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Abstract. This paper addresses the question of computationally inex-
pensive yet discriminative and robust feature sets for real-world face
recognition. The proposed descriptor named Patterns of Oriented Edge
Magnitudes (POEM) has desirable properties: POEM (1) is an oriented,
spatial multi-resolution descriptor capturing rich information about the
original image; (2) is a multi-scale self-similarity based structure that re-
sults in robustness to exterior variations; and (3) is of low complexity and
is therefore practical for real-time applications. Briefly speaking, for ev-
ery pixel, the POEM feature is built by applying a self-similarity based
structure on oriented magnitudes, calculated by accumulating a local
histogram of gradient orientations over all pixels of image cells, centered
on the considered pixel. The robustness and discriminative power of the
POEM descriptor is evaluated for face recognition on both constrained
(FERET) and unconstrained (LFW) datasets. Experimental results show
that our algorithm achieves better performance than the state-of-the-art
representations. More impressively, the computational cost of extracting
the POEM descriptor is so low that it runs around 20 times faster than
just the first step of the methods based upon Gabor filters. Moreover, its
data storage requirements are 13 and 27 times smaller than those of the
LGBP (Local Gabor Binary Patterns) and HGPP (Histogram of Gabor
Phase Patterns) descriptors respectively.

1 Introduction

Good pattern representation is one of key issues for all pattern recognition sys-
tems. In face recognition, a good representation is one which minimizes intra-
person dissimilarities whilst enlarging the margin between different people. This
is a critical issue, as variations of pose, illumination, age and expression can
be larger than variations of identity in the original face images. For real-world
face recognition systems we also believe that a good representation should be
both fast and compact: if one is testing a probe face against a large database
of desirable (or undesirable) target faces, the extraction and storage of the face
representation has to be fast enough for any results to be delivered to the end
user in good time. In this paper, we propose a novel feature descriptor named
Patterns of Oriented Edge Magnitudes (POEM) for robust face recognition, a
descriptor which we argue satisfies these criteria. Experimental results on both
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FERET and LFW databases show that POEM method achieves comparable and
better performance when compared with state-of-the-art representations. More
impressively, the runtime required to extract our descriptor is around 20 times
faster than that of even the first step of methods based upon Gabor filters.

We briefly discuss related work in Section 2, describe our method in Section
3. Section 4 details the use of POEM for face recognition. Experimental results
are presented in Section 5 and conclusions are given in Section 6.

2 Related Work

There is an extensive literature on local descriptors and face recognition. We refer
readers to [1, 2] for an in-depth survey, and describe here those high-performing
algorithms which are most relevant to our work [3–8].

Local descriptors [1, 7, 9] are commonly employed for many real-world ap-
plications because they can be computed efficiently, are resistant to partial oc-
clusion, and are relatively insensitive to changes in viewpoint. Mikolajczyk and
Schmid [1] recently evaluated a variety of local descriptors and identified the
SIFT (Scale-invariant feature transform) [9] algorithm as being the most resis-
tant to common image deformations. As a dense version of the dominating SIFT
feature, HOG [6] has shown great success in object detection and recognition
[6, 10] although has not seen much use in face recognition.

For the specific problem of face recognition, there are also many represen-
tational approaches, including subspace based holistic features and local ap-
pearance features. Heisele et al. [11] compared local and global approaches and
observed that local systems outperformed global systems for recognition rates
larger than 60%. Due to increasing interest, in recent surveys stand-alone sec-
tions have been specifically devoted to local methods.

