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Abstract

Plastic surgery procedures on the face introduce skin texture variations between images of the same person

(intra-subject), thereby making the task of face recognition more difficult than in normal scenario. Usually, in

contemporary face recognition systems, the original gray-level face image is used as input to the Gabor descriptor,

which translates to encoding some texture properties of the face image. The texture-encoding process significantly

degrades the performance of such systems in the case of plastic surgery due to the presence of surgically induced

intra-subject variations. Based on the proposition that the shape of significant facial components such as eyes, nose,

eyebrow, and mouth remains unchanged after plastic surgery, this paper employs an edge-based Gabor feature

representation approach for the recognition of surgically altered face images. We use the edge information, which

is dependent on the shapes of the significant facial components, to address the plastic surgery-induced texture

variation problems. To ensure that the significant facial components represent useful edge information with little

or no false edges, a simple illumination normalization technique is proposed for preprocessing. Gabor wavelet is

applied to the edge image to accentuate on the uniqueness of the significant facial components for discriminating

among different subjects. The performance of the proposed method is evaluated on the Georgia Tech (GT) and the

Labeled Faces in the Wild (LFW) databases with illumination and expression problems, and the plastic surgery

database with texture changes. Results show that the proposed edge-based Gabor feature representation approach is

robust against plastic surgery-induced face variations amidst expression and illumination problems and outperforms

the existing plastic surgery face recognition methods reported in the literature.
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1 Introduction
The much attention given to face recognition within the

research and commercial community can be associated

with its real-world application potentials in areas such as

surveillance, homeland security, and border control.

Among the most challenging tasks for face recognition

in these application scenarios is the development of ro-

bust face recognition systems [1]. This implies that apart

from recognizing faces under normal scenario, such sys-

tems should also be able to successfully handle issues

arising from unconstrained conditions. The face recogni-

tion under unconstrained conditions results in faces

which are termed here and throughout this paper as the

unconstrained faces.

Typically, unconstrained faces include faces that are sub-

ject to factors such as changes in illumination direction,

pose, expression, and recently introduced variations due to

plastic surgery [2]. The problem of pose, expressions, and

illumination in face recognition has been addressed in a

good number of literatures, some of which are [3-9]. How-

ever, there has been scanty literature on the recognition of

surgically altered faces. Like changes in illumination direc-

tion, plastic surgery procedures induce intra-subject (face

image versions of the same person) dissimilarity, which are

impediments to robust face recognition. Such problem can

be exacerbated when other conditions such as pose and ex-

pression are included. The main focus of this paper is to

address the recognition problems that arise from condi-

tions where the face is surgically altered.

To solve the problem of face recognition under uncon-

strained conditions, let us take a quick look at a typical

face recognition system as shown in Figure 1. This system
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mainly consists of the face preprocessing, face representa-

tion, and face classification stages. Among these three

stages, the face representation stage has been identified as

a fundamental component in face recognition that is ne-

cessary for minimizing intra-subject variations as well as

increasing inter-subject discrimination margin [10-12].

Over the past years, many face representation approaches

such as eigenface [13], fisherface [14], Gabor [11], and local

binary pattern (LBP) [15] have been introduced. The eigen-

face and fisherface are categorized as global approaches,

while Gabor [11] and LBP [15] are categorized as local ap-

proaches. In a study by Heisele et al. [16], a comparison be-

tween the global approaches and the local approaches

shows that the local matching methods outperform the

global matching methods in accurate face identification.

Hence, in the ensuing discussions, emphasis will be on the

local approach.

The local approach, LBP, describes a central point

pixel by the changes in its neighboring pixels. According

to Vu and Caplier [17], the LBP is basically a fine-scale

descriptor that mostly captures small texture details. Some

of the existing LBP-based descriptors are the monogenic-

local binary pattern (M-LBP) [18], local binary pattern

histogram Fourier features (LBP-HF) [9], and local Gabor

binary pattern histogram sequence (LGBPHS) [8], which

utilize image texture properties that LBP encodes. For

faces altered by plastic surgery procedures that introduce

texture variations on face images, the LBP-based descrip-

tors fall short since they mostly encode texture properties

of the face. Hence, the face recognition system that utilizes

texture variant descriptors may not be hardy against faces

altered by plastic surgery procedures.

On the other hand, Gabor descriptor captures salient

visual properties such as spatial localization, orientation,

selectivity, and spatial frequency characteristics [9]. Gabor

typically encodes facial shape and appearance [17], which

makes it robust against factors such as facial expression

[4-6], mutilated faces [19], occlusion [7], and pose [3].

Gabor is also good for small sample size problem [11].

However, studies have shown that Gabor features are

sensitive to gross changes in illumination direction [12]

and does retain some elements of small-scale textures [20].

Hence, compensating for the influence of illumination

changes and texture changes for unconstrained faces is a

necessary step towards a robust Gabor feature descriptor

for surgically altered images.

