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Abstract. An accurate and robust face recognition system was developed and tested. This system exploits the

feature extraction capabilities of the discrete cosine transform (DCT) and invokes certain normalization techniques

that increase its robustness to variations in facial geometry and illumination. The method was tested on a variety of

available face databases, including one collected at McGill University. The system was shown to perform very well

when compared to other approaches.
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1. Introduction

Face recognition by humans is a high level visual

task for which it has been extremely difficult to con-

struct detailed neurophysiological and psychophysi-

cal models. This is because faces are complex natu-

ral stimuli that differ dramatically from the artificially

constructed data often used in both human and com-

puter vision research. Thus, developing a computa-

tional approach to face recognition can prove to be

very difficult indeed. In fact, despite the many rel-

atively successful attempts to implement computer-

based face recognition systems, we have yet to see one

which combines speed, accuracy, and robustness to face

variations caused by 3D pose, facial expressions, and

aging. The primary difficulty in analyzing and recog-

nizing human faces arises because variations in a single

face can be very large, while variations between differ-

ent faces are quite small. That is, there is an inherent

structure to a human face, but that structure exhibits

large variations due to the presence of a multitude of

muscles in a particular face. Given that recognizing

faces is critical for humans in their everyday activi-

ties, automating this process would be very useful in a

wide range of applications including security, surveil-

lance, criminal identification, and video compression.

This paper discusses a new computational approach

to face recognition that, when combined with proper

face localization techniques, has proved to be very

efficacious.

This section begins with a survey of the face recog-

nition research performed to date. The proposed ap-

proach is then presented along with its objectives and

the motivations for choosing it. The section concludes

with an overview of the structure of the paper.

1.1. Background and Related Work

Most research on face recognition falls into two main

categories (Chellappa et al., 1995): feature-based and

holistic. Feature-based approaches to face recognition

basically rely on the detection and characterization of

individual facial features and their geometrical rela-

tionships. Such features generally include the eyes,

nose, and mouth. The detection of faces and their fea-

tures prior to performing verification or recognition

makes these approaches robust to positional variations

of the faces in the input image. Holistic or global ap-

proaches to face recognition, on the other hand, involve

encoding the entire facial image and treating the re-

sulting facial “code” as a point in a high-dimensional
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space. Thus, they assume that all faces are constrained

to particular positions, orientations, and scales.

Feature-based approaches were more predominant

in the early attempts at automating the process of face

recognition. Some of this early work involved the use of

very simple image processing techniques (such as edge

detection, signatures, and so on) for detecting faces

and their features (see, for example, Sakai et al., 1969;

Kelly, 1970). In Sakai et al. (1969), an edge map was

first extracted from an input image and then matched to

a large oval template, with possible variations in posi-

tion and size. The presence of a face was then confirmed

by searching for edges at estimated locations of certain

features like the eyes and mouth. Kelly (1970) used an

improved edge detector involving heuristic planning

to extract an accurate outline of a person’s head from

various backgrounds.

More recently, Govindaraju et al. (1990) proposed a

technique for locating a face in a cluttered image that

employed a deformable template similar to the ones

used in Yuille et al. (1989). They based their template

on the outline of the head and allowed it to deform ac-

cording to certain spring-based models. This approach

performed quite well when tested on a small data set,

but it sometimes gave rise to false alarms (Govindaraju

et al., 1990). Other recent approaches have used hi-

erarchical coarse-to-fine searches with template-based

matching criteria (Burt, 1989; Craw et al., 1992;

Shepherd, 1985).

Once a face has been located, its features must

be computed. Early examples of this are the work

of Kanade (1973) and Harmon (Harmon and Hunt,

1977) who worked with facial profile features. An in-

teresting recent discussion of feature-based methods,

which compares them to holistic approaches, is found

in Brunelli and Poggio (1993).

A successful holistic approach to face recognition

uses the Karhunen-Loeve transform (KLT). This trans-

form exhibits pattern recognition properties that were

largely overlooked initially because of the complexity

involved in its computation (Chellappa et al., 1995).

Kirby and Sirovich (1990) originally proposed the KLT

to characterize faces. This transform produces an ex-

pansion of an input image in terms of a set of ba-

sis images or the so-called “eigenimages.” Turk and

Pentland (1991) proposed a face recognition system

based on the KLT in which only a few KLT coefficients

were used to represent faces in what they termed “face

space.” Each set of KLT coefficients representing a face

formed a point in this high-dimensional space. The sys-

tem performed well for frontal mug shot images (Turk

and Pentland, 1991). Specifically, it was tested on a

database of 16 individuals, but with several images per

person. These images covered changes in scale, orien-

tation, and lighting. The authors reported 96% correct

classification over lighting variations, 85% over orien-

tation variations, and 64% over size variations.

The KLT does not achieve adequate robustness

against variations in face orientation, position, and il-

lumination (as seen in the above results). That is why

it is usually accompanied by further processing to im-

prove its performance. For example, in Akamatsu et al.

(1991), operations were added to the KLT method to

standardize faces with respect to position and size.

Also, in Pentland et al. (1994), the authors still used

the KLT, but now on particular features of a face.

These features became part of the “feature space,” and

a distance-to-feature-space (DFFS) metric was used to

locate them in an image (such localization could serve

as a pre-processing stage for later normalization, crop-

ping, and classification). A similar idea of using ‘local’

information was presented in Lades et al. (1993). An

artificial neural network, which employed the so-called

dynamic link architecture (DLA), was used to achieve

distortion-invariant recognition. Local descriptors of

the input images were obtained using Gabor-based

wavelets. By conveying frequency, position, and ori-

entation information, this approach performed well on

relatively large databases.

Yet another holistic approach to face recognition is

that based on linear discriminant analysis (LDA) (see

Swets and Weng, 1996; Belhumeur et al., 1997). In this

approach, Fisher’s linear discriminant (Duda and Hart,

1973) is used (on the space of feature vectors obtained

by the KLT) to obtain the most discriminating features

of faces, rather than the most expressive ones given

by the KLT alone (Swets and Weng, 1996). In both

Swets and Weng (1996) and Belhumeur et al. (1997),

LDA resulted in better classification than in the case of

the KLT being applied alone, especially under varying

pose and illumination conditions.

As can be seen, there are merits to both feature-

based and holistic approaches to face recognition, and

it seems that they may both be necessary to meet the two

main objectives of a face recognition system: accuracy

and robustness. Holistic approaches may be accurate

for simple frontal mug shots, but they must be accompa-

nied by certain feature-based techniques to make them

more robust. In fact, this may be true for humans as

well. Both holistic information and feature information
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are essential for human recognition of faces. It is pos-

sible that global descriptions serve as a front-end for

more detailed feature-based perception (Bruce, 1990).