Two of the most successful local face representations are Gabor features
[3, 4, 8, 12–15] and Local Binary Patterns (LBP) [5, 13, 16, 17]. Gabor filters,
which are spatially localized and selective to spatial orientations and scales, are
comparable to the receptive fields of simple cells in the mammalian visual cor-
tex [8]. Due to their robustness to local distortions, Gabor features have been
successfully applied to face recognition. Both the FERET evaluation and the
FVC2004 contests have seen top performance from Gabor feature based meth-
ods. Recently, Pinto et al. [14, 15] use V1-like and V1-like+, the Gabor filter
based features, as face representation and report good recognition performance
on the unconstrained LFW set. Gabor features are typically calculated by con-
volving images with a family of Gabor kernels at different scales and orientations,
which is a costly stage. Despite recent attempts at speeding this process up (e.g.
the Simplified Gabor Wavelets of Choi et al. [18]) the process of extracting these
features is still prohibitive for real-time applications.

More recently, the spatial histogram model of LBP has been proposed to
represent visual objects, and successfully applied to texture analysis [19], and
face recognition [5]. LBP is basically a fine-scale descriptor that captures small
texture details, in contrast to Gabor features which encode facial shape and
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appearance over a range of coarser scales. By using LBP, Ahonen et al. [5] have
reported impressive results on the FERET database. Several variants of LBP are
also presented and successfully applied to different applications, such as Center-
Symmetric LBP (CSLBP) [20], Three-Patch LBP (TPLBP), Four-Patch LBP
(FPLBP) [16], etc.

A combination approach was introduced by Zhang et al. [3] extending LBP to
LGBP by introducing multi-orientation and multi-scale Gabor filtering before
using LBP and impressively improved the performance when compared with
pure LBP. In a similar vein, they further proposed HGPP [4] combining the
spatial histogram and the Gabor phase information encoding scheme. In [13], a
model fusing the multiple descriptor sets is presented with very high performance
on constrained datasets. More recently, Wolf et al. [17] combine LBP, TPLBP,
FPLBP, Gabor and SIFT with different similarity measures, showing promissing
results on the LFW set.

These combination methods try to bring the advantages of LBP and Gabor
filters together, but they also bring the disadvantages of Gabor based systems;
namely computational cost and storage requirements.

Fig. 1. Main steps of POEM feature extraction

The aim of this study is to find a feature descriptor that can inherit various
good properties from existing features but with low computational cost. We pro-
pose applying the LBP based structure on oriented magnitudes to build a novel
descriptor: Patterns of Oriented Edge Magnitudes (POEM). Briefly speaking, in
order to calculate the POEM for one pixel, the intensity values in the calcula-
tion of the traditional LBP are replaced by the gradient magnitudes, calculated
by accumulating a local histogram of gradient directions over all pixels of a
spatial patch (“cell”). Additionally, these calculations are done across different
orientations. We use the terms cell and block, as in [6], but with a slightly dif-
ferent meaning. Cells (big squares in Figure 1a) refer to spatial regions around
the current pixel where a histogram of orientation is accumulated and assigned
to the cell central pixel. Blocks (circular in Figure 1c) refer to more extended
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spatial regions, on which the LBP operator is applied. Note that our use of
oriented magnitudes is also different from that in [6] where HOG is computed
in dense grids and then is used as the representation of cell. On the contrary,
in POEM, for each pixel, a local histogram of gradient over all pixels of cell,
centered on the considered pixel, is used as the representation of that pixel.
Similarly, the term pattern in POEM is not as local as in the conventional LBP
based methods. LBP methods often calculate the self-similarity within a small
neighborhood while the block used in POEM is rather extended (see details in
sections 3.2 and 5.1).

In combination approach [3], Gabor filters are first used for capturing large
scale information and LBP operator is then applied for encoding the small de-
tails. On the contrary, POEM first characterizes object details in small scale and
then uses the LBP based structure to encode information over larger region.

3 POEM Descriptor

Similar features have seen increasing use over the past decade [6, 7, 9]; the fun-
damental idea being to characterize the local object appearance and shape by
the distribution of local intensity gradients or edge directions. We further apply
the idea of self-similarity calculation from LBP-based structure on these distri-
butions since we find that combining both the edge/local shape information and
the relation between the information in neighboring cells can better character-
ize object appearance. As can be seen in Figure 1, once the gradient image is
computed, the next two steps are assigning the cell’s accumulated magnitudes
to its central pixel, and then calculating the block self-similarities based on the
accumulated gradient magnitudes by applying the LBP operator.

