace and, therefore, enhances the separability for different

persons’ face. The proposed NW-Fisherfaces was compared with Orthogonal Laplacianfaces, Eigenfaces, Fisherfaces,

direct linear discriminant analysis, and null space linear discriminant analysis methods for tests on five facial

databases. Experimental results showed that the proposed approach outperforms other feature extraction methods

for most databases.
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1. Introduction
Face representation is important in recognizing face in

many applications such as database matching, security

systems, face indexing on web pictures, and human-

computer interfaces. The appearance-based method is

one of the well-studied techniques for face representa-

tion [1,2]. Two purposes of the appearance-based

method are reducing dimensionality and increasing dis-

criminability of extracted features. Hence, a good feature

extraction method helps recognize face in a highly dis-

criminative subspace with low dimensionality.

Two of the most classical feature extraction techni-

ques for this purpose are the Eigenfaces and Fisherfaces

methods. Eigenfaces [3] applies principal component

analysis (PCA) to transform facial data to the linear sub-

space spanned by coordinates that maximize the total

scatter across all classes. Unlike the Eigenfaces method,

which is unsupervised, the Fisherfaces method is super-

vised. Fisherfaces applies linear discriminant analysis

(LDA) to transform data into directions with optimal

discriminability. LDA searches for coordinates that sepa-

rate data of different classes and draw data of the same

class close. However, both Eigenfaces and Fisherfaces

see only the global Euclidean structure, which may lose

some discriminability contained in other hidden

structures.

To discover local structure, He et al. [4] and Cai et al.

[5] proposed the Laplacianfaces method [4] and its

orthogonal form, which is referred to as O-Laplacian-

faces [5]. The Laplacianfaces algorithm is based on the

locality preserving projection (LPP) algorithm, which

aims at finding a linear approximation to the eigenfunc-

tions of the Laplace Beltrami operator on the face mani-

fold. Han et al. [1] proposed the eigenvector-weighting

function based on graph embedding framework.

Recently, many LDA-based methods have been pro-

posed to embed manifold structure into the facial fea-

ture extraction process [6-13]. Park and Savvides [6]

proposed a multifactor extension of LDA. Na et al. [7]

proposed the linear boundary discriminant analysis,

which increases class separability by reflecting different

significances of nonboundary and boundary patterns.

There are several drawbacks in LDA. First, it suffers

from the singularity problem, which makes it hard to
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perform. Second, LDA has the distribution assumption

which may make it fail in applications where the distri-

bution is more complex than Gaussian. Third, LDA

cannot determine the optimal dimensionality for discri-

minant analysis, which is an important issue but has

often been neglected previously. Fourth, applying LDA

may encounter the so-called small sample size problem

(SSSP) [14].

However, the classical LDA formulation requires the

nonsingularity of the scatter matrices involved. For

undersampled problems, where the data dimensionality

is much larger than the sample size, all scatter matrices

are singular and classical LDA fails. Many extensions,

including null space LDA (N-LDA) [15] and orthogonal

LDA (OLDA), have been proposed in the past to over-

come this problem. N-LDA aims to maximize the

between-class distance in the null space of the within-

class scatter matrix, while OLDA computes a set of

orthogonal discriminant vectors via the simultaneous

diagonalization of the scatter matrices.

Direct linear discriminant analysis (D-LDA) [16] is an

extension of LDA to deal with SSSP. D-LDA does not

use the information inside the null space, as some dis-

criminative information may be lost. D-LDA will be

equivalent to N-LDA and LDA in high-dimensional data

and small sample size.

In this study, we propose an appearance-based face

recognition scheme called nonparametric-weighted Fish-

erfaces (NW-Fisherfaces). The NW-Fisherfaces approach

is a derivative of the nonparametric-weighted feature

extraction (NWFE) [17], which performs well in the stu-

dies of hyperspectral image classification [18,19]. The

proposed NW-Fisherfaces method weights the between-

class scatter to emphasize the boundary structure of the

transformed face subspace and, therefore, enhances the

face recognition discriminability. The proposed

approach is compared with O-Laplacianfaces, Eigenfaces,

Fisherfaces, N-LDA, and D-LDA methods for tests on

five face databases. Experimental results show that the

proposed approach gains the least error rates in low-

dimensional subspaces for most databases.