1.2. Approach and Motivation

This paper investigates an alternative holistic method

for face recognition and compares it to the popular KLT

approach. The basic idea is to use the discrete cosine

transform (DCT) as a means of feature extraction for

later face classification. The DCT is computed for a

cropped version of an input image containing a face,

and only a small subset of the coefficients is maintained

as a feature vector. This feature vector may be con-

ceived of as representing a point in a high-dimensional

“face” space as in Turk and Pentland (1991). Classifi-

cation is based on a simple Euclidean distance measure.

To improve performance, various normalization tech-

niques are invoked prior to recognition to account for

small perturbations in facial geometry and illumina-

tion.

The main merit of the DCT is its relationship to the

KLT. As is known, the KLT is an optimal transform

based on various performance criteria (Rosenfeld and

Kak, 1976). However, it is a statistical transform that

is only defined after specifying the characteristics of

the data set it is being applied to. Of the deterministic

discrete transforms, the DCT best approaches the KLT

(Jain, 1989). Thus, it is expected that it too will ex-

hibit desirable pattern recognition capabilities. If this

is shown to be the case, then the use of the DCT in

face recognition becomes of more value than the KLT

because of its computational speed.1 In fact, because

of the popularity of the JPEG image storage format

(which is based on the DCT (Pennebaker and Mitchell,

1993)), large efforts have been concentrated on devel-

oping fast algorithms for computing the DCT (Rao and

Yip, 1990). Furthermore, the KLT is not only more

computationally intensive, but it must also be rede-

fined every time the statistics of its input signals change.

Therefore, in the context of face recognition, the eigen-

vectors of the KLT (eigenfaces) should ideally be re-

computed every time a new face is added to the training

set of known faces (Turk and Pentland, 1991).

This paper compares the DCT to the KLT in order

to justify the use of the first in face recognition. The

mathematical relationship between the two transforms

is briefly described, and certain face recognition tests

are performed to support the hypothesis that the DCT

is indeed suitable for such an application.

1.3. Overview of the Paper

Following this introduction, Section 2 presents the

mathematical definition of the discrete cosine trans-

form as well as its relationship to the KLT. Then,

Section 3 discusses the basics of a face recognition sys-

tem using the discrete cosine transform. It details the

proposed algorithm and discusses the various param-

eters that may affect its performance. It also explains

the pre-processing steps involved prior to the use of

the DCT in recognition in order to improve its per-

formance. Section 4 highlights the proposed system’s

performance based on experimental results. Finally, the

paper ends with conclusions and suggestions for future

work.

2. The Discrete Cosine Transform

Data compression is essential for both biological and

computer signal processing. In fact, at the retinal level,

only approximately 1 million signals (out of almost 130

million from the photoreceptors) are projected to the

lateral geniculate nucleus (LGN) for further process-

ing, resulting in data compression of the order of 100:1

(Sekuler and Blake, 1994). By the time biological sig-

nals arrive at the higher visual centers of the brain, they

are transformed into signals conveying contrast (mag-

nitude), phase, frequency, and orientation information,

all of which are attributes of Fourier analysis. As will

be seen in this section, data compression is the main

feature of the discrete cosine transform. Also, since the

DCT is related to the discrete Fourier transform (Rao

and Yip, 1990), it can be computed efficiently. It is

these two properties of the DCT that we seek for face

recognition.

2.1. Definition

Ahmed, Natarajan, and Rao (1974) first introduced

the discrete cosine transform (DCT) in the early sev-

enties. Ever since, the DCT has grown in popular-

ity, and several variants have been proposed (Rao and

Yip, 1990). In particular, the DCT was categorized by

Wang (1984) into four slightly different transforma-

tions named DCT-I, DCT-II, DCT-III, and DCT-IV. Of

the four classes Wang defined, DCT-II was the one first

suggested by Ahmed et al., and it is the one of concern

in this paper.
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Given an input sequence u(n) of length N , its DCT,

v(k), is obtained by the following equation:

v(k) = α(k)

N−1
∑

n=0

u(n) cos

(

(2n + 1)πk

2N

)

0 ≤ k ≤ N − 1 (2.1a)

where

α(0) =
√

1

N
, α(k) =

√

2

N
1 ≤ k ≤ N − 1 (2.1b)

Alternatively, we can think of the sequence u(n) as a

vector and the DCT as a transformation matrix applied

to this vector to obtain the output v(k). In this case, the

DCT transformation matrix, C = {c(k, n)}, is defined

as follows:

c(k, n)

=



























1
√

N
k = 0, 0 ≤ n ≤ N − 1

√

2

N
cos

(

(2n + 1)πk

2N

)

1 ≤ k ≤ N − 1,

0 ≤ n ≤ N − 1

(2.2)

where k and n are the row and column indices, respec-

tively. Using Eq. (2.2), the DCT of the sequence u(n)

(or vector u) is simply

v = Cu (2.3)

The inverse discrete cosine transform permits us to

obtain u(n) from v(k). It is defined by:

u(n) =
N−1
∑

k=0

α(k)v(k) cos

(

(2n + 1)πk

2N

)

0 ≤ n ≤ N − 1 (2.4)

with α(k) as given in Eq. (2.1b). Using Eq. (2.3), the

inverse discrete cosine transform, u, of a vector v is

obtained by applying the inverse of matrix C to v. That

is, the inverse discrete cosine transform is found from

u = C−1v (2.5)

From these definitions, we observe that by apply-

ing the discrete cosine transform to an input sequence,

we simply decompose it into a weighted sum of basis

cosine sequences. This is obvious from Eq. (2.4) in

which u(n) is reconstructed by a summation of cosines

which are weighted by the DCT coefficients obtained

from Eq. (2.1) or (2.3). These basis sequences of the

DCT are the rows of the matrix C .

2.2. Compression Performance in Terms

of the Variance Distribution

The Karhunen-Loeve transform (KLT) is a statistically

optimal transform based on a number of performance

criteria. One of these criteria is the variance distribution

of transform coefficients. This criterion judges the per-

formance of a discrete transform by measuring its vari-

ance distribution for a random sequence having some

specific probability distribution function (Rao and Yip,

1990). It is desirable to have a small number of trans-

form coefficients with large variances such that all other

coefficients can be discarded with little error in the re-

construction of signals from the ones retained. The er-

ror criterion generally used when reconstructing from

truncated transforms is the mean-square error (MSE).

In terms of pattern recognition, it is noted that di-

mensionality reduction is perhaps as important an ob-

jective as class separability in an application such as

face recognition. Thus, a transform exhibiting large

variance distributions for a small number of coeffi-

cients is desirable. This is so because such a transform

would require less information to be stored and used

for recognition. In this respect, as well as others, the

DCT has been shown to approach the optimality of the

KLT (Pratt, 1991).