3.1 POEM Feature Extraction in Detail

The first step in extracting the POEM feature is the computation of the gradient
image. The gradient orientation of each pixel is then evenly discretized over
0-π (unsigned representation) or 0-2π (signed representation). Thus, at each
pixel, the gradient is a 2D vector with its original magnitude and its discretized
direction (the blue continuous arrow emitting from pixel p in Figure 1a).

The second step is to incorporate gradient information from neighbouring pix-
els (the discontinuous arrows in Figure 1a) by computing a local histogram of
gradient orientations over all cell pixels. Vote weights can either be the gradient
magnitude itself, or some function of the magnitude: we use the gradient mag-
nitude at the pixel, as in [6]. At each pixel, the feature is now a vector of m
values where m is the number of discretized orientations (number of bins).

Finally, we encode the accumulated magnitudes using the LBP operator within
a block. The original LBP operator labels the pixels of an image by thresholding
the 3× 3 neighborhood surrounding the pixel with the intensity value of central
pixel, and considering the sequence of 8 result bits as a number (as shown in
Figure 2). Only uniform patterns, which are those binary patterns that have at
most 2 transitions from 0 to 1, are typically used to accelerate the method.
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Fig. 2. LBP operator

We apply this procedure on the accumulated gradient magnitudes and across
different directions to build the POEM. Firstly, at the pixel position p, a POEM
feature is calculated for each discretized direction θi:

POEMθi

L,w,n(p) =
n∑

j=1

f(S(Iθi
p , Iθi

cj
))2j , (1)

where Ip, Icj are the accumulated gradient magnitudes of central and surround-
ing pixels p, cj respectively; S(., .) is the similarity function (e.g. the difference
of two gradient magnitudes); L, w refer to the size of blocks and cells, respec-
tively; n, set to 8 by default in this paper, is number of pixels surrounding the
considered pixel p; and f is defined as:

f(x) =
{

1 if x ≥ τ,
0 if x < τ,

(2)

where the value τ is slightly larger than zero to provide some stability in uniform
regions, similar to [16].

The final POEM feature set at each pixel is the concatenation of these unidi-
rectional POEMs at each of our m orientations:

POEML,w,n(p) = {POEMθ1 , ..., POEMθm}, (3)

3.2 Properties of POEM

We discuss here the good properties of this novel descriptor for object represen-
tation postponing the question of complexity until Section 5.4. For each pixel,
POEM characterizes not only local object appearance and shape, but also the re-
lationships between this information in neighboring regions. It has the following
properties:

– POEM is an oriented feature. Since the number of discretized directions
can be varied, POEM has the ability to capture image information in any
direction and is adaptable for object representation with different levels of
orientation accuracy.

– Computed at different scales of cells and blocks, POEM is also a spatial
multi-resolution feature. This enables it to capture both local information
and more global structure.

– Using gradient magnitudes instead of the pixel intensity values for the con-
struction makes POEM robust to lighting variance. In [21, 22], edge magni-
tudes have been shown to be largely insensitive to lighting.
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Fig. 3. Implementation of POEM for face description

– The oriented magnitude based representation contains itself the relation be-
tween cell pixels. POEM further calculates dissimilarities between cells and
therefore has the ability to capture multi-scale self-similarities between im-
age regions. This makes POEM robust to exterior variations, such as local
image transformations due to variations of pose, lighting, expression and
occlusion that we frequently find when dealing with faces.

Patch-based or multi-block LBP [16] also considers relationships between regions
in a similar way to our POEM descriptor. However the richer information coming
from the use of gradients at multiple orientations gives us greater descriptive
power, and a greater insensitivity to lighting variations.