Before addressing the illumination problem for the de-

scriptor, one has to take into cognizance the type of face

images that are input to the descriptor. Basically, in face

recognition tasks, the inputs are the original gray-level

(intensity) image. The intensity-based methods encode

image texture properties [21]. The robustness of the

texture-encoding approach in the recognition of surgi-

cally altered faces can be assessed by considering a typ-

ical scenario. A typical gross case of plastic surgery is

the rhytidectomy, which is a procedure that changes the

global appearance of a face. This surgery procedure fun-

damentally enhances facial skin texture from an aging

state to a younger state, hence bringing about change in

skin texture. In most cases, rhytidectomy is combined

with some surgery procedures such as nose reshaping,

eye lift, and jaw enhancement, which change the face

appearance (increases intra-subject variation), but might

not necessarily change the shape of the facial compo-

nents. In other words, rhytidectomy is an embodiment

of local and global appearance-changing surgery proce-

dures, which may explain the challenges that the existing

intensity-based recognition methods in the case of rhyti-

dectomy [2] and subsequent works [22-25] faced. In

contrast to the original gray-level image, the image edge in-

formation is an alternative because only valuable represen-

tation of the most significant details of the face is retained,

which we presume is a good candidate for the recognition

of surgically altered faces. However, as pointed out by Gao

and Qi [26], edge information are insensitive to illumin-

ation changes but only to a certain extent. The question

then is to what extent? The extent to which the edge infor-

mation is insensitive to illumination is dependent on light

distribution across the illuminated object. Hence, if we can

eliminate or reduce the effect of the inconsistent lighting

of the face, then the edge information will richly re-

tain the shape of significant facial components, which may

Figure 1 Architecture of a typical face recognition system. Dashed rectangles highlight the contribution points of this paper.
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minimize intra-subject variations induced by plastic sur-

gery. And to the best of our knowledge, this alternative has

not been explored in the recognition of surgically altered

face images. Our work considers exploring the shape of the

facial components to address the intra-subject dissimilarity

problem due to plastic surgery.

In compensating for illumination variations, illumin-

ation normalization techniques are often employed.

These techniques compensate for illumination variations

while retaining image feature shape characteristics [27].

Some of the existing illumination normalization tech-

niques include the histogram equalization (HE) [28],

gamma correction (GC) [29], the logarithm transform

(LT) [30], and the quotient image techniques [31]. The

HE is normally used to make an image have a uniform

histogram to produce an optimal global contrast in the

image. However, HE may make an image that has un-

even illumination turn to be more uneven. The LT

works best at shadow regions of a given image [30]. For

the quotient image-based techniques, it is known that

they are dependent on the albedo (texture) [31]. Since

the quotient image-based techniques comprise the ratio

of albedo (texture) between a test face and a given face,

edge information obtained from such techniques have

the likelihood of containing many false edges [32]. The

GC corrects the overall brightness of a face image to a

pre-defined ‘canonical form’, which fades away the effect

of varying lighting. But, the GC is still affected by some

level of directional lighting as pointed out by [33].

We may note at this point that all the above men-

tioned illumination normalization techniques are used

on gray-scale images. However, in recent times, most

face images that are acquired and are available for face

recognition task are color images. Studies have shown

that illumination effect due to changes in light direction

can be addressed in the color domain when the source

color is known and constant over a scene [34,35]. Ac-

cording to Zickler et al. [34], red, green, and blue (rgb)

color space transformations remove the effect of illumin-

ation direction without explicit specular/diffuse separation.

This claim is also supported by the work of Finlayson et al.

[35], where it is highlighted that the image dependencies

due to lighting geometry can be removed by normal-

izing the magnitude of the rgb pixel triplets. Therefore, in-

spired by these studies, the proposition of illumination

normalization steps that take advantage of color domain

normalization to improve the performance of edge-based

face recognition systems is desired.

1.1 Related works

Face recognition performance in plastic surgery scenarios

for cases such as rhytidectomy (face and mid-face lift),

rhinoplasty (nose reshaping), blepharoplasty (eye surgery),

otoplasty (ear surgery), browlift, dermabrasion, and skin

peeling has been investigated [2,22-24,35-38]. Bhatt et al.

[24,25] adopted non-disjoint face granulation approach

where the granules are obtained from HE-normalized im-

ages. The features were then extracted using the extended

uniform circular local binary patterns (EUCLBP) and scale

invariant feature transform (SIFT). The performance of

their method is significantly impacted by rhytidectomy

procedure. In [23], a Gabor patch classifier that uses the

rank-order list fused from equal and non-overlapping

patches of surgically altered face images for discrimination

was proposed. Aggarwal et al. [36] adopted a part-wise

sparse representation approach for matching plastic

surgery-altered faces. They employed the intensity charac-

teristics of the principal component analysis (PCA)-based

representation of the six facial components cropped from

each face image. The facial components were then fused

to determine the sparse representation error. A match is

found if the probe sample produces smallest representa-

tion error to a test sample. In [37,38], the multimodal

biometrics, such as holistic face information and the

periocular region, were adopted. Then, the features were

extracted using shape local binary texture and Gabor. In

[22], the method of face analysis for commercial entities

(FACE) was adopted. The FACE utilizes correlation index

obtained from defined subregions between two images. By

correcting for illumination problem using self-quotient

image, an improved performance was obtained using the

FACE method. With particular interest in rhytidectomy, it

is worth pointing out that though the recognition results in

[2,22] suggest that the algorithms have tried to address the

challenges in face recognition in the event of rhytidectomy,

there is still a significant scope for further improvement.