The variance distribution for the various discrete

transforms is usually measured when the input se-

quence is a stationary first-order Markov process

(Markov-1 process). Such a process has an auto-

covariance matrix of the form shown in Eq. (2.6) and

provides a good model for the scan lines of gray-scale

images (Jain, 1989). The matrix in Eq. (2.6) is a Toeplitz

matrix, which is expected since the process is stationary

(Jain, 1989). Thus, the variance distribution measures

are usually computed for random sequences of length

N that result in an auto-covariance matrix of the form:

R =

















1 ρ ρ2 .. ρN−1

ρ 1 ρ .. ρN−2

. . . .. .

. . . .. .

ρN−1 ρN−2 . .. 1

















ρ ≡ correlation coeff.

|ρ| < 1 (2.6)
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Figure 1. Variance distribution for a selection of discrete trans-

forms for N = 16 and ρ = 0.9 (adapted from K.R. Rao and P.

Yip, Discrete Cosine Transform—Algorithms, Advantages, Applica-

tions, New York: Academic, 1990). Data is shown for the following

transforms: discrete cosine transform (DCT), discrete Fourier trans-

form (DFT), slant transform (ST), discrete sine transform (type I)

(DST-I), discrete sine transform (type II) (DST-II), and Karhunen-

Loeve transform (KLT).

Figure 1 shows the variance distribution for a selec-

tion of discrete transforms given a first-order Markov

process of length N = 16 and ρ = 0.9. The data for this

curve were obtained directly from Rao and Yip (1990)

in which other curves for different lengths are also pre-

sented. The purpose here is to illustrate that the DCT

variance distribution, when compared to other deter-

ministic transforms, decreases most rapidly. The DCT

variance distribution is also very close to that of the

KLT, which confirms its near optimality. Both of these

observations highlight the potential of the DCT for data

compression and, more importantly, feature extraction.

2.3. Comparison with the KLT

The KLT completely decorrelates a signal in the trans-

form domain, minimizes MSE in data compression,

contains the most energy (variance) in the fewest

number of transform coefficients, and minimizes the

total representation entropy of the input sequence

(Rosenfeld and Kak, 1976). All of these properties,

particularly the first two, are extremely useful in pat-

tern recognition applications.

The computation of the KLT essentially involves the

determination of the eigenvectors of a covariance ma-

trix of a set of training sequences (images in the case

of face recognition). In particular, given M training

images of size, say, N × N , the covariance matrix of

interest is given by

C = A · AT (2.7)

where A is a matrix whose columns are the M training

images (after having an average face image subtracted

from each of them) reshaped into N 2-element vectors.

Note that because of the size of A, the computation of

the eigenvectors of C may be intractable. However, as

discussed in Turk and Pentland (1991), because M is

usually much smaller than N 2 in face recognition, the

eigenvectors of C can be obtained more efficiently by

computing the eigenvectors of another smaller matrix

(see (Turk and Pentland, 1991) for details). Once the

eigenvectors of C are obtained, only those with the

highest corresponding eigenvalues are usually retained

to form the KLT basis set. One measure for the fraction

of eigenvectors retained for the KLT basis set is given

by

θλ =

M ′
∑

l=1

λl

M
∑

l=1

λl

(2.8)

where λl is the lth eigenvalue of C and M ′ is the number

of eigenvectors forming the KLT basis set.

As can be seen from the definition of C in Eq. (2.7),

the KLT basis functions are data-dependent. Now, in

the case of a first-order Markov process, these ba-

sis functions can be found analytically (Rao and Yip,

1990). Moreover, these functions can be shown to be

asymptotically equivalent to the DCT basis functions

as ρ (of Eq. (2.6)) → 1 for any given N (Eq. (2.6))

and as N → ∞ for any given ρ (Rao and Yip, 1990).

It is this asymptotic equivalence that explains the near

optimal performance of the DCT in terms of its vari-

ance distribution for first-order Markov processes. In

fact, this equivalence also explains the near optimal

performance of the DCT based on a handful of other

criteria such as energy packing efficiency, residual cor-

relation, and mean-square error in estimation (Rao and

Yip, 1990). This provides a strong justification for the

use of the DCT for face recognition. Specifically, since

the KLT has been shown to be very effective in face

recognition (Pentland et al., 1994), it is expected that a

deterministic transform that is mathematically related

to it would probably perform just as well in the same

application.
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As for the computational complexity of the DCT and

KLT, it is evident from the above overview that the KLT

requires significant processing during training, since its

basis set is data-dependent. This overhead in compu-

tation, albeit occurring in a non-time-critical off-line

training process, is alleviated with the DCT. As for on-

line feature extraction, the KLT of an N × N image

can be computed in O(M ′N 2) time where M ′ is the

number of KLT basis vectors. In comparison, the DCT

of the same image can be computed in O(N 2log2 N )

time because of its relation to the discrete Fourier

transform—which can be implemented efficiently us-

ing the fast Fourier transform (Oppenheim and Schafer,

1989). This means that the DCT can be computation-

ally more efficient than the KLT depending on the size

of the KLT basis set.2

It is thus concluded that the discrete cosine transform

is very well suited to application in face recognition.

Because of the similarity of its basis functions to those

of the KLT, the DCT exhibits striking feature extraction

and data compression capabilities. In fact, coupled with

these, the ease and speed of the computation of the DCT

may even favor it over the KLT in face recognition.

3. Face Recognition Using the Discrete

Cosine Transform

3.1. Basic Algorithm

The face recognition algorithm discussed in this paper

is depicted in Fig. 2. It involves both face normaliza-

tion and recognition. Since face and eye localization

is not performed automatically, the eye coordinates of

the input faces need to be entered manually in order

to normalize the faces correctly. This requirement is

not a major limitation because the algorithm can eas-

ily be invoked after running a localization system such

as the one presented in Jebara (1996) or others in the

literature.

As can be seen from Fig. 2, the system receives as

input an image containing a face along with its eye

coordinates. It then executes both geometric and illu-

mination normalization functions as will be described

later. Once a normalized (and cropped) face is obtained,

it can be compared to other faces, under the same nom-

inal size, orientation, position, and illumination condi-

tions. This comparison is based on features extracted

using the DCT. The basic idea here is to compute the

DCT of the normalized face and retain a certain subset

of the DCT coefficients as a feature vector describing

this face. This feature vector contains the low-to-mid

frequency DCT coefficients, as these are the ones hav-

ing the highest variance. To recognize a particular in-

put face, the system compares this face’s feature vec-

tor to the feature vectors of the database faces using a

Euclidean distance nearest-neighbor classifier (Duda

and Hart, 1973). If the feature vector of the probe is

v and that of a database face is f, then the Euclidean

distance between the two is

d =
√

( f0 − v0)
2 + ( f1 − v1)

2 + · · · + ( fM−1 − vM−1)
2

(3.1)

where

v = [v0 v1 . . . vM−1]T

f = [ f0 f1 . . . fM−1]T (3.2)

and M is the number of DCT coefficients retained as

features. A match is obtained by minimizing d .