4 Face Recognition Based on POEM

For face recognition, we use a similar procedure to that described in [5], except
that each pixel is characterized with the POEM features instead of a LBP code
(cf., Figure 3).

POEM Histogram Sequences for Face Recognition

In practice, the Oriented Edge Magnitude Image (oriented EMI) is first calcu-
lated from the original input image (section 3.1) and divided into m uni-oriented
EMIs through gradient orientations of pixels. Note that the pixel value in uni-
oriented EMIs is gradient magnitude. For every pixel on uni-oriented EMIs, its
value is then replaced by the sum of all values in the cell, centered on the cur-
rent pixel. These calculations are very fast (using the advantage of integral image
[23]). Result images are referred to accumulated EMIs (AEMIs). LBP operators
are applied on these AEMIs to obtain the POEM images (Figure 3). In order
to incorporate more spatial information into the final descriptor, the POEM im-
ages are spatially divided into multiple non-overlapping regions, and histograms
are extracted from each region. Similar to [5, 16], only uniform POEM codes
are used. Finally, all the histograms estimated from all regions of all POEMs
are concatenated into a single histogram sequence (POEM-HS) to represent the
given face.

Given two histogram sequences of POEM representing two face images, we
use the chi-square distance between histograms [5] to measure the similarity
between two images.
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5 Experiments and Discussions

In this section, we conduct comparison experiments on two face databases,
FERET (controlled variations) [24] and LFW (unconstrained environments) [25],
in order to validate the efficiency of the proposed descriptor for face recognition.

5.1 Parameter Evaluation

In this section we consider how the parameters of POEM influence its final
performance. Parameters varied include the number m and type (unsigned or
signed) of orientations, the cell size (w ∗ w), and block size (L ∗ L). As for the
cell/block geometry, two main geometries exist: rectangular and circular. In this
paper we use circular blocks including bilinear interpolation for the values since
they provide the relation between equidistant neighboring cells [5]. Square cells
are used, meaning that pixel information is calculated using its neighborhood in
a square patch.

The experiments checking the effects of parameters are conducted on the
FERET face database, following the standard evaluation protocol: Fa containing
1196 frontal images of 1196 subjects is used as Gallery, while Fb (1195 images of
expression variations), Fc (194 images of illumination variations), Dup I & Dup
II(722 & 234 images taken later in time) are the Probe sets.

The facial images of FERET are first cropped and aligned using the given
coordinates of two eyes. We roughly fixe the width and height of face about two
times of distance between the centers of the two eyes, and then resize image to
110x110 pixels (cf., the first image in Figure 3). We do not use any other par-
ticular face mask, such as in [5] for example. In our experiments, we divide each
image into 10x10 non overlapping patches. Since this paper concentrates on the
feature sets, we use a simple nearest neighbor classifier to calculate the recogni-
tion rates and consider classifier choice beyond the scope of the current paper.
But we believe that better classifier could enhance recognition performance.

Experiment 1, concerning the number of orientations and signed/
unsigned representation. Nearly six hundred cases are considered, recog-
nition rates are calculated on 3000+ face images with different parameters:
L = {5, 6, 7, 8, 9, 10, 11}, w = {3, 4, 5, 6, 7, 8}, the numbers of discretized ori-
entations are m = {2, 3, 4, 5, 6, 7} in the case of unsigned representation, and are
doubled to m = {4, 6, 8, 10, 12, 14} in the case of signed representation. Cells can
overlap, notably when blocks are smaller than cells, meaning that each pixel can
contribute more than once.

For each Probe set, the average rates are calculated over different numbers and
types of orientation. Figure 4 shows the recognition rates obtained on Probe sets
Fb, Fc, Dup1, and Dup2. The average recognition rates obtained on Probe set
Fb (as shown in the Figure 4 a) are arround 96.5%, representing an improvement
of about 3.5% in comparison with LBP [5].