The rest of this article is organized as follows. Section

2 gives a brief review of related studies. Section 3 intro-

duces the NW-Fisherfaces algorithm. Section 4 presents

the experimental results on face recognition. In Section

5, we draw some conclusions and provide some ideas

for future research.

2. Related study
Linear feature extraction methods can reduce excessive

dimensionality of image data with simple computation.

In essence, linear methods project high-dimensional

data to low-dimensional subspace.

2.1. PCA

PCA finds directions efficient for representation. Con-

sidering a set of N sample images, x1, x2,..., xN, in an n-

dimensional image space, the original n-dimensional

image space is linearly transformed to an m-dimensional

feature space, where m <n. The new feature vectors yk
are defined by the following linear transformation:

yk = wTxk, k = 1, 2, ..., N (1)

where W Î Rn×m is a matrix with orthonormal col-

umns. Total scatter matrix ST is defined as

ST =

N
∑

k=1

(xk − µ)(xk − µ)T (2)

where N is the number of sample images and μ is the

mean of all samples. The objective function is as follows

WPCA = max
W

WTSTW = [w1 w2... wm] (3)

where WPCA is the set of n-dimensional eigenvectors

of ST corresponding to the m largest eigenvalues.

2.2 LDA

LDA finds directions efficient for discrimination. Con-

sidering a set of N sample images, x1, x2,..., xN, which

belong to l classes of face in an n-dimensional image

space, the objective function of LDA is as follows

WLDA = arg max
w

∣

∣

∣

∣

WTSbW

WTSwW

∣

∣

∣

∣

(4)

Sb =

l
∑

i=1

Ni(µ
i − µ)(µi − µ)

T
(5)

Sw =

l
∑

i=1

Ni
∑

j=1

(xi
j − µ

i)(xi
j − µ

i)
T

(6)

where μ is the mean of all samples, Ni is the number

of samples in class i, μi is the average of class i, and xi
j

is the jth sample in class i. Sw is the within-class scatter

matrix. Sb is the between-class scatter matrix. WLDA is

the set of generalized eigenvectors of (Sw)
-1Sb corre-

sponding to the m largest generalized eigenvalues.

2.3 D-LDA

The new D-LDA method is applicable to solve the SSSP

which often arising in face recognition. Most LDA-

based algorithms including Fisherfaces [20] and D-LDA

[21] utilize the conventional Fisher criterion defined in
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(4) while some authors use the alternative given in (6)

proposed by Liu [22,23].

W = arg max
w
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∣
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(6a)

St = Sb + Sw (7)

where St is population scatter matrix.

A variant of Fisher criterion of D-LDA is expressed as

follows

W = arg max
w

∣

∣

∣

∣

WTStW

WTSwW

∣

∣

∣

∣

(8)

2.4 N-LDA

In this new LDA method, they proved that the most

expressive vectors derived in the null space of the

within-class scatter matrix using PCA are equal to the

optimal discriminant vectors derived in the original

space using LDA. This method is more efficient, accu-

rate, and stable to calculate the most discriminant pro-

jection vectors based on the modified Fisher’s criterion

(7). This process starts by calculating the projection vec-

tors in the null space of the within-class scatter matrix

Sw. This null space can be spanned by those eigenvec-

tors corresponding to the set of zero eigenvalues of Sw.

If this subspace does not exist, i.e., Sw is nonsingular,

then St is also nonsingular. Under these circumstances,

we choose those eigenvectors corresponding to the set

of the largest eigenvalues of the matrix (Sb + Sw)
-1Sb as

the most discriminant vector set; otherwise, the SSSP

will occur.

2.5 LPP

LPP finds directions efficient for preserving the intrinsic

geometry of the data and local structure. The objective

function of LPP is as follows:

WLPP = arg min
W

∑

ij

(yi − yj)
2Sij

= arg min
W

∑

ij

(WTxi − WTxj)
2
Sij = arg min

W
WTXLXTW

(9)

with the constraint

WTXDXTW = 1 (10)

where Dii = ∑jSij and L = D - S is the Laplacian

matrix. S is a similarity matrix attempting to ensure that

if xi and xj are “close”, then yi and yj are close as well.

The basic functions of LPP are the eigenvectors of the

matrix (XDXT)-1XLXT associated with the smallest

eigenvalues. Moreover, Cai et al. [5] proposed the ortho-

gonal form of LPP (OLPP) and proved that OLPP

outperforms LPP. In this study, OLPP is applied with a

supervised similarity matrix for comparison. The

weights of S are defined as follows:

Sij =

{

cos(xk
i , xl

j), if k = l

0 otherwise,
(11)

where cos(·) denotes the cosine distance measure, i and j

denote sample indices, and k and l denote classes. The

applied S preserves the locality depending on the cosine

distance measure and ensures preservation only for

within-class face by setting the between-class weights as 0.

