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Abstract—A general and efficient design approach using a radial
basis function (RBF) neural classifier to cope with small training
sets of high dimension, which is a problem frequently encountered
in face recognition, is presented in this paper. In order to avoid
overfitting and reduce the computational burden, face features are
first extracted by the principal component analysis (PCA) method.
Then, the resulting features are further processed by the Fisher’s
linear discriminant (FLD) technique to acquire lower-dimensional
discriminant patterns. A novel paradigm is proposed whereby data
information is encapsulated in determining the structure and ini-
tial parameters of the RBF neural classifier before learning takes
place. A hybrid learning algorithm is used to train the RBF neural
networks so that the dimension of the search space is drastically re-
duced in the gradient paradigm. Simulation results conducted on
the ORL database show that the system achieves excellent perfor-
mance both in terms of error rates of classification and learning
efficiency.

Index Terms—Face recognition, Fisher’s linear discriminant,
ORL database, principal component analysis, radial basis function
(RBF) neural networks, small training sets of high dimension.

I. INTRODUCTION

M ACHINE recognition of human face from still and video
images has become an active research area in the com-

munities of image processing, pattern recognition, neural net-
works and computer vision. This interest is motivated by wide
applications ranging from static matching of controlled format
photographs such as passports, credit cards, driving licenses,
and mug shots to real-time matching of surveillance video im-
ages presenting different constraints in terms of processing re-
quirements [1]. Although researchers in psychology, neural sci-
ences and engineering, image processing and computer vision
have investigated a number of issues related to face recognition
by human beings and machines, it is still difficult to design an
automatic system for this task, especially when real-time identi-
fication is required. The reasons for this difficulty are two-fold:
1) Face images are highly variable and 2) Sources of variability
include individual appearance, three-dimensional (3-D) pose,
facial expression, facial hair, makeup, and so on and these fac-
tors change from time to time. Furthermore, the lighting, back-
ground, scale, and parameters of the acquisition are all vari-
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ables in facial images acquired under real-world scenarios [1].
As stated by Moseset al. [2], “The variations between the im-
ages of the same face due to illumination and viewing direction
are almost always larger than image variations due to changes
in the face identity.” This makes face recognition a great chal-
lenging problem. In our opinion, two issues are central to face
recognition:

1) What features can be used to represent a face under envi-
ronmental changes?

2) How to classify a new face image based on the chosen
representation?

For 1), many successful face detection and feature extrac-
tion paradigms have been developed [3]–[12]. The frequently
used approaches are to use geometrical features, where the rel-
ative positions and shapes of different features are measured
[3], [4]. At the same time, several paradigms have been pro-
posed to use global representation of a face, where all features
of a face are automatically extracted from an input facial image
[5]–[12]. It has been indicated in [4] that these algorithms with
global encoding of a face are fast in face recognition. In [5],
singular value decomposition (SVD) of a matrix was used to
extract features from the patterns. It has been illustrated that
singular values of an image are stable and represent the alge-
braic attributes of an image, being intrinsic but not necessarily
visible. The eigenface approach of describing the features of a
face was presented in [6]. The key idea is to calculate the best
coordinate system for image compression, in which each coordi-
nate is actually an image that is called an eigenpicture. However,
the eigenface paradigm, which uses principal component anal-
ysis (PCA), yields projection directions that maximize the total
scatter across all classes, i.e., across all face images. In choosing
the projection which maximizes the total scatter, the PCA re-
tains unwanted variations caused by lighting, facial expression,
and other factors [7]. Accordingly, the features produced are not
necessarily good for discrimination among classes. In [7], [8],
the face features are acquired by using the fisherface or discrim-
inant eigenfeature paradigm. This paradigm aims at overcoming
the drawback of the eigenface paradigm by integrating Fisher’s
linear discriminant (FLD) criteria, while retaining the idea of the
eigenface paradigm in projecting faces from a high-dimension
image space to a significantly lower-dimensional feature space.
Instead of using statistical theory, neural-networks-based fea-
ture extraction has been reported recently [9]–[12]. The goal of
face processing using neural networks is to develop a compact
internal representation of faces, which is equivalent to feature
extraction. Therefore, the number of hidden neurons is less than
that in either input or output layers, which results in the network
encoding inputs in a smaller dimension that retains most of the
important information. Then, the hidden units of the neural net-
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work can serve as the input layer of another neural network to
classify face images.

In many pattern recognition systems, the methodology fre-
quently used is the statistical approach, whereby decision theory
derived from statistics of input patterns is used to design a clas-
sifier [13]. Although this paradigm has been successfully ap-
plied to solve various problems in pattern classification, it has
difficulty in expressing structural information unless an appro-
priate choice of features is made possible. Furthermore, this ap-
proach requires much heuristic information to design a classi-
fier [14]. Neural-networks-based paradigms, as new means of
implementing various classifiers based on statistical and struc-
tural approach, have been proven to possess many advantages
for classification because of their learning ability and good gen-
eralization [9]–[12], [14]–[16]. Generally speaking, multilay-
ered networks (MLNs), usually coupled with the backpropaga-
tion (BP) algorithm, are most widely used in face recognition
[9]. Yet, two major criticisms are commonly raised against the
BP algorithm: 1) It is computationally intensive because of its
slow convergence speed and 2) there is no guarantee at all that
the absolute minima can be achieved. On the other hand, RBF
neural networks have recently attracted extensive interests in the
community of neural networks for a wide range of applications
[17]–[29]. The salient features of RBF neural networks are as
follows.