1.2 Our contributions and paper organization

In the following, we summarize the main contributions

of this paper.

� We propose illumination normalization steps that

reduce image dependency on illumination direction

and control edge extraction sensitivity to illumination

for the purpose of face recognition. The proposed

illumination normalization steps are obtained from

fusing RGB normalization (rgbN) method and the

non-linear pixel power transform method termed GC

for color images. We term this proposed steps the

rgb-gamma encoding (rgbGE) technique.

� Under the assumption that the shape of the facial

components might remain unchanged after surgery,

we propose edge-based Gabor face representation

for face recognition of surgically altered face images.

The shape of significant facial components is

retained by extracting gradient magnitude information

from the rgbGE-normalized face image so as to

minimize the intra-subject variations due to surgery.
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� By means of experimental results, we show that the

edge-based Gabor face representation approach

performs significantly well in a simple nearest

neighbor search face recognition framework. And the

robustness of the proposed approach is investigated

first with typically investigated problems such as pose,

expression, and illumination problems and then

plastic surgery.

The rest of this paper is organized as follows. In Section 2,

the illumination normalization is presented. We present in

Section 3 the proposed edge-based Gabor face representa-

tion approach. In Section 4, the face recognition experiment

using the proposed face representation approach is pre-

sented. Finally, conclusions are drawn in Section 5.

2 Illumination normalization
As highlighted earlier, the changes in illumination condi-

tion results in false edges with respect to edge informa-

tion extraction, and this has to be properly addressed. In

this section, a brief review of the face reflectance model

is firstly provided in such a manner that establishes a co-

herent basis for presenting the proposed illumination

normalization technique. Subsequently, the proposed tech-

nique and the related step-by-step procedure for actualiz-

ing the technique are presented.

2.1 Face reflectance model

Light reflections from most surfaces are of two basic

types, namely, the diffuse and specular reflections. The

diffuse reflection defines the case where the incident

light is reflected equally in all directions [39] and is well

described by the Lambertian model [40]. The specular

reflection for a smooth surface defines the case where

the incident light is reflected in a mirror-like direction

from the surface [41]. These reflections are often mod-

elled using the Phong reflectance model [42].

To model a typical image captured using RGB camera

sensor, we use the dichromatic reflection model described

by Shafer [43], which includes the Lambertian term and

the Phong's specular term. This model is given by

Ik cð Þ ¼ wd cð Þ
Z

w

Sc λð ÞE λð ÞCk λð Þdλþ ws cð Þ
Z

w

E λð ÞCk λð Þdλ; k ¼ r; g; b

ð1Þ

¼ wd cð Þ Dk cð Þ þ ws cð ÞGk ; ð2Þ

where Dk cð Þ ¼
Z

w

Sc λð Þ E λð Þ Ck λð Þ dλ , Gk ¼
Z

w

E λð Þ Ck

λð Þ dλ , Ik = {Ir, Ig, Ib} is the color vector of image

intensity, λ is the wavelength of the light, Sc(λ) is the

spectral reflectance on a surface point c (where c is of

spatial coordinates {x, y}). E(λ) is the spectral power dis-

tribution of the incident light, and Ck(λ) is the spectral

sensitivity of the sensor. The terms wd and ws are the dif-

fuse and specular terms of the incoming light, respect-

ively. The first part of the right-hand side of (2) is the

diffuse component, while the second part is the specular

component.

For the color vectors {r, g, b}, (2) can be rewritten as

Ik cð Þ ¼
wd cð ÞDr cð Þ þ ws cð ÞGr

wd cð ÞDg cð Þ þ ws cð ÞGg

wd cð ÞDb cð Þ þ ws cð ÞGb

2

4

3

5 ¼
Ir cð Þ
Ig cð Þ
Ib cð Þ

2

4

3

5 ð3Þ

Equation 3 describes the intensity components, which

comprise diffuse and specular reflections for an RGB image

captured in uncontrolled lighting environment. Mathemat-

ically, the objective of the proposed normalization tech-

nique is to reduce/eliminate the dependency of Ik(c) on the

factors ws, Gr, Gg, and Gb. To achieve this objective, we

employ the merits of RGB and GC normalizations. The

RGB normalization will address the directional lighting

effect, while the GC normalizes a face image to a pre-

defined ‘canonical form’, which fades away the effect of

illumination.

2.2 RGB normalization

The normalized RGB (Nrgb) is used in [35,44]. The

Nrgb is expressed by [44]

βk cð Þ ¼ Ik cð Þ
Ir cð Þ þ Ig cð Þ þ Ib cð Þ ; ð4Þ

where βk = {βr, βg, βb} represents each color channel.

The computation of (4) results in the removal of inten-

sity variations from the image, so that the RGB compo-

nents of the image specify color only, and no luminance.

This ensures that the normalized image becomes insensi-

tive to changes in illumination direction.