Note that this approach computes the DCT on the

entire normalized image. This is different from the

use of the DCT in the JPEG compression standard

(Pennebaker and Mitchell, 1993), in which the DCT

is computed on individual subsets of the image. The

use of the DCT on individual subsets of an image, as

in the JPEG standard, for face recognition has been

proposed in Shneier and Abdel-Mottaleb (1996) and

Eickeler et al. (2000).

Also, note that this approach basically assumes no

thresholds on d . That is, the system described always

assumes that the closest match is the correct match,

and no probe is ever rejected as unknown. If a thresh-

old q is defined on d , then the gallery face that mini-

mizes d would only be output as the match when d < q.

Otherwise, the probe would be declared as unknown. In

this way, one can actually define a threshold to achieve

100% recognition accuracy, but, of course, at the cost of

a certain number of rejections. In other words, the sys-

tem could end up declaring an input face as unknown

even though it exists in the gallery. Suitable values of q

can be obtained using the so-called Receiver Operating

Characteristic curve (ROC) (Grzybowski and Younger,

1997), as will be illustrated later.

3.2. Feature Extraction

To obtain the feature vector representing a face, its DCT

is computed, and only a subset of the obtained coeffi-

cients is retained. The size of this subset is chosen such

that it can sufficiently represent a face, but it can in fact
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Figure 2. Face recognition system using the DCT.

be quite small, as will be seen in the next section. As an

illustration, Fig. 3(a) shows a sample image of a face,

and Fig. 3(b) shows the low-to-mid frequency 8 × 8

subset of its DCT coefficients. It can be observed that

the DCT coefficients exhibit the expected behavior in

which a relatively large amount of information about

the original image is stored in a fairly small number of

coefficients. In fact, looking at Fig. 3(b), we note that

the DC term is more than 15,000 and the minimum

magnitude in the presented set of coefficients is less

than 1. Thus there is an order of 10,000 reduction in

coefficient magnitude in the first 64 DCT coefficients.

Most of the discarded coefficients have magnitudes less

than 1. For the purposes of this paper, square subsets,

similar to the one shown in Fig. 3(b), are used for the

feature vectors.

It should be noted that the size of the subset of DCT

coefficients retained as a feature vector may not be large

enough for achieving an accurate reconstruction of the

input image. That is, in the case of face recognition,

data compression ratios larger than the ones necessary

to render accurate reconstruction of input images are
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(a) (b)

Figure 3. Typical face image (a) of size 128 × 128 and an 8 × 8 subset of its DCT (b).

encountered. This observation, of course, has no rami-

fications on the performance evaluation of the system,

because accurate reconstruction is not a requirement.

In fact, this situation was also encountered in Turk and

Pentland (1991) where the KLT coefficients used in

face recognition were not sufficient to achieve a subjec-

tively acceptable facial reconstruction. Figure 4 shows

the effect of using a feature vector of size 64 to recon-

struct a typical face image. Now, it may be the case that

one chooses to use more DCT coefficients to represent

faces. However, there could be a cost associated with

(a) (b)

Figure 4. Effect of reconstructing a 128 × 128 image using only 64 DCT coefficients: (a) original (b) reconstructed.

doing so. Specifically, more coefficients do not nec-

essarily imply better recognition results, because by

adding them, one may actually be representing more

irrelevant information (Swets and Weng, 1996).

3.3. Normalization

Two kinds of normalization are performed in the pro-

posed face recognition system. The first deals with ge-

ometric distortions due to varying imaging conditions.
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That is, it attempts to compensate for position, scale,

and minor orientation variations in faces. This way,

feature vectors are always compared for images char-

acterized by the same conditions. The second kind of

normalization deals with the illumination of faces. The

reasoning here is that the variations in pixel intensities

between different images of faces could be due to illu-

mination conditions. Normalization in this case is not

very easily dealt with because illumination normaliza-

tion could result in an artificial tinting of light colored

faces and a corresponding lightening of dark colored

ones. In the following two subsections, the issues in-

volved in both kinds of normalization are presented,

and the stage is set for various experiments to test their

effectiveness for face recognition. These experiments

and their results are detailed in Section 4.

3.3.1. Geometry. The proposed system is a holistic

approach to face recognition. Thus it uses the image

of a whole face and, as discussed in Section 1, it is

expected to be sensitive to variations in facial scale

and orientation. An investigation of this effect was per-

formed in the case of the DCT to confirm this ob-

servation. The data used for this test were from the

MIT database, which is described, along with the other

databases studied, in a fair amount of detail in Section

4. This database contains a subset of faces that only

vary in scale. To investigate the effects of scale on face

recognition accuracy, faces at a single scale were used

as the gallery faces, and faces from two different scales

were used as the probes. Figure 5 illustrates how scale

can degrade the performance of a face recognition sys-

tem. In the figure, the term “Training Case” refers to

Figure 6. Three faces from the MIT database exhibiting scale variations. The labels refer to the experiments performed in Fig. 5.

Figure 5. Effect of varying scale on recognition accuracy. 64 DCT

coefficients were used for feature vectors, and 14 individuals of the

MIT database were considered.

the scale in the gallery images, and the terms “Case 1”

and “Case 2” describe the two scales that were avail-

able for the probes. Figure 6 shows examples of faces

from the training set and from the two cases of scale

investigated. These results indicate that the DCT ex-

hibits sensitivity to scale similar to that shown for the

KLT (Turk and Pentland, 1991).

The geometric normalization we have used basically

attempts to make all faces have the same size and same

frontal, upright pose. It also attempts to crop face im-

ages such that most of the background is excluded. To

achieve this, it uses the input face eye coordinates and

defines a transformation to place these eyes in standard

positions. That is, it scales faces such that the eyes are
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Figure 7. Geometric normalization and the parameters used. The final image dimensions are 128 × 128.

always the same distance apart, and it positions these

faces in an image such that most of the background is

excluded.

This normalization procedure is illustrated in Fig. 7,

and it is similar to that proposed in Brunelli and

Poggio (1993). Given the eye coordinates of the in-

put face image, the normalization procedure performs

the following three transformations: rotate the image

so that the eyes fall on a horizontal line, scale the im-

age (while maintaining the original aspect ratio) so that

the eye centers are at a fixed distance apart (36 pixels),

and translate the image to place the eyes at set positions

within a 128×128 cropping window (see Fig. 7). Note

that we only require the eye coordinates of input faces

in order to perform this normalization. Thus no knowl-

edge of individual face contours is available, which

means that we cannot easily exclude the whole back-

ground from the normalized images. Since we cannot

tailor an optimal normalization and cropping scheme

for each face without knowledge of its contours, the

dimensions shown in Fig. 7 were chosen to result in

as little background, hair, and clothing information as

possible, and they seemed appropriate given the varia-

tions in face geometry among people.