• They are universal approximators [17].
• They possess the best approximation property [18].
• Their learning speed is fast because of locally tuned neu-

rons [19].
• They have more compact topology than other neural net-

works [20].
Normally, RBF neural networks are widely used for function

approximation and pattern recognition wherein the pattern di-
mension in these applications is usually small. As pointed out by
Moody and Darken [19], “RBF neural networks are best suited
for learning to approximate continuous or piecewise continuous,
real-valued mapping where the input dimension is sufficiently
small.” When RBF neural networks are implemented in face
recognition, such systems possess the following characteristics:

• High dimension. For example, a 128128 image will
have 16 384 features.

• Small sample sets. The sample patterns are very few for
each class, say, only one–ten images per person so that

( is the number of training patterns,is the
number of features), which is more severe than the case
shown in [16].

Therefore, face recognition is substantially different from clas-
sical pattern recognition problem, for instance, character recog-
nition [14], in which there are a limited number of classes with
a large number of training patterns in each class. This situation
leads to the following challenges in designing an RBF neural
classifier:

1) Overfitting problem. It has been indicated that if the di-
mension of the network input is comparable to the size
of the training set, the system is liable to overfitting and
result in poor generalization [16].

2) Overtraining problem. High dimension of the network
input results in complex optimal processing and slow con-
vergence. Hence, it is likely to cause overtraining.

Fig. 1. Schematic diagram of RBF neural classifier for small training sets of
high dimension.

3) Small-sample effect. It has been indicated that small
sample can easily contaminate the design and evaluation
of a proposed system [30]. For applications with a large
number of features and a complex classification rule, the
training sample size must be quite large [30]. It has been
further pointed out that the sample size needs to increase
exponentially in order to have an effective estimate of
multivariate densities as the dimension increases [31].

4) Singular problem. If is less than , the sample covari-
ance matrix is singular, and therefore unusable regardless
of the true value of the covariance matrix [32].

To circumvent the aforementioned problems, a systematic
methodology for RBF neural classifier design to deal with small
training sets of high-dimensional feature vectors is presented,
as shown in Fig. 1. The proposed methodology comprises the
following parts: 1) The number of input variables is reduced
through feature selection, i.e., a set of the most expressive fea-
tures is first generated by the PCA and the FLD is then imple-
mented to generate a set of the most discriminant features so
that different classes of training data can be separated as far
as possible and the same classes of patterns are compacted as
close as possible; 2) A new clustering algorithm concerning
category information of training samples is proposed so that
homogeneous data could be clustered and a compact structure
of an RBF neural classifier with limited mixed data could be
achieved; 3) Two important criteria are proposed to estimate the
initial widths of RBF units which control the generalization of
RBF neural classifier; and 4) A hybrid learning algorithm is pre-
sented to train the RBF neural networks so that the dimension
of the search space is significantly reduced in the gradient par-
adigm.

The rest of this paper is organized as follows. Section II
presents the architecture of RBF neural networks and the
related design problems when they are used as a classifier.
Section III provides the procedure of extracting face features.
In Section IV, we propose a systemic approach for structure
determination and initialization of RBF neural networks. A
hybrid learning algorithm is developed in Section V. Experi-
mental results are demonstrated in Section VI. In Section VII,
we discuss some important issues concerning performances of
the proposed approach and provide more insights into several
paradigms, which are closely related to our proposed paradigm.
Finally, conclusions are drawn in Section VIII.
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Fig. 2. RBF neural networks.

II. RBF NEURAL NETWORKS

An RBF neural network, shown in Fig. 2, can be considered
as a mapping: .

Let be the input vector and be
the prototype of the input vectors. The output of each RBF unit
is as follows:

(1)

where indicates the Euclidean norm on the input space.
Usually, the Gaussian function is preferred among all possible
radial basis functions due to the fact that it is factorizable. Hence

(2)

where is the width of the th RBF unit. The th output
of an RBF neural network is

(3)

where , is the weight or strength of theth re-
ceptive field to the th output and is the bias of the th
output. In order to reduce the network complexity, the bias is
not considered in the following analysis.

We can see from (2) and (3) that the outputs of an RBF neural
classifier are characterized by a linear discriminant function.
They generate linear decision boundaries (hyperplanes) in the
output space. Consequently, the performance of an RBF neural
classifier strongly depends on the separability of classes in the

-dimensional space generated by the nonlinear transformation
carried out by the RBF units.

According to Cover’s theorem on the separability of patterns
wherein a complex pattern classification problem cast in a
high-dimensional space nonlinearly is more likely to be linearly
separable than in a low-dimensional space [33], the number
of Gaussian nodes , where is the dimension of input
space. On the other hand, the increase of Gaussian units may
result in poor generalization because of overfitting, especially,
in the case of small training sets [16]. It is important to analyze
the training patterns for the appropriate choice of RBF hidden
nodes.