2.3 Gamma correction

Gamma correction is a non-linear operation generally

used to control image overall brightness. It is simply de-

fined by the power law expression with respect to the in-

put image Iinput and output image Ioutput, as

Ioutput ¼ I
γ
input; ð5Þ

where γ is the exponent of the power function. Usually,

the gamma value can be between the range [0,1] and is

referred to as the encoding gamma. Gamma encoding,

which is a form of non-linear transformation of pixels,

enhances the local dynamic range of the images in dark
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or shadowed regions while compressing it in bright

regions and at highlights [45]. For a given image I(c), the

gamma encoding transform is expressed as

G′ cð Þ ¼ I1=γ cð Þ ð6Þ

In essence, the transformation technique corrects

the problem of non-uniform intensity, where too much

bits belong to high intensities and too few bits to low

intensities.

2.4 Fusion of Nrgb and GC

The proposed illumination normalization technique rgbGE

fuses the merits of RGB normalization and GC described

above in order to compensate for illumination problem.

The steps in the fusion of Nrgb and GC techniques are

presented as follows:

� Step 1: Separate the image Ik(c) into the respective

RGB color channels, Ir(c), Ig(c), and Ib(c).

� Step 2: Obtain the square magnitude Im(c) of the

separated RGB color channel images in step 1;

thus,

Im cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2r cð Þ þ I2g cð Þ þ I2b cð Þ
q

ð7Þ

� Step 3: Normalize the images Ir(c), Ig(c), and Ib(c) in

step 1 by the Im(c) (step 2) as follows:

I ′

r cð Þ ¼ Ir cð Þ
Im cð Þ

I ′

g cð Þ ¼ Ig cð Þ
Im cð Þ

I ′

b cð Þ ¼ Ib cð Þ
Im cð Þ

ð8Þ

The essence of this step is to reduce the image

intensity variation so that the RGB components

of the image specify color only, and no

luminance.

(a1) (a2)

(b1) (b2) 

(c1) (c2)

Figure 2 Example images from three datasets. (a1, b1, and c1) The original images of three different subjects. (a2, b2, and c2) The

corresponding normalized images obtained with the proposed preprocessing method.
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� Step 4: Compute the gamma encoding

transformation of the Im(c) in step 2.

G′

m cð Þ ¼ I1=γm cð Þ; γ∈ 0; 1½ � ð9Þ

� Step 5: Multiply the result of step 3 by G
0
m cð Þ as

shown below:

f ′

r cð Þ ¼ I ′

r cð ÞG′

m cð Þ
f ′

g cð Þ ¼ I ′

g cð ÞG′

m cð Þ
f ′

b cð Þ ¼ I ′

b cð ÞG′

m cð Þ
ð10Þ

When the Ir(c), Ig(c), and Ib(c) in step 3 are

recombined to form a color image, the resultant

image is of low contrast. Step 5 is used to restore

the contrast level to a level adequate for further

processing.

� Step 6: By concatenating the expressions in (10)

along the third dimension, we obtain the rgbGE-

normalized image; thus,

Ψ k cð Þ ¼ f ′

r cð Þ ⊕
3f ′

g cð Þ ⊕
3f ′

b cð Þ; ð11Þ

where Ψk(c) is the rgbGE-normalized image, and⊕ 3 sym-

bolizes concatenation along the third dimension.

By this transformation, the illumination problem in

the original image is compensated, and edge informa-

tion obtained from Ψk(c) will have little or no false

edges. It is important to note that the working principle

of the rgbGE is based on the dichromatic reflectance

model, which does not consider the ambient compo-

nent. Hence, the performance of the technique will be

(a) (b)               (c) (d)                (c)

Figure 3 Illustration of edge gradient magnitude for intra-subjects with different illumination normalization techniques. (a) rgbGE,

(b) LT, (c) without normalization, (d) HE, and (e) GC.

(a)

(b)

Figure 4 Gabor wavelets at five scales and eight orientations. (a) The real part of the Gabor wavelet. (b) The magnitude part of the of the

Gabor wavelet.
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significantly affected by outdoor captured images that

mostly have ambient lighting components. More also,

it should be noted that the variation in the degree

of illumination problem across all images in a given

database also affects the performance of rgbGE. Ba-

sically, the rgbGE performs well only when the degree of

illumination variation across all images in a database is

insignificant.

The main idea behind the proposed illumination

normalization technique is to minimize the intra-

subject variation due to illumination as well as skin

texture differences. In Figure 2, example images (images

of a person) from three datasets are used to illustrate the

performance of the proposed illumination normalization

technique under varying lighting conditions (but without

any ambient component). A number of images for each

subject with varying degree of lighting problem are used

in the illustration. It can be seen from Figure 2 that the

normalized images of the subjects appear more similar to

each other.

3 Edge-based Gabor face representation
As can be observed in image 1 of Figure 2b, the pre-

surgery face images (the images on the first two columns)

and the post-surgery images (the image on the third

column) show a great amount of skin texture changes.

Such differences between the images of the same subject

are likely to impact on the face recognition accuracy. A

plausible solution is to exploit the face information that

are not likely to be affected by plastic surgery. Hence, we

exploit the shape of the facial components, i.e., the shape

of the eyes, nose (nostrils), eyebrow, and mouth that do

not change after plastic surgery procedures. We put for-

ward that this frame of reference serves as a platform

for constructing robust and efficient feature descriptors

for recognizing surgically altered face images. Under

these assumptions, we utilize edge information, which

are dependent on the shapes of the significant facial com-

ponents of the face to address the intra-subject variations

due to plastic surgery procedures. The basic idea of

the proposed edge-based Gabor face representation

approach is aimed at mitigating the intra-subject varia-

tions induced by plastic surgery procedures. This is

achieved via computing the edge gradient magnitude of the

illumination-normalized image. Applying Gabor wavelet on

the resultant edge gradient magnitude image accentuates

on the uniqueness of significant facial components, which

enlarges the discrimination margin between different per-

son face images. These processes are discussed below.