Another observation we can make about Fig. 7 is that

the normalization performed accounts for only two-

dimensional perturbations in orientation. That is, no

compensation is done for three-dimensional (in depth)

pose variations. This is a much more difficult problem

to deal with, and a satisfactory solution to it has yet to be

found. Of course, one could increase the robustness of

a face recognition system to 3-D pose variations by in-

cluding several training images containing such varia-

tions for a single person. The effect of doing this will be

discussed in the next section. Also, by two-dimensional

perturbations in orientation, we mean slight rotations

from the upright position. These rotations are the ones

that may arise naturally, even if people are looking

straight ahead (see Fig. 8 for an example). Of course,

larger 2-D rotations do not occur naturally and always

include some 3-D aspect to them, which obviously 2-D

normalization does not account for.

As for the actual normalization technique imple-

mented, it basically consists of defining and applying

a 2-D affine transformation, based on the relative eye

positions and their distance. Figure 9 illustrates the re-

sult of applying such a transformation on a sample face

image.

3.3.2. Illumination. Illumination variations play a

significant role in degrading the performance of a face

recognition system, even though Turk and Pentland in-

dicate that the correlation between face images under

different lighting conditions remains relatively high

(Turk and Pentland, 1991). In fact, experience has

shown that for large databases of images, obtained with

different sensors under different lighting conditions,

special care must be expended to ensure that recogni-

tion thresholds are not affected.

To compensate for illumination variations in our ex-

periments, we apply Hummel’s histogram modification

technique (Hummel, 1975). That is, we simply choose
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Figure 8. An example of naturally arising perturbations in face orientations.

Figure 9. An illustration of the normalization performed on faces. Note the changes in scale, orientation, and position.

a target histogram and then compute a gray-scale trans-

formation that would modify the input image histogram

to resemble the target. It should be noted that another

interesting approach to illumination compensation can

be found in Brunelli (1997), in which computer graph-

ics techniques are used to estimate and compensate for

illuminant direction. This alleviates the need to train

with multiple images under varying pose, but it also

has significant computational costs.

The key issue in illumination compensation is how

to select the target illumination. This is so because there

could be tradeoffs involved in choosing such a target,

especially if the face database contains a wide vari-

ety of skin tones. An extensive study of illumination
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compensation of faces for automatic recognition was

done in conjunction with these experiments. The aim

was to find an appropriate solution to this problem in

order to improve the performance of our system. The

results of this study are documented in an unpublished

report available from the authors (Hafed, 1996).

The main conclusion that can be drawn from the

study is that illumination normalization is very sen-

sitive to the choice of target illumination. That is, if

an average face is considered as a target, then all his-

tograms will be mapped onto one histogram that has

a reduced dynamic range (due to averaging), and the

net result is a loss of contrast in the facial images. In

turn, this loss of contrast makes all faces look some-

what similar, and some vital information about these

faces, like skin color, is lost. It was found that the best

compromise was achieved if the illumination of a sin-

gle face is adjusted so as to compensate for possible

non-uniform lighting conditions of the two halves of

the same face. That is, no inter-face normalization is

performed, and in this way, no artificial darkening or

lightening of faces occurs due to attempts to normalize

all faces to a single target. Of course, the results of illu-

mination normalization really depend on the database

being considered. For example, if the illumination of

faces in a database is sufficiently uniform, then illumi-

nation normalization techniques are redundant.

4. Experiments

This section describes experiments with the developed

face recognition system. These were fairly extensive,

and the hallmark of the work presented here is that the

DCT was put to the test under a wide variety of con-

ditions. Specifically, several databases, with significant

differences between them, were used in the experimen-

tation.

A flowchart of the system described in the previous

section is presented in Fig. 10. As can be seen, there is

a pre-processing stage in which the face codes for the

individual database images are extracted and stored for

later use. This stage can be thought of as a modeling

stage, which is necessary even for human beings: we

perform a correlation between what is seen and what is

already known in order to actually achieve recognition

(Sekuler and Blake, 1994). At run-time, a test input is

presented to the system, and its face codes are extracted.

The closest match is found by performing a search that

basically computes Euclidean distances and sorts the

results using a fast algorithm (Silvester, 1993).

Figure 10. Implementation of face recognition system: the various

modules used and the flowchart of operation.

This section begins with a brief overview of the

various face databases used for testing the system;

the differences among these databases are highlighted.

Then the experiments performed and their results are

presented and discussed.

4.1. Face Databases Considered

In order to establish the validity of the proposed face

recognition algorithm empirically, it was tested on a va-

riety of databases. As will be seen, there are significant

differences among these databases, and this, in fact,

was the motivation for considering all of them in eval-

uating our system. That is, the purpose was to show the

consistency of the results for a range of databases that

varied in the constraints imposed on the face images

acquired.

4.1.1. The Achermann Database. The Achermann

database was acquired at the University of Bern in

Switzerland and contains 300 images of 30 individuals.

For each individual in the database, a set of 10 images

was taken with certain constrained 3-D pose variations.
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Figure 11. Views included in the Achermann face database.

Figure 11 shows these variations for a typical face in

the database. Note that background and lighting condi-

tions were uniform for all images. Also, note that this

database permits the investigation of the sensitivity of

the DCT to 3-D variations and the observation of the

effects of increasing the number of training images per

person on recognition accuracy. Finally, it should be

mentioned that the database only contains males.

4.1.2. The Olivetti Database. The Olivetti database,

as the name suggests, originated at the Olivetti

Research Laboratory in England. It consists of 400 im-

ages of 40 individuals. Ten images were taken for each

individual, and few constraints on facial expression and

Figure 12. Views included in the Olivetti face database. Different people have different varieties of poses in this database.

pose were imposed. Furthermore, some of the captured

images were subject to illumination variations. There-

fore, it is expected that this is a more difficult database

to work with. However, the images do not include any

backgrounds whatsoever. This database includes both

males and females, and it can prove useful in inves-

tigating the effects of an increased number of training

images per person. Figure 12 presents a sample set from

this database.

4.1.3. The MIT Database. The MIT database used

in this study consists of 432 images of 16 individuals.