Considering the question of using a signed or an unsigned representation,
we find similar results to [6], in that including signed gradients decreases the
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Fig. 4. Recognition rates obtained with different numbers of orientations on Probe
sets: Fb (a), Fc (b), Dup1 (c), and Dup2 (d). These rates are calculated by averaging
recognition rates with different sizes of cell/block.

performance of POEM even when the data dimension is doubled to preserve more
original orientation resolution. For face recognition, POEM provides the best
performance with only 3 unsigned bins. This should be noted as one advantage
of POEM since the data dimension for face description is not greatly increased
as in LGBP or HGPP [3, 4]. It is clear from Figure 4 (c,d) that using too many
orientations degrades significantly the recognition rates on Dup1 and Dup2 sets.
This can be explained by the fact that increasing the number of orientation bins
makes POEM more sensitive to wrinkles appearing in face with time.

Summarizing, the number m and signed/unsigned orientations do not affect
the recognition performance in the case of expression variations (Fb set); the
unsigned representation is more robust than signed representation, notably to
lighting; using few orientations (1, 2) is not enough to represent face information
but too many (more than 3) makes POEM sensitive to aging variations. Thus,
the best case is 3 unsigned bins.

Experiment 2, concerning the size of cells and blocks. Average recogni-
tion rates of all four Probe sets are first calculated with different sizes of cells
and blocks with 3 unsigned bins of orientation discretization. As can be seen
from Figure 5, using POEM built on 10x10 pixel blocks with histogram of 7x7
pixel cells provides the best performance.

To verify the correctness of these parameters, we further calculate the average
rates across cell sizes and across block sizes, meaning that these parameters are now
considered independent. Also, in this test, both 10x10 pixel block and 7x7 pixel cell
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Fig. 5. Recognition rates as the cell and block sizes change

performed the best. This procedure has been repeated with different numbers of
orientation bins, and the same optimal parameters have been obtained.

In conclusion, the optimal POEM parameters for face recognition are: unsigned
representation with 3 bins, built on 10x10 pixel blocks and 7x7 pixel cells.

5.2 Results Based Upon the FERET Evaluation Protocol

We consider the FERET’97 results [24], results of the LBP [5], HGPP [4],
LGBPHS [3], and more recent results in [12, 13, 26]. These results, to the best
of our knowledge, are the state-of-the-art with respect to the FERET dataset.

As can be seen from Table 1, in comparison with the conventional LBP and
HOG (the perfomance of HOG for face recognition is reported in [26]), our
POEM descriptor is much more robust to lighting, expression & aging, illus-
trated by significant improvements in recognition rates for all probe sets. While
compared with LGBP and HGPP, reported as being the best performing de-
scriptors on FERET database, POEM provides comparable performance for the
probe sets Fb and Fc. When we consider the more challenging probe sets Dup1
and Dup2, POEM outperforms LGBP and is comparable to HGPP.

Concerning the results of [12, 13], they are only suitable for very limited
reference since they are obtained by using a more complex classification phase,
and we wish to concentrate upon the performance of the descriptor rather than
the classifiers. In [12], Zou et al. use Gabor jets as local facial features which
are compared using normalized inner products at different scales, and results
are combined using the Borda Count method. Moreover, Zou et al. do not use
only the pure face area, as defined in [27]. In [13], Tan and Triggs fuse two
feature sets, Gabor & LBP, and use a complex dimensionality reduction and
classification phase, PCA & Kernel DCV. Their method suffers from the dis-
advantage that adding a new individual to the gallery requires recalculating all
existing coefficients: PCA coefficients of Gabor & LBP features, and the KDCV
coefficients of the fused features.
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Table 1. Recognition rate comparisons with other state-of-the-art results tested with
Feret evaluation protocol