3.1 Edge gradient magnitude computation

Let the grayscale version of the illumination-normalized

image Ψk(c) be denoted as Ψ(c). The edge information g

Figure 5 Edge-based Gabor magnitude representation of a

sample face image.

Figure 6 Overview of the stages taken into consideration for describing a face image. The stages enclosed by the broken line highlight

the proposed EGM descriptor.
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(c) of the image Ψ(c) is obtained via the computation of

the gradient magnitude of the image; thus [46],

g cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂xΨ cð Þð Þ2 þ ∂yΨ cð Þð Þ2
q

; ð12Þ

where ∂xΨ ¼ Ψ⊗ δ
δx

� �

⊗S and ∂yΨ ¼ Ψ⊗ δ
δy

� �

⊗S de-

note partial derivatives, with S as smoothening Sobel fil-

ter function.

The false edges in the gradient magnitude image g(c) are

substantially reduced when the rgbGE normalization tech-

nique is employed. This can be observed in Figure 3a.

In Figure 3, the gradient of the rgbGE normalized face

images (three images of a subject) is compared with the

original image without correction and with various illu-

mination normalization methods such as LT, HE, and

GC. It can be seen from the figure that the gradient of

the rgbGE face images shows less facial appearance dif-

ferences in comparison to the other methods. In subse-

quent subsections, the Gabor encoding process is given

in detail.

3.2 Gabor wavelets

Gabor wavelets (kernels and filters) have proven useful

in pattern representation due to their computational prop-

erties and biological relevance [3,7,11,19]. It is a powerful

tool that provides spatial domain and frequency domain

information on an object.

The Gabor kernels can be expressed by [47]

ψμ;ν cð Þ ¼ lμ;ν
�

�

�

�

2

σ2
e − lμ;νk k2

ck k2=2σ2
� �

eilμ;ν
c

−e−σ
2=2

h i

;

ð13Þ

where μ and ν define the orientation and scale of the

Gabor kernels, respectively, c = (x, y), ‖ . ‖ denotes the

norm operator. The term lμ,ν is defined as [11]

lμ;ν ¼ lνe
iφμ; ð14Þ

where lν ¼ lmax=s
ν
f and φμ = πμ/8. lmax is the maximum

frequency, sf is the spacing factor between kernels in the

frequency domain [47], and σ is a control parameter for

the Gaussian function.

The family of self-similar Gabor kernels in (13) is gen-

erated from a mother wavelet by selecting different cen-

ter frequencies (scales) and orientations. In most cases,

the Gabor wavelets at five scales ν ∈ {0, …, 4} and eight

orientations μ ∈ {0, …, 7} are used [11,19]. This paper

uses Gabor kernels at five scales and eight orientations

with the following parameters: σ = 2π, lmax = π/2, sf ¼
ffiffiffi

2
p

[11,19] as shown in Figure 4. The edge image g(c) is con-

volved with a family of Gabor kernels at five scales and

eight orientations; thus,

Ομ;ν cð Þ ¼ g cð Þ � ψμ;ν cð Þ; ð15Þ

where ∗ denotes the convolution operator, and Ομ,ν(c) is

the corresponding convolution result at different scales ν

and orientations μ.

Applying the convolution theorem, each Ομ,ν(c) from

(15) can be derived via the fast Fourier transform

(FFT) [11]:

Ομ;ν cð Þ ¼ ℑ
−1

ℑ g cð Þf gℑ ψμ;ν cð Þ
n on o

; ð16Þ

where ℑ and ℑ
−1 denote the Fourier transform and its

inverse, respectively.

The Gabor wavelet representation of the edge image g(c)

is shown in Figure 5, where only the magnitude responses

Figure 7 Face recognition performances using Gabor with original gray-level face images and gradient magnitude faces.

Figure 8 Original sample faces from the GT dataset.
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of Ομ,ν(c) is used to construct the Gabor feature. Having

computed Ομ,ν(c), the augmented feature vector, namely

the edge-based Gabor magnitude (EGM) feature matrix

Ζ(p), is obtained by concatenating each Ομ,ν(c) already

downsampled by a factor p, where p = 64 becomes Ο
⌣

μ;ν cð Þ
and normalized to zero mean and unit variance. By so

doing, the augmented EGM feature matrix Ζ(p) encom-

passes every possible orientation selectivity, spatial locality,

and frequency of the representation result; thus,

Ζ pð Þ ¼ Ο
⌣T

0;0;jk Ο
⌣T

0;1;jk⋯ Ο
⌣T

7;4;jk

� �T

¼ Zrq

ð17Þ

where T is the transpose operator, Ο
⌣

μ;ν;jk are the respect-

ive J × K downsampled image matrices with orientation

μ and scale ν, and Zrq are the elements of the R ×Q

EGM feature matrix. The procedure for obtaining the

EGM feature is clearly illustrated in Figure 6.