Twenty-seven images were obtained for each person in

the database, and variations such as scale, orientation,
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Figure 13. A subset of the various pictures of people in the MIT database. The top row shows variations in scale, the second row shows

variations in orientation, and the third row shows variations in illumination. The remaining views in this database combine two or more of the

variations shown here.

and lighting were included. Specifically, three cases

of scale, three cases of orientation, and three cases of

lighting conditions were considered. Then all combina-

tions of these cases were taken. This database is useful

for testing the efficacy of the normalization techniques

described in the previous section. However, it is quite

small and only includes males. Figure 13 shows sample

faces from this database.

4.1.4. The CIM Database. The final database consid-

ered in this study was the CIM Face Database, which

was obtained at the Center for Intelligent Machines

(CIM) in McGill University. The database was col-

lected for the purpose of this and other CIM projects

during McGill University’s recent 175th Anniversary

Open House. It is a fairly large database and was

designed to combine many of the features of the data-

bases mentioned so far. Specifically, the database con-

sists of 231 individuals for which 8 images per individ-

ual were taken. These 8 images covered variations in

2-D orientation, 3-D pose, and facial expression, as can

be seen from Fig. 14. In fact, the CIM database com-

bines the orientation variations of the MIT database

with the 3-D pose changes of the Achermann database

and the facial expression variations in the Olivetti

database. It also includes people of various age, gender,

and skin tone, and it thus poses a significant challenge

to the DCT as well as to the normalization techniques

used. An example of the variety encountered in the

CIM Face Database is shown in Fig. 15. It should be

noted that this database consists of approximately 70%

males, 30% females, and 16% children.
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Figure 14. Views included in the CIM face database.

Figure 15. A sample set obtained from the CIM face database illustrating the variations of faces encountered in it. Facial expression variations

also exist in the database.

4.2. Testing

In this section, various results are presented and dis-

cussed. We begin with the effects of the number of

training images per person on recognition. Then, we

consider varying the sizes of the feature vectors and

observing the effects on recognition accuracy. Normal-

ization is tested next, and finally, some general results

are presented.

4.2.1. Number of Face Models Per Person. It is

expected that the recognition accuracy of a face

recognition system will improve as the number of face

models per person increases. By face model we mean

the image whose feature vector is stored in the system’s

database file or “memory.” If a system has more than

one face model for a particular person, then it “knows”

more than one view of that person and thus can recog-

nize him/her under more than one condition. Increasing

the number of models per person is a simple and ef-

fective way of accounting for 3-D pose variations in

faces. This solution may actually be likened to the sit-

uation in some biological vision systems where face

selective cells have been shown to exist in the brain
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Figure 16. Effect of varying the number of training images/person

on recognition accuracy for the Achermann database. 64 DCT

coefficients were used for the feature vectors.

(Perrett et al., 1987). In fact, these face selective cells

respond optimally to certain face poses.

Two experiments were performed to investigate the

effects of varying the number of face models per per-

son on recognition accuracy. These were performed

without any normalization because none was necessary.

In each of the databases considered, the faces were all

of similar size and orientation, and they were obtained

with the same background. The first experiment was

performed on the Achermann database, and the results

are presented in Fig. 16. Note that feature vectors of

size 64 were used. Also note that the face models were

chosen to be the odd numbered views in Fig. 11. So, for

example, if two face models were used, then views 1

and 3 in Fig. 11 were selected and the remaining views

were taken as the test inputs. That is, for this example,

the system “memory” consisted of views 1 and 3 of all

individuals in the database, and the probe set consisted

of all remaining views. As can be seen, the expected

increase in recognition accuracy is evident in Fig. 16.

Examining the figure, we note that the recognition

accuracy is not very high when only one face model

per person is used. This is expected because the single

face model was a frontal image and the remaining test

inputs exhibited large variations in 3-D pose. We also

note that with 5 training images, the recognition rate

becomes very high. Again this is expected because of

the nature of the Achermann database. In other words,

this is a relatively easy database to deal with because

of the constraints put on the faces. All faces were of

the same size, all rotations were controlled, and all

Figure 17. Effect of varying the number of training images/person

on recognition accuracy for the Olivetti database. 49 DCT coeffi-

cients were used for the feature vectors. The two dashed curves are

those obtained using the KLT with different values of θλ (Eq. (2.8)).

facial expressions were standardized. In fact, looking

at Fig. 11, we observe that the odd and even numbered

views look almost identical.

Perhaps a more realistic data set to consider is the

Olivetti database. A similar experiment was performed,

and the results are highlighted in Fig. 17. In this exper-

iment, 49 DCT coefficients were used for the feature

vectors. Views 1 to 5 in Fig. 12 were used for the face

models. That is, when 3 face models were included, for

example, views 1 to 3 were considered to be training

images and the remaining views were the test inputs.

As can be seen from Fig. 17, the same trend observed

in Fig. 16 is present here. However, the overall perfor-

mance is slightly inferior, as was predicted. In any case,

it can be observed that very high recognition rates can

be achieved with a small increase in the number of face

models per person.

Figure 17 also indicates the performance of the KLT

in the same experiment. The two curves shown are for

different values of θλ (Eq. (2.8)). As can be seen, the

performance of the DCT is comparable to that of the

KLT. However, the larger feature vectors required to

achieve the performance shown in the figure disadvan-

tage the KLT. For example, when 4 training images are

used and θλ is 0.99, the number of KLT coefficients in

each feature vector is 138 (as opposed to 49 for the case

of the DCT). To compare the performance of the DCT

to other face recognition methods, the reader is referred

to Table 3 in Eickeler et al. (2000). In this table, the

authors report performance measures for various face
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recognition methods using the Olivetti database with

five training images person. According to Fig. 17, the

DCT achieves 91% accuracy under such conditions.

Note that, excluding the following sub-section, all

other experiments in this paper were performed with

only one face model per person.

4.2.2. Number of DCT Coefficients. In this section,

we present the recognition accuracy of our system as

a function of the number of DCT coefficients used.

The experiment performed involved the Achermann

database and basically consisted of a pair-wise match-

ing of all faces in this database. That is, for each of the

300 images in the database, the closest match from the

remaining 299 was found. This was repeated for vari-

ous numbers of DCT coefficients, and the results are as

shown in Fig. 18. It should be noted that this experiment

utilizes the take-one-out method often used in pattern

recognition applications to evaluate classifiers. We ob-

serve that the recognition accuracy becomes very high

at certain points, where it actually exceeds 99%. This

is true for two main reasons. First, pair-wise matching

means that we are effectively using 9 face models per

person and are thus accounting for all possible poses

encountered in the test inputs. Second, the Achermann

data were obtained under fairly strict conditions, and it

was observed earlier that this database was relatively

easy to deal with.