3. Methodology: NW-Fisherfaces
The proposed NW-Fisherfaces scheme is based on the

NWFE method proposed by Kuo and Landgrebe [17].

NWFE is an LDA-based method that improves LDA by

focusing on samples near the eventual decision bound-

ary location. Both NWFE and OLPP use distance func-

tion to evaluate closeness between samples. While

OLPP emphasizes the local structure by defining a clo-

seness graph map, NWFE emphasizes the boundary

structure by weighting the calculation of mean and cov-

ariance with the measured closeness. The main ideas of

NWFE put different weights on every sample to com-

pute the “weighted means” and define new nonpara-

metric between-class and within-class scatter matrices.

In NWFE, the nonparametric between-class scatter

matrix is defined as follows:

SNW
b =

l
∑

j=1

Pi

l
∑

i=1
i�=j

Ni
∑

k=1

λ
(i,j)
k

Ni
×

(

xi
k − Mj(x

i
k)

) (

xi
k − Mj(x

i
k)

)T

(12)

SNW
w =

l
∑

i=1

Pi

Ni
∑

k=1

λ
(i,i)
k

ni
×

(

xi
k − Mi(x

i
k)

) (

xi
k − Mi(x

i
k)

)T
(13)

Mj(x
i
k) =

Nj
∑

l=1

w
(i,j)
kl x

j

l
(14)

λ
(i,j)
k =

dist(xi
k, Mj(x

i
k))

−1

Ni
∑

l=1

dist(xi
l, Mj(x

i
l))

−1 (15)

w
(i,j)
kl =

dist(xi
k, x

j

l)
−1

Ni
∑

l=1

dist(xi
k, x

j

l)
−1 (16)

where Ni is the training sample size of class i, xi
k is

the kth sample of class i, Mj(x
i
k) denotes the weighted
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mean corresponding to xi
k for class j, and dist(x, y) is

the distance measured from x to y. The closer xi
k and

Mj(x
i
k) are, the larger the weight λ

(i,j)
k

is. The sum of

λ
(i,j)
k

for class i is one. The weight w
(i,j)
kl

for computing

weighted means is a function of xi
k and x

j

l
. The closer

xi
k and x

j

l
are, the larger w

(i,j)
kl

is. The sum of w
(i,j)
kl

for

Mj(x
i
k) is one.

In face recognition, the dimension of face data often

exceeds the size of data. In this case, the covariance was

not a full rank matrix and could not be inverted. A sim-

ple method to deal with the SSSP is called regularized

discriminant analysis, which artificially increases the

number of available samples by adding white noise to

existing samples. Some regularized techniques [18,24],

can be applied to within-class scatter matrix. In this

article, the within-class scatter matrix was regularized by

SRNW
w = 0.5SNW

w + 0.5 diag(SNW
w ) (17)

where diag(.) denotes the diagonal part of a

matrix.

The NW-Fisherfaces computational scheme is as

follows.

(1) PCA projection: Face images are projected into the

PCA subspace by throwing away the components corre-

sponding to zero eigenvalue. WPCA denotes the transfor-

mation matrix of PCA projection. The projected

components are statistically uncorrelated and the rank

of the projected data matrix is equal to the data dimen-

sionality. This study applied the PCA projection method

proposed in [5,25] to prevent the singularity of Sw due

to the simple computation and fair comparison with

Fisherfaces and O-Laplacianfaces. However, throwing

the dimensionalities corresponding to zero eigenvalue

may lose important discriminant information [26]. For

further applying LDA-based methods to practical appli-

cations, an advanced regularization method proposed in

[26] is suggested.

(2) Compute the distances between each pair of sam-

ples and form the distance matrix.

(3) Compute w
(i,j)
kl

with the distance matrix.

(4) Use w
(i,j)
kl

to compute the weighted means Mj(x
i
k) .

(5) Compute the scatter matrix weight λ
(i,j)
k

.

(6) Compute SNW
b and the regularized SRNW

w
.

(7) Compute WNWFE = [w1,..., wm] as the eigenvectors

of ((SRNW
w ))−1SNW

b corresponding to the m largest

eigenvalues.