3.3 Dimensionality reduction and discriminant analysis

The EGM features are of high dimensional space, such

that Ζ(p)
∈ RN, where N is the dimensionality of the

vector space. To address the dimensionality problem

and still retain the discriminating information for identi-

fying a face, we apply the two-stage (PCA + LDA) ap-

proach [14,48]. Each same person face is defined as

belonging to a class. Let ω1, ω2, ⋯, ωL and N1, N1, ⋯,

NL denote the classes and the number of images within

each class, respectively. Let M1, M1, ⋯, ML and M be

the mean values of the classes and the grand mean value.

The within-class scatter matrix Sω and the between-class

scatter matrix Sb are defined as [14,48]

Sω ¼
X

L

i¼1

P Ωið Þ ε
n

Y pð Þ
−Mi

� �

Y pð Þ
−Mi

� �T

Ωi

o
�

�

�

ð18Þ

Sb ¼
X

L

i¼1

P Ωið Þ Mi−Mð Þ Mi−Mð ÞT ; ð19Þ

where Y(p) is the most expressive feature of the original

data Ζ(p) obtained with a PCA step so that LDA is im-

plemented in the PCA subspace [14]. P(Ωi) is the prob-

ability of the ith class, and L denotes the number of

classes.

Figure 9 Rhytidectomy plastic surgery sample faces, pre-surgery (top row), post-surgery (bottom row).

Figure 10 Original sample faces from the LFW dataset.
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The LDA derives a projection matrix A that maximizes

the Fisher's discriminant criterion:

J Að Þ ¼ argmax
Að Þ

ASbA
T

�

�

�

�

ASωA
T

�

�

�

�

ð20Þ

The Fisher's discriminant criterion is maximized when

A consists of the eigenvectors of the matrix S−1ω Sb [48].

S−1ω SbA ¼ AΔ; ð21Þ

where A and Δ are the eigenvector and eigenvalue matrices

of S−1ω Sb , respectively. The two-stage (PCA + LDA) dimen-

sionality reduction approach is employed to maximize the

between-class variations and minimize the within-class var-

iations of the projected face subspace.

For validation purpose, the face recognition perform-

ance of Gabor, i.e., with the original gray-level face images,

and the EGM, i.e., with the gradient magnitude face im-

ages, are shown in Figure 7.

It can be observed that the use of gradient magnitude

image improved the performance of the Gabor descrip-

tor significantly compared to using the original gray-

level face images. At this point, it is important to note

that the illumination normalization technique that can

be used with the EGM include any of the existing

normalization techniques discussed in this work. For

simplicity, and hence forth, we use the acronym EGM-

rgbGE to represent the EGM that employs the rgbGE illu-

mination normalization technique, EGM-HE to represent

the EGM that employs the HE illumination normalization

technique, and EGM-GC to represent the EGM that em-

ploys the GC illumination normalization technique.

4 Face recognition experiment
In this section, the results of the proposed EGM-based

face recognition method on a plastic surgery database

[2], the Georgia Tech (GT) face database [49], and the

Labeled Faces in the Wild (LFW) database [50] are pre-

sented. The details of the datasets and the experimental

setups for the face recognition experiment are provided.

We show through simulations the result of the proposed

method compared with the existing face recognition

methods.

4.1 Datasets and experimental setup

4.1.1 Georgia Tech dataset

The Georgia Tech face database [49] contains of 750

color images of 50 subjects, some of which where cap-

tured during different sessions. These images comprise

variations in illumination direction, scale, pose, and ex-

pression; see sample images in Figure 8. The images

were manually cropped and resized to size 128 × 128.

The database is partitioned into training and testing sets.

The number of training and test images is selected to re-

semble a real-time scenario where only one image per

person is tested on a large database in which there exist

numerous images of the same person.

4.1.2 Plastic surgery dataset

The plastic surgery dataset [2] contains frontal face im-

ages of plastic surgery-altered faces, which vary by scale

and small expression, small pose, and majorly by plastic

Table 1 Recognition performance comparisons of the

proposed EGM-based face recognition method on

Georgia Tech face database

Methods Rank-1 (%) Equal error rate

EGM without normalization 94 2.12

EGM-HE 92 1.8

EGM-GC 92 2.0

EGM-LT 94 2.0

EGM-rgbGE 98 0.34

The EGM-rgbGE is compared with different illumination normalization

methods. HE, histogram equalization; GC, gamma correction; LT, logarithm

transform; rgbGE, proposed normalization technique.

Figure 11 Recognition rate for EGM-based face recognition

method with different illumination normalization methods on

GT database.

Table 2 Recognition rate comparisons with some existing

methods on GT face database

Methods Rank-1 (%) EER Comments

Majumdar et al. [52] 86.5 n/a n/a

Maturana et al. [53] 92.57 n/a No face alignment

Naseem [54] 92.86 n/a No face alignment

Geng and Jiang [55] 97.43 n/a With face alignment

Li et al. [56] 96.9 n/a With face alignment

Wouter et al. [19] 98.80 n/a With face alignment

Proposed 98.00 0.34% No face alignment

n/a, not applicable.
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surgery procedures. There are only two images (pre-

surgery and post-surgery) per subject available. The

dataset consists of different plastic surgery procedures

such as rhinoplasty (nose surgery), blepharoplasty (eyelid

surgery), brow lift, skin peeling, and rhytidectomy (face

and mid-face lift surgery). According to Bhatt et al.