Methods Fb Fc Dup1 Dup2

LBP [5] 93.0 51.0 61.0 50.0
LGBPHS [3] 94.0 97.0 68.0 53.0
HGPP [4] 97.6 98.9 77.7 76.1
HOG [26] 90.0 74.0 54.0 46.6

POEM 97.6 96 77.8 76.5
Retina filter [28] + POEM 98.1 99 79.6 79.1

Results of [12] 99.5 99.5 85 79.5
Results of [13] 98 98 90 85

We further employ the real-time retina filtering presented by Vu and Caplier
in [28] as preprocessing step since this algorithm, as pointed out by authors,
not only removes the illumination variations but also enhances the image edges,
upon which our POEM is constructed. It is clear from Table 1 that the retina
filter enhances the performance of POEM, especially for the probe set Fc.

5.3 Results on LFW Dataset

In order to test the performance of the POEM descriptor across different
databases, we duplicate these experiments on another well-known dataset, LFW
[25], containing 13233 face images of 5749 individuals. This database is described
as “unconstrained”, meaning that face images are subject to a large range of
“natural” variations. The operational goal of this set differs from above FERET
database; it is aimed at studying the problem of face pair matching (given two
face images, decide whether they are from the same person or not). We follow
the standard procedure described in [25] and report the mean classification ac-
curacy ± standard error computed from 10 folds of the “Image-Restricted View
2” portion of LFW set.

Fig. 6. Examples of LFW images used in our tests

As mentioned above, the goal of the current paper is to demonstrate the effi-
ciency of the novel descriptor, not to compete in the LFW challenge. We therefore
report the obtained results using POEM descriptor in a simple threshold-on-
descriptor-distance classification context [16], meaning that for each test fold,
an optimal threshold giving the highest separation score on the 5400 examples
of the training set is chosen and then is used to calculate the classification accu-
racy for the 600 examples of the test set. We only compare our results with other
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Table 2. Recognition results of differents methods on LFW set, Image-Restricted
Training, View 2

Reference Descriptors (similarity measure) Performance

Pinto2008 [14]
V1-like 0.6421 ± 0.0069
V1-like+ 0.6808 ± 0.0045

Wolf2009 [17]

LBP Euclidean/SQRT 0.6824/0.6790
Gabor Euclidean/SQRT 0.6849/0.6841
TPLBP Euclidean/SQRT 0.6926/0.6897
FPLBP Euclidean/SQRT 0.6818/0.6746
SIFT Euclidean/SQRT 0.6912/0.6986
All combined 0.7521 ± 0.0055

This paper
POEM 0.7400 ± 0.0062
POEM Flip 0.7542 ± 0.0071

descriptor-based results and refer readers to [29] for further algorithm classifiers
reported on the LFW dataset.

In our experiments, the LFW gray images aligned automatically by Wolf et
al. [17] are used and cropped to 100 x 116 pixels around their center. As is
clear from the Figure 6, there is significant pose variation within this dataset.
In order to address this we flip image 1 of each pair on the vertical axis, and
take the smaller of the two histogram distances as our measure. This simple pre-
processing step improves recognition rates and is refered to as POEM-Flip in
following results. Because of the poor quality of the images in the LFW dataset,
retina filtering does not improve the recognition results. With low quality images,
the retina filter enhances the image contours and removes illumination variations
but also enhances image artifacts (such as those arising from compression). The
similar performance is obtained in both cases that the retina filter is used or not.
Otherwise, we do not employ any other preprocessing technique.

It is clear from Table 2 that POEM method outperforms all other competing
descriptors: LBP, TPLBP, FPLBP, Gabor filters and SIFT. When compared
with these descriptors, the POEM based method represents around 20% reduc-
tion in classification error. Our POEM-flip mean recognition rate 75.42% is bet-
ter than that of the “combined” method of [17]. It is worth noting that Wolf et
al. [17] combine 10 descriptor/mode scores using SVM classification. The results
in [14], based upon Gabor filters, are much worse than ours.