(8) Compute NWFE embedding as follows:

W = WPCAWNWFE

where W is the transformation matrix and the column

vectors of W are the so-called NW-Fisherfaces.

4. Experimental results
The performance of the proposed NW-Fisherfaces

method was compared with the three most popular lin-

ear methods in face recognition: Eigenfaces [3], Fisher-

faces [20], and O-Laplacianfaces [5]. Three face

databases were tested: Yale database, Olivetti Research

Laboratory (ORL) database, and the PIE (pose, illumina-

tion, and expression) database from CMU [24]. This

study applied the same preprocessing in [5] to locate

face. Gray level images were manually aligned, cropped,

and re-sized to 32 × 32 pixels. Each image was repre-

sented by a 1,024-dimensional vector. For simplicity, the

k nearest-neighbor (k-nn) classifier, where k = 1, was

applied in all experiments. Recognition processes were

as follows: face subspace was calculated from training

samples; new testing face images were projected into

calculated subspace; and new facial images were identi-

fied by the 1-nearest neighbor classifier.

4.1. ORL database

The ORL database contains 10 different images for

each of 40 distinct individuals. For some individuals,

the images were captured at different times, varying

the lighting, facial expressions (open/closed eyes, smil-

ing/not smiling), and facial details (glasses/no glasses)

as shown in Figure 1. The database is divided into

training and testing sets for experiment. The applied

divisions are n images per individual for training and

10 - n images per individual for testing, where n = 2, 3,

4, and 5. Furthermore, experimental results are aver-

aged over 20 random sets for each division. Table 1

presents the least error rates and the corresponding

dimensions obtained by Eigenfaces, Fisherfaces, O-

Laplacianfaces, and NW-Fisherfaces. The proposed

NW-Fisherfaces outperformed other methods on the

ORL database. Figure 1 shows the plots of error rate

versus reduced dimensionality. Since the optimization

of LDA produces at most L - 1 features [20], the maxi-

mal dimension of Fisherfaces is also L - 1, where L is

the number of individuals. As observed, error rates of

O-Laplacianfaces are below those of PCA and LDA

after the dimension reaches a certain degree, which is

19 in Figure 2a. The error rates of NW-Fisherfaces are

lower than those of other methods where over all

dimensions below L - 1.
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Figure 1 Sample images of two different persons with different conditions.

Table 1 Performance Comparisons on the ORL Database

Method 4 Train 5 Train 6 Train 7 Train

Eigenfaces 80.25%(522) 78.24%(678) 77.15%(658) 75.49%(844)

Fisherfaces 47.69%(135) 50.30%(135) 48.78%(135) 49.71%(135)

D-LDA 39.59%(133) 37.13%(133) 31.43%(136) 26.45%(136)

N-LDA 41.32%(135) 44.36%(135) 45.28%(135) 51.32%(135)

O-Laplacianfaces 33.06%(198) 28.71%(355) 24.70%(443) 20.93%(543)

NW-Fisherfaces 31.05%(34) 26.27%(35) 21.96%(37) 17.70%(34)
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Figure 2 Error rate versus reduced dimensionality on the ORL database. (a) 2 Train, (b) 3 Train, (c) 4 Train, and (d) 5 Train.
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4.2. Yale database

The Yale face database contains 165 grayscale images of

15 individuals. There are 11 images per individual, one

per different facial expression or configuration: center-

light, w/glasses, happy, left-light, w/no glasses, normal,

right-light, sad, sleepy, surprised, and wink as shown in

Figure 3. The database is divided into training and test-

ing sets for experiment. The applied divisions are

n images per individual for training and 11 - n images

per individual for testing, where n = 2, 3, 4, and 5.

Furthermore, the experimental results are averaged over

20 random sets for each division. Table 2 and Figure 4

show the experimental results. The proposed NW-Fisher-

faces still outperformed other methods with low

dimensionality.