[24,25], global surgeries like rhytidectomy severely im-

pacted on their recognition algorithm. To investigate

this impact, we used the rhytidectomy plastic surgery

dataset, which we arranged to combine full-face lift and

mid-face lift surgery images. The rhytidectomy dataset

consists of two images per subject. There are 321 sub-

jects; hence, the total number of images is 642. The

samples of the rhytidectomy images from the dataset

are shown in Figure 9.

Motivated by the fact that a face can be identified from

its mirror image [51], we include a mirror version of the

pre-surgery images in the database in order to increase

the sample size of each subject. Hence, there are a total

of 963 face images cropped and resized to size 128 × 128.

For this database, we consider two scenarios s1 and s2 in

the experimental setup. In s1, out of the 321 subjects, we

used 128 subjects for training and performance is evalu-

ated on the remaining subjects, where the pre-surgery im-

ages are used as gallery and post-surgery images are used

as the probe. In s2, pre-surgery images of all the subjects

are used for training and gallery while the post-surgery im-

ages are used as the probe.

4.1.3 Heterogeneous dataset

This database consists of both plastic surgery images

and other images that are randomly selected from other

databases. The main idea behind the use of this database

structure in performance analysis of the EGM is to con-

sider a typical real-world scenario of training-testing

where the system is unaware of any plastic surgery cases.

In this dataset, the images of 321 subjects with three im-

ages per subject are added to the plastic surgery database

used above. This brings the total number of subjects to

642, with every subject having three images. For this data-

base, we consider two scenarios s1 and s2 just like in the

plastic surgery database above. In s2, the pre-surgery im-

ages of all the subjects are used for training and gallery,

while the post-surgery images are used as the probe.

4.1.4 Labeled Faces in the Wild (LFW) dataset

The LFW database [50] is a well-known database with

gross pose, expression, and illumination problems. Out

of all the subjects in the database, we choose subjects

with up to three images per subject. Hence, our dataset

consists of 869 subjects with images resized to size

128 × 128. For this database, there is only one scenario

where 869 images are used as test set, while the training

and gallery consist of the remaining images. The LFW

sample face images are shown in Figure 10.

4.2 Experimental results

Here, we evaluate the proposed method on all the data-

sets presented above. In all the experimental setups pre-

sented above, the gamma value used in the illumination

correction is chosen as γ = 0.75, but the value of γ can

be user defined. We used a simple nearest neighbor clas-

sifier with the cosine distance measure in order to meas-

ure the similarity between two images. Experimental

Table 3 Recognition performance comparisons of the

proposed EGM-based face recognition method on LFW

Database

Methods Rank-1 (%) Equal error rate (%)

EGM-woc 76.68 16.67

EGM-HE 70.00 16.68

EGM-GC 76.67 16.67

EGM-rgbGE 76.33 16.33

woc, without correction; HE, histogram equalization; GC, gamma correction;

rgbGE, proposed normalization technique.

Figure 12 Recognition rate for EGM-based face recognition method with different illumination normalization methods on

LFW database.
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results are obtained for datasets with illumination correc-

tion and without illumination correction. The evaluation is

of two categories. In the first category, the proposed

method is evaluated on the GT face database and LFW

database. The performance of the EGM in the case where

the proposed rgbGE illumination normalization technique

is used is compared to where GC, LT, and HE illumination

normalization techniques are used for the GT. This per-

formance comparison is also extended to the case where

GC and HE illumination normalization techniques are

used for the LFW. The results of the experiment on the

GT face database are shown in Table 1 and Figure 11. A

comparison of the recognition accuracy of the proposed

EGM-rgbGE with existing methods on GT database is

shown in Table 2. The results of the experiment on the

LFW database are shown in Table 3 and Figure 12.

For the second category, we conduct an experiment

on a rhytidectomy plastic surgery database. In Table 4

and Figure 13, the rank-1 recognition performance of

the proposed EGM-rgbGE-based face recognition method

on rhytidectomy plastic surgery database is compared to

the existing face recognition methods. The recognition

performance of the EGM-rgbGE on the heterogeneous

database is shown in Figure 14.

From the results in Figure 11 and Table 1, it can be

observed that the EGM-LT did not improve on the

rank-1 recognition rate (RR) of EGM without correction.

This shows that it does not address the presence of false

edges induced by illumination as is evident from Figure 3.

However, it improved in terms of equal error rate (EER).

On the other hand, the RR performances of EGM-HE and

EGM-GC degraded in comparison with EGM without cor-

rection. In this case, such degradation may be associated

with the introduction of more false edges to the edge infor-

mation. The EGM-rgbGE-based face recognition method

is observed to be more insensitive to performance degrad-

ation factors such as illumination, pose, and expression

with 98% RR and 0.34% EER.

In Table 2, the performance of the proposed EGM-

based face recognition method compared with some

existing face recognition methods for the GT database is

shown. The performance of the face recognition methods

considered are sorted by their rank-1 recognition rates.