The reason Fig. 18 was generated was to show how

the number of DCT coefficients used might have an ef-

fect on the performance of our system. We observe that

Figure 18. Effect of varying the number of DCT coefficients on

recognition accuracy. The experiment involved pair-wise matching

of the Achermann database faces.

there is a slight decrease in recognition accuracy as we

go to higher numbers of coefficients. Also, note that

only 64 DCT coefficients are enough to achieve good

accuracy. This confirms the earlier discussion about

whether accurate reconstruction of images is neces-

sary for good performance, because in the case of the

Achermann database, 64 coefficients are far from suffi-

cient for an accurate reconstruction of the faces. Finally,

experiments on other databases yielded curves similar

to Fig. 18.

4.2.3. Geometric Normalization. We now turn to

the effects of the affine transformation discussed in

Section 3. Namely, it was shown in Fig. 5 that scale

variations could have detrimental effects on the per-

formance of our face recognition system. This, in fact,

is also true for orientation variations. In this section,

we repeated the experiment described in Section 3.3.1

but with face normalization. The faces used are from

the MIT database, normalized to yield images like the

ones shown in Fig. 19. Figure 20 shows a tremendous

improvement in the system’s recognition rate.

The normalization technique proposed in Section

3.3.1 accounts for 2-D rotations of faces. However,

one must be careful when dealing with such rotations,

because for large angles of rotation, significant 3-D

distortion becomes evident. That is, because of the na-

ture of the human head and neck mechanism, we ob-

serve that large orientation changes also produce slight

pose variations. Thus, a simple 2-D rotation will not

fully re-orient a face to its frontal position. This is illus-

trated clearly in Fig. 21, where we can observe how the

normalized image exhibits 3-D distortion. Of course, as

was shown in Fig. 8, small-scale perturbations in ori-

entation do arise naturally when people look straight

ahead, and that is why the normalization technique used

here is still necessary. We note that combining this nor-

malization with multiple face models to account for

3-D distortions in pose would be effective for the large

rotation angle exhibited in Fig. 21.

For the case of naturally arising perturbations in ori-

entation, the normalization technique discussed above

and in Section 3.3 was tested on 214 individuals in the

CIM database. In this experiment, view 1 in Fig. 14 was

used as the model for all people, and view 8 was used

as the test view. That is, we compared frontal poses to

other frontal poses, but we normalized to standardize

scale, position, and the slight variations in orientation

inherent in the database. We also used 49 DCT coef-

ficients for the feature vectors. The recognition rate in
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Figure 19. The faces of Fig. 6 after normalization. Note how normalization makes the images look almost identical.

Figure 20. Effect of normalization on the recognition accuracy for

the portion of the MIT database studied in Fig. 5.

this case was 84.58%. This experiment was also re-

peated using the KLT, and Table 1 summarizes our

findings. As can be seen, the DCT outperforms the

KLT when tested on the CIM database, and this may

be attributed to the increased size of this database. That

Table 1. A performance comparison between the DCT and KLT

on the CIM face database.

Method Number of coefficients Recognition accuracy

DCT 49 84.58%

20 73.36%

KLT 46 77.10%

158 77.57%

is, whereas the KLT performed fairly well and on par

with the DCT for the Olivetti database, its performance

did not scale well with database size. This observation

was also made in our other experiments, as will be

seen shortly. Also, note that the best KLT performance

is achieved when 158 coefficients are used to repre-

sent each face. With this number of coefficients, the

DCT was found to be computationally more efficient

than the KLT, as is expected based on the analysis of

Section 2.3.

Several other comments can be made about the per-

formance of the DCT on the CIM database. First, the

rate obtained here is better than the rates obtained in

Figs. 16 and 17, when only one face model was used.

This is to be expected because, in the case consid-

ered here, the probes were all frontal. No 3-D poses

were input to the system in this case. Also, note that 49

DCT coefficients were now used instead of the 64 that

were found to be optimal for the Achermann database

in Fig. 18. This number was obtained experimen-

tally by varying the number of DCT coefficients and

studying the recognition rates. Finally, as mentioned

earlier, there were very slight restrictions on facial

expressions in the CIM database, especially for view

8. So, in this respect, the CIM database is closer to the

Olivetti database than it is to the Achermann or MIT

databases. In fact, the CIM and Olivetti databases are

slightly more difficult than both the Achermann and

MIT ones.

4.2.4. Further Results. In this section, we present

additional experiments performed on the CIM Face

Database. These experiments were intended to further
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Figure 21. An example where 3-D pose distortions arise when large-scale head rotations (2-D) are attempted.

highlight the face recognition capabilities of the DCT,

and the CIM database was chosen because of its size

and variety. The results presented here show cumulative

recognition accuracy as a function of rank for a variety

of conditions. This format actually parallels that used

in Phillips et al. (1996). The basic idea behind this for-

mat is to show that even if the closest match (rank 1)

was not the correct match, the correct match almost

always appears in the top, say, 50 matches (or ranks).

That is, if a particular experiment results in a cumula-

tive recognition accuracy of 90% at rank 20, then the

correct match is among the closest 20 matches 90%

of the time. Below, we also show how the ROC curve

alluded to earlier in this paper can provide an estimate

of the system performance in a verification scenario.

The first experiment performed was on 214 individ-

uals in the CIM database, and involved frontal poses

only. Geometric normalization was done to standardize

scale, position, and orientation for all faces considered,

and no illumination normalization was performed. This

is because the faces in the CIM database are well illu-

minated, and experiments in Hafed (1996) suggested

that illumination normalization for these faces was un-

necessary. Finally, 49 DCT coefficients were used as

feature vectors. Figure 22 shows the results of this ex-

periment, as well as those obtained using the KLT. As

can be observed, the results are as expected: there is an

increase in the cumulative recognition accuracy with

rank. We also notice the slightly inferior performance

of the KLT when compared to the DCT. It should be

Figure 22. Cumulative recognition accuracy as a function of rank

for the CIM face database. The dashed curve shows the cumulative

recognition accuracy for the same database using the KLT.

noted that direct comparison of the results in Fig. 22

to those in Phillips et al. (1996) may not be very in-

formative because they were not obtained on the same

database.3

The next experiment performed was the same as the

one described above, but for adults only. The motiva-

tion for such an experiment was that some applications

of face recognition, like automatic banking machines,

for example, only involve adults, and an estimate of the

performance of the DCT in such a case was desirable.

The same experimental conditions as the ones above
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Figure 23. Cumulative recognition accuracy as a function of rank

for the adults in the CIM face database. The dashed curve shows

the cumulative recognition accuracy for the same database using the

KLT.

were replicated here, and Fig. 23 shows the results.

As can be observed, the same trend is noticed with a

slightly better performance at higher ranks. This is ex-

pected because the data set here is smaller. The DCT

again outperforms the KLT in this experiment.