4.3. PIE database

The CMU PIE face database contains 41,368 face images

of 68 individuals. Each individual was imaged under var-

ious poses, illuminations, and expressions. In this study,

5 near frontal poses (C05, C07, C09, C27, and C29) and

all the images under various illuminations, lighting, and

expressions were gathered as 170 near frontal facial

images for each individual as shown in Figure 5. The

database is divided into training and testing sets for

experiment. The applied divisions are n images per indi-

vidual for training and 170 - n images per individual for

testing, where n = 5, 10, 20, and 30. Furthermore, the

experimental results were averaged over 20 random sets

for each division. Table 3 presents the least error rates

and the corresponding dimensions. Both O-Laplacian-

faces and NW-Fisherfaces outperformed the Fisherfaces

and Eigenfaces. O-Laplacianfaces resulted in the least

error rates on PIE database. However, the dimensional-

ity required by the NW-Fisherfaces to reach its least

error rate is much lower than the dimensionalities

required by other methods. As shown in Figure 6, NW-

Fisherfaces outperformed other methods over the

dimensions below L - 1, where L is the number of

individuals.

There is no result for N-LDA for PIE database after

10 Train. Because the sample number in training set is

larger than the dimension of feature, there was no null

space for within scatter matrix Sw.

4.4. PIE_Small database

The PIE_Small database is a part of PIE database. To

check the performance of the proposed method, we

reduced number of pictures for each subject. Instead of

170 images, we took 15 images for each person as

shown in Figure 7 and found that the performance of

the proposed method is better than that of others espe-

cially for small sample size data. The applied divisions

are n images per individual for training and 15 - n

images per individual for testing, where n = 5, 6, 7, and

8. Furthermore, the experimental results were averaged

over ten random sets for each division. Table 4 presents

the least error rates and the corresponding dimensions.

Both O-Laplacianfaces and NW-Fisherfaces outper-

formed the Fisherfaces and Eigenfaces. O-Laplacianfaces

resulted in the least error rates on PIE_Small database.

However, the dimensionality required by the NW-Fish-

erfaces to reach its least error rate is much lower than

the dimensionalities required by other methods. As

shown in Figure 8, NW-Fisherfaces outperformed other

methods over the dimensions below L - 1, where L is

the number of individuals.

4.5. AR database

In order to check the capability of invariance to lighting

condition and face orientation, which have been better

solved by 3D deformation approaches. We used AR face

database for our proposed method and we found that it

is giving better result compare to other method which

has been proposed previously.

In this database, there are totally 126 subjects (70

men, 56 women) and each subject has 26 different

images as shown in Figure 9. This had taken in differ-

ent facial expressions, illumination conditions, and

occlusions. The applied divisions are n images per

individual for training and 13 - n images per individual

for testing, where n = 5, 6, 7, and 8. Furthermore, the

experimental results are averaged over ten random

sets for each division. Table 5 and Figure 10 show

the experimental results. The proposed NW-Fisher-

faces still outperformed other methods with low

dimensionality.

The pictures were taken at the CVC under strictly

controlled conditions. No restrictions on wear (clothes,

Figure 3 Sample images of two different persons in 11 different facial expressions.
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Table 2 Performance comparisons on the Yale database

Method 2 Train 3 Train 4 Train 5 Train

Eigenfaces 53.96%(29) 50.04%(44) 44.33%(58) 42.28%(74)

Fisherfaces 56.48%(10) 40.08%(13) 30.95%(14) 26.22%(14)

D-LDA 75.30%(14) 44.79%(15) 37.67%(13) 32.94%(15)

N-LDA 45.52%(14) 33.25%(14) 26.60%(26) 22.71%(26)

O-Laplacianfaces 45.52%(14) 33.25%(14) 26.76%(14) 23.06%(14)

NW-Fisherfaces 43.30%(15) 31.83%(14) 24.10%(15) 20.00%(15)
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Figure 4 Error rate versus reduced dimensionality on the Yale database. (a) 2 Train, (b) 3 Train, (c) 4 Train, and (d) 5 Train.

Figure 5 Sample images of one individual with various expressions, illuminations, and lighting. There are totally 170 images for one

individual.
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Table 3 Performance comparisons on the PIE database

Method 5 Train 10 Train 20 Train 30 Train

Eigenfaces 76.50%(334) 64.68%(670) 48.88%(822) 1.92%(896)

Fisherfaces 42.58%(67) 29.24%(67) 21.53%(67) 10.93%(67)

D-LDA 39.70%(63) 24.64%(62) 14.26%(62) 9.80%(62)

O-Laplacianfaces 29.33%(131) 16.23%(272) 1.03%(601) 1.05%(701)

NW-Fisherfaces 33.97%(25) 20.34%(22) 1.66%(608) 1.08%(785)
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Figure 6 Error rate versus reduced dimensionality on the PIE database. (a) 5 Train, (b)10 Train, (c) 20 Train, and (d) 30 Train.