The performance of EGM-rgbGE in terms of RR with no

face alignment is significantly higher than those of all

other methods with no face alignment. For the methods

with face alignment, the EGM-rgbGE performed better

except for the method by Wouter and Peter [19]; of course

with face alignment, the EGM-rgbGE will perform better.

In the case of LFW, the performance of the proposed

method performs equally well as the existing results in the

literature. The reader is referred to [57] for results on

LFW database. We note at this point that the goal of the

current paper is to demonstrate the efficiency of the pro-

posed descriptor based face recognition method, not to

compete in the LFW challenge.

In Figure 13, the proposed EGM-rgbGE method per-

forms better in the s2 scenario than in s1 scenario. This

performance difference may not be unconnected with

the method of training and evaluation. In both s1 and s2

scenarios, the recognition rates are better when rgbGE

normalization is used than when it is not incorporated

into the EGM method. Table 4 shows the performance

comparison of the EGM-rgbGE method with the existing

methods on rhytidectomy plastic surgery database. The

EGM-rgbGE rank-1 recognition rate of over 89% is a dif-

ference of 17.48% in comparison to granular approach

Table 4 Recognition rate comparison with existing methods

on plastic surgery database: a case of rhytidectomy

Methods Rank-1 (%) EER Comments

Proposed 75.3 to 89.64 7.78% to 3.61% No face alignment

Granular approach
[24,25]

71.76 n/a With face alignment

GPROF [23] 86.68 n/a With face alignment

FACE [22] 74.00 17.00 With face alignment

n/a, not applicable.

Figure 13 EGM recognition performance for plastic surgery database. The experimental scenarios s1 and s2 are observed on the basis of

with and without rgbGE illumination normalization technique.
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[24,25], 15.24% in comparison to FACE [22], and 2.56%

in comparison to GROF [23]. However, it should be

noted that face alignment was employed to obtain the

result in the GPROF method, while the EGM-rgbGE re-

sult is without face alignment. The RR and EER results

of the different experimental setups and scenarios for

the plastic surgery database are shown in Table 5.

The result of the experiment on the heterogeneous

database (a combination of the plastic surgery-altered

images and non-surgery images) for training-testing,

whereby the face recognition system is set to resemble a

real-world scenario, unaware of any plastic surgery

image, is shown in Figure 14. The experimental results

in the two scenarios show how the proposed method,

which considers the shape of facial components, per-

forms across surgery and non-surgery images. Again, the

proposed EGM-rgbGE method performs better in sce-

narios s1 and s2 in comparison with other existing

methods. In both s1 and s2 scenarios, the recognition

rates are better when the rgbGE normalization is used

than when it is not incorporated into the EGM method.

As can be observed, the result of the experiments in the

case of heterogeneous database outperforms that of the

experiments in the case of only-plastic-surgery database.

This performance variation is expected since the average

performance will be expectedly higher due to the inclu-

sion of non-plastic surgery images in the database with

lesser recognition challenges than purely plastic surgery

database. The RR and EER results of the different ex-

perimental setups and scenarios for the heterogeneous

database are shown in Table 6.

5 Conclusion
We have presented the proposed edge-based Gabor fea-

ture representation approach for appearance representa-

tion of faces altered by plastic surgery procedures. The

proposed face representation approach exploited the

shape of significant facial components to address the

intra-subject dissimilarity problem due to plastic surgery

procedures. The face recognition experiment using the

proposed face representation approach considered other

unconstrained conditions, which included usual pose, il-

lumination, and expression problems. Comparative ex-

perimental results on the GT and LFW databases were

provided to show the robustness of the representation

approach under usually experimented-on problems and

then on the rhytidectomy plastic surgery database. The

results indicate that the proposed face representation

approach in a simple nearest neighbor search face recog-

nition framework (with no face alignment) performed

better than the previously reported methods in the lit-

erature on rhytidectomy plastic surgery database. In rela-

tion to the GT database, the proposed method performed

better than the existing methods, except in comparison

with one particular method, in which prior face alignment

on the database was carried out, and 0.88% performance

Figure 14 EGM recognition performance for heterogeneous database. The experimental scenarios s1 and s2 are observed on the basis of

with and without rgbGE illumination normalization technique.

Table 5 Recognition performance of the proposed

EGM-based face recognition method for the plastic

surgery database

Experimental setup Scenario RR (%) EER (%)

wc/EGM-rgbGE s1 75.38 7.78

s2 89.64 3.61

woc/EGM-rgbGE s1 69.23 10.79

s2 87.23 3.73

wc, with correction; woc, without correction.

Table 6 RR and EER performance comparisons of the

proposed EGM-based face recognition method for the

heterogeneous database

Experimental setup Scenario RR (%) EER (%)

wc/EGM-rgbGE s1 81.16 4.31

s2 93.93 0.91

woc/EGM-rgbGE s1 80.19 4.95

s2 90.97 1.72

wc, with correction; woc, without correction.
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difference was reported. However, with face alignment on

the database, it is believed that the proposed method will

greatly outperform all methods reported so far in the litera-

ture. On the LFW database, our method provides up to

76.33% recognition rate. In future work, we will integrate

texture insensitive and illumination invariant processes

into a single processing step and investigate its perform-

ance with other plastic surgery procedures and cases of

gross illumination problems.
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