As mentioned earlier, adding a threshold for the dis-

tance measure between features permits rejection of un-

known faces and verification of those that are known. In

other words, in a face verification scenario, we are given

an unknown face and a ‘claimed’ identity for that face.

If the distance between this face’s features and those of

the database image, against which it is being verified is

less than some threshold, the claim is accepted; other-

wise, it is rejected. Obviously, an ideal threshold would

be one that gives rise to 100% true positives (faces cor-

rectly accepted as known) and 0% false positives (faces

incorrectly accepted as known). However, in practice,

a tradeoff is bound to arise when choosing a threshold.

That is, if the distribution of same-person distances

overlaps with that of different-person distances, then

non-zero false positive rates will necessarily arise. The

problem then is to choose the optimum threshold that

would meet a particular system’s performance criteria.

This is where ROC analysis is extremely helpful. As

an example, Fig. 24 shows the ROC curve obtained

for a subset of the CIM database. Note that the thresh-

old value is implicit in this kind of analysis. However,

it should be evident that as the threshold is increased,

we travel upwards on the curve, towards increasing true

positive and false positive rates. We observe the tradeoff

between correct verification versus false acceptances.

Figure 24. An ROC curve obtained for a subset of our CIM face

database. The x-axis is shown in logarithmic scale to illustrate the

tradeoffs involved in choosing a verification threshold. The dashed

curve shows the ROC performance achieved using the KLT.

One can also observe the diminishing returns of thresh-

old increases. In fact, beyond a certain point, thresh-

old increases simply increase the number of errors in

verification, without improving the desired correct per-

formance (which in this case saturates at 100%). The

dashed curve in the figure was obtained using the KLT.

As can be seen, the performance of the DCT is very

similar to the KLT in a verification scenario on the

CIM database.

5. Conclusions and Comments

An alternative holistic approach to face recognition was

investigated and tested. The approach was based on the

discrete cosine transform, and experimental evidence

to confirm its usefulness and robustness was presented.

The mathematical relationship between the discrete co-

sine transform (DCT) and the Karhunen-Loeve trans-

form (KLT) explains the near-optimal performance of

the former. This mathematical relationship justifies the

use of the DCT for face recognition, in particular, be-

cause Turk and Pentland have already shown earlier

that the KLT performs well in this application (Turk and

Pentland, 1991). Experimentally, the DCT was shown

to perform very well in face recognition, just like the

KLT.

Face normalization techniques were also incorpo-

rated in the face recognition system discussed here.

Namely, an affine transformation was used to correct

for scale, position, and orientation changes in faces.
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It was seen that tremendous improvements in recogni-

tion rates could be achieved with such normalization.

Illumination normalization was also investigated ex-

tensively. Various approaches to the problem of com-

pensating for illumination variations among faces were

designed and tested, and it was concluded that the

recognition rate of our system was sensitive to many

of these approaches. This was partly because the faces

in the databases used for the tests were uniformly illu-

minated and partly because these databases contained

a wide variety of skin tones. That is, certain illumina-

tion normalization techniques had a tendency to make

all faces have the same overall gray-scale intensity, and

they thus resulted in the loss of much of the information

about the individuals’ skin tones.

A complexity comparison between the DCT and the

KLT is of interest. In the proposed method, training

essentially means computing the DCT coefficients of

all the database faces. On the other hand, using the

KLT, training entails computing the basis vectors of the

transformation. This means that the KLT is more com-

putationally expensive with respect to training. How-

ever, once the KLT basis vectors have been obtained,

it may be argued that computing the KLT coefficients

for recognition is trivial. But this is also true of the

DCT, with the additional proviso that the DCT may

take advantage of very efficient computational algo-

rithms (Rao and Yip, 1990). For example, with 158

basis vectors (which is the number that provided the

best performance for the CIM database) and 128 ×
128 images, the KLT computation required around five

times more computational time than the DCT compu-

tation on a 200MHz personal computer.

As for the issue of multiple face models per per-

son, it has been argued that this might be a simple

way to deal with 3D facial distortions. In this regard,

the KLT method is also not distortion-invariant, so it

would suffer from similar speed degradation if it were

to deal with face distortions in this manner. On the other

hand, a method like that described in Wiskott and von

der Malsburg (1995) is said to be distortion-invariant.

This method performs relatively well, but being based

on the Dynamic Link Architecture (DLA), it is not

very efficient. Specifically, in this method, matching

is dependent on synaptic plasticity in a self-organizing

neural network. Thus, to recognize a face, a system

based on this method has to first match this face to all

models (through this process of map self-organization)

and then choose the model that minimizes some cost

function. Clearly, simulating the dynamics of a neural

network for each model face in a database in order to

recognize an input image is computationally expensive.

Therefore, it seems that there remains a strong tradeoff

between performance and complexity in many existing

face recognition algorithms.

This paper has discussed a face recognition system

using the DCT, which included both geometrical and

illumination normalization techniques. Naturally, im-

provements to the proposed system can be envisioned.

For example, the system lacks face localization capa-

bilities. It would be desirable to add one of the many

reported methods in the literature so that the system

could be completely independent of the manual input

of the eye coordinates. In fact, the DCT could be used

to perform this localization. That is, frequency domain

information obtained from the DCT could be used to

implement template-matching algorithms for finding

faces or eyes in images. Geometric normalization could

also be generalized to account for 3-D pose variations

in faces. As for illumination compensation, we have ob-

served that light-colored faces were artificially tinted

and darker colored faces brightened due to the choice of

target face illumination used when applying histogram

modification. Thus, being able to categorize individu-

als in terms of, perhaps, skin color could be used to de-

fine different target illuminations, independently tuned

to suit various subsets of the population. For exam-

ple, an average of Caucasian faces would not be very

well suited to modify the illumination of black faces,

and vice versa. This classification approach would have

the advantage of reducing the sensitivity of the system

to illumination normalization.

Finally, we can contemplate other enhancements

similar to those attempted for the KLT method. For

example, the DCT could be used as a first stage trans-

formation followed by linear discriminant analysis, as

in Belhumeur et al. (1997). Also, the DCT could be

computed for local facial features in addition to the

global computation proposed here. This, while moder-

ately enlarging the size of the feature vectors, would

most likely yield better performance.

Notes

1. This will be discussed in a later section.

2. See Sections 4 and 5 for more on this point.

3. The much-discussed FERET database is absolutely not available

to researchers outside the USA. It is rather unfortunate that this

database is being used as a de facto standard by some and that

numerous papers are being published in the literature based on
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experiments with it. Even the reviewers of this paper asked for

comparisons with FERET and questioned the conclusions in this

section. We were unable to perform such comparisons because

of the restrictions on the usage of FERET. The US government,

however, should be very pleased; none of the researchers we

contacted was willing to let us have access to the FERET data

since all had signed nondisclosure agreements!
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