Figure 7 Initial 15 sample images of 5 different individuals from original PIE database with different expressions, illuminations, and

lighting.
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Table 4 Performance comparisons on the PIE_Small database

Method 5 Train 6 Train 7 Train 8 Train

Eigenfaces 55.97%(272) 51.26%(164) 47.00%(376) 43.34%(164)

Fisherfaces 39.56%(65) 34.64%(67) 32.74%(67) 29.35%(67)

D-LDA 36.32%(55) 31.47%(59) 28.51%(58) 25.76%(60)

N-LDA 29.97%(67) 26.36%(82) 25.18%(75) 22.73%(67)

O-Laplacianfaces 24.66%(99) 20.56%(97) 18.35%(99) 16.32%(99)

NW-Fisherfaces 25.21%(23) 20.00%(29) 17.50%(20) 15.69%(22)

Figure 9 Different 26 sample images of two individual. Intial first two rows are images of male in different conditions with various facial

expressions and last two rows are images of female with various facial expressions in different conditions.
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Figure 8 Error rate versus reduced dimensionality on the PIE_Small database. (a) 5 Train, (b) 6 Train, (c) 7 Train, and (d) 8 Train.
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glasses, etc.), make-up, hair style, etc. were imposed to

participants. Each person participated in two sessions,

separated by 2 weeks (14 days) time. The same pictures

were taken in both sessions.

In this face database, there are totally 13 expressions

of each person. The expressions are as follows: Neutral

expression, Smile, Anger, Scream, Left light on, Right

light on, All side lights on, Wearing sun glasses, Wear-

ing sun glasses and left light on, Wearing sun glasses

and right light on, Wearing scarf, Wearing scarf and left

light on, Wearing scarf and right light on 14 to 26: sec-

ond session (same conditions as 1 to 13).

5. Conclusions and future works
5.1. Conclusions

(1) The proposed NW-Fisherfaces consistently outper-

forms the Eigenfaces, Fisherfaces, D-LDA, and N-LDA

methods.

(2) This study applied a nonparametric feature extrac-

tion method into the scheme of appearance-based face

recognition.

(3) The proposed NW-Fisherfaces method weights the

between-class scatter to emphasize boundary structure

of the transformed face subspace and, therefore,

enhances the discriminability of face recognition.
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Figure 10 Error rate versus reduced dimensionality on the AR database. (a) 5 Train, (b) 6 Train, (c) 7 Train, and (d) 8 Train.

Table 5 Performance comparisons on the AR database

Method 4 Train 5 Train 6 Train 7 Train

Eigenfaces 80.25%(522) 78.24%(678) 77.15%(658) 75.49%(844)

Fisherfaces 47.69%(135) 50.30%(135) 48.78%(135) 49.71%(135)

D-LDA 39.59%(133) 37.13%(133) 31.43%(136) 26.45%(136)

N-LDA 41.32%(135) 44.36%(135) 45.28%(135) 51.32%(135)

O-Laplacianfaces 33.06%(198) 28.71%(355) 24.70%(443) 20.93%(543)

NW-Fisherfaces 31.05%(34) 26.27%(35) 21.96%(37) 17.70%(34)
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(4) For practical applications, the computational load

will depend on the dimensionality of the trained linear

projection matrix. In this study, experimental results

show that the proposed method can reach its lowest

error rate with low dimensionality. Hence, the NW-

Fisherfaces method is practical for real-world face recog-

nition due to the low dimensionality requirement.

5.2. Future works

The future research in this area could involve the

following.

(1) The supervised OLPP weights the scatter matrix to

preserve the locality of within class face. This weighting

concept may enhance the within-class scatter of LDA

and other LDA-based methods such as NDA and

NWFE.

(2) Linear feature extraction methods measure and

optimize closeness between samples depending on

Euclidean distance. However, Euclidean distance is basi-

cally light variant. Variance caused by lighting should be

reduced before using linear feature extraction methods.

Several solutions to reduce light variances of face images

are proposed:

(a) Mapping face images into the same intensity dis-

tribution by simple preprocessing such as histogram

specification.

(b) Transforming images into frequency domain by

Fourier-based methods such as Gabor wavelets.

The performance of NW-Fisherfaces in nonlinear fea-

ture space, such as kernel Hilbert space, can be further

evaluated.
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