5.4 A Consideration of Computational Cost

In this section we compare the complexity of POEM with two of the most widely
used descriptors for face recognition: LBP and Gabor wavelet based methods.
Considering the pure one-LBP-operator method, POEM based face recognition
requires a computational complexity which is 3 times higher (the calculation of
integral gradient image is very fast when compared to the calculation of POEM
features and the construction of POEM-HS) but at the same time, there are
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Table 3. Runtime required to extract the whole POEM descriptor and the initial step
of Gabor based feature extraction. Calculated using the implementation in Matlab,
these times are only suitable for rough comparisons of computational complexity.

Methods Times (seconds)

Convolution with 40 Gabor kernels 0.4349
POEM extraction 0.0191

remarkable improvements in recognition rates on the FERET database (+5%,
+45%, +16.6% and +26.5% for the probe sets Fb, Fc, Dup1 and Dup2, respec-
tively). And on the LFW set, POEM method also outperforms other variants of
LBP, TPLBP and FPLBP.

When we consider Gabor filter based descriptors, only the runtime required
for the convolution of the image with the family of Gabor kernels (8 orientations
and 5 scales) is necessary. From Table 3, we see that the computation of the
whole POEM descriptor is about 23 times faster than that of just this first step
of Gabor feature extraction.

We do not calculate here the time required to extract SIFT descriptor and do
not compare directly it to POEM, but as argued in [20], SIFT is about 3 times
slower than 3×3 grid Center-Symmetric LBP (CSLBP), a variant of LBP (3×3
grid CSLBP means that the descriptor is obtained concatenating the histogram
of CSLBP features over grid of 3 × 3). Thus it seems that POEM and SIFT
have the similar time complexity. However, for face recognition, POEM clearly
ourperforms SIFT, representing about 20% reduction in classification error on
LFW set. Retina filtering is a linear and real-time algorithm. Its calculation time
is about 1/5 of that required to extract POEM.

Considering data storage requirements, for a single face, the size of a complete
set of POEM descriptors is 13 and 27 times smaller than that of LGBP and
HGPP (LGBP calculates LBP on 40 convolved images while HGPP encodes
both real and imaginary images). Note that these comparisons are roughly done
considering all 256 patterns of our POEM features. However, in this paper, we
use only 59 uniform POEMs, meaning that the size of POEM descriptors used
here is 58 and 116 times smaller that of LGBP and HGPP (these ones use
all 256 feature values). When compared to the “combined” method of Wolf et
al. [17], the space complexity of POEM descriptor is considerably smaller. For
one patch, the size of POEM-HS is 59 × 3, while the size of method in [17] is
59 × 2 + 16 (the size of LBP, TPLBP, and FPLBP per patch are 59, 59 & 16,
respectively) + 128 (dimension of SIFT) + size of Gabor based descriptor (which
is equal to the size of patch × number of scales × number of orientations as in
[17, 26]).

Thus we agrue that the POEM descriptor is the first to allow high performance
real-time face recognition. Low complexity descriptors provide worse results;
whilst representations based upon multiple feature types can achieve similarly
high performance but are too slow for real-time systems.
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6 Conclusion

By applying the LBP operator on accumulated edge magnitudes across different
directions, we have developed a novel descriptor for face representation which has
several desirable features. It is robust to lighting, pose and expression variations,
and is fast to compute when compared to many of the competing descriptors. We
have shown that it is an effective representation for face recognition in both con-
strained (FERET) and unconstrained (LFW) face recognition tasks outperform-
ing all other purely descriptor based methods. This high performance coupled
with the speed of extraction suggests that this descriptor is a good candidate
for use in real-world face recognition systems.

Future work will involve testing the POEM descriptor in a broader range of
computer vision tasks, such as face detection and object recognition. We will also
investigate the use of more powerful classifiers alongside the POEM descriptor
within the face recognition domain.
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