Geometrically, the key idea of an RBF neural network is to
partition the input space into a number of subspaces which are
in the form of hyperspheres. Accordingly, clustering algorithms
( -means clustering, fuzzy-means clustering and hierarchical
clustering) which are widely used in RBF neural networks [19],

(a)

(b)

Fig. 3. Two-dimension patterns and clustering: (a) conventional clustering, (b)
clustering with homogeneous analysis.

Fig. 4. Effect of Gaussian widths in clustering.

[21], are a logical approach to solve the problems [19], [22].
However, it should be noted that these clustering approaches
are inherently unsupervised learning algorithms as no category
information about patterns is used. As an illustrative example,
consider a simple training set illustrated in Fig. 3. The
black and white data points reflect the corresponding values as-
sumed by the dependent variable. If we simply use -means
clustering approach without considering, two evident clus-
ters as shown in Fig. 3(a) are achieved. This brings about signif-
icant misclassification initially. Although the clustering bound-
aries are modified in the subsequent learning phase, this could
easily lead to an undesired and highly dominant averaging phe-
nomenon as well as to make the learning less effective [21].
To preserve homogeneous clusters, three clusters as depicted in
Fig. 3(b) should be created. In other words, a supervised clus-
tering procedure which takes into consideration the category in-
formation of training data should be considered.

While considering the category information of training pat-
terns, it should be emphasized that the class memberships are
not only depended on the distance of patterns, but also depended
on the Gaussian widths. As illustrated in Fig. 4,is near to
the center of class in Euclidean distance, but we can select
different Gaussian widths for each cluster so that the point
has greater class membership to classthan that to class .
Therefore, the use of class membership implies that we should
propose a supervised procedure to cluster the training patterns
and determine the initial Gaussian widths, and this work will be
elaborated in Section IV.
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III. EXTRACTION OF FACE FEATURES

A. Principal Component Analysis (PCA)

Let a face image be a two-dimensional array of
intensity values. An image may also be considered as a vector
of dimension . Denote the training set of face images by

, and we assume that each
image belongs to one ofclasses. Define the covariance matrix
as follows [6], [13]:

(4)

where and
. Then, the eigenvalues and eigenvectors of the

covariance are calculated. Let
be the eigenvectors corresponding to the

largest eigenvalues. Thus, for a set of original face images
, their corresponding eigenface-based feature

can be obtained by projecting into the eigenface
space as follows:

(5)

B. Fisher’s Linear Discriminant (FLD)

Actually, the PCA paradigm does not provide any informa-
tion for class discrimination but dimension reduction. Accord-
ingly, the FLD is applied to the projection of the set of training
samples in the eigenface space

. The paradigm finds an optimal subspace for classifi-
cation in which the ratio of the between-class scatter and the
within-class scatter is maximized [7], [8], [13]. Let the between-
class scatter matrix be defined as

(6)

and the within-class scatter matrix be defined as

(7)

where is the mean image of the ensemble,

and is the mean image of theth class,
is the number of samples in theth class, and is the number

of classes. The optimal subspace, by the FLD is deter-
mined as follows [7], [8], [13]:

(8)

where is the set of generalized eigenvectors
of and corresponding to the largest generalized
eigenvalues , i.e.,

(9)

Thus, the feature vectors for any query face images in the
most discriminant sense can be calculated as follows:

(10)

Remarks:

1) From (7), we see . In
order to prevent from becoming singular, the value
of should be no more than .

2) Also we can see from (6) that .
Accordingly, there are at most nonzero generalized
eigenvectors. In other words, the FLD transforms the-di-
mension space into -dimension space to classify
classes of objects.

3) It should be noted that the FLD is a linear transforma-
tion which maximizes the ratio of the determinant of the
between-class scatter matrix of the projected samples to
the determinant of the within-class scatter matrix of the
projected samples. The results are globally optimal only
for linear separable data. The linear subspace assumption
is violated for the face data that have great overlappings
[34]. Moreover, the separability criterion is not directly
related to the classification accuracy in the output space
[34].

4) Several researchers have indicated that the FLD method
achieved the best performance on the training data, but
generalized poorly to new individuals [35], [36].

Therefore, RBF neural networks, as a nonlinear alternative
with good generalization, have been proposed for face classifi-
cation. In the sequel, we will use the feature vectorsinstead
of their corresponding original data in Sections IV–VIII.

IV. STRUCTUREDETERMINATION AND INITIALIZATION OF RBF
NEURAL NETWORKS

A. Structure Determination and Choice of Prototypes

From the point of view of face recognition, a set of optimal
boundaries between different classes should be estimated by
RBF neural networks. Conversely, from the point of view of
RBF neural networks, the neural networks are regarded as a
mapping from the feature hyperspace to the classes. Each pat-
tern is represented by a real vector and each class is assigned for
a suitable code. Therefore, we set:

• the number of inputs to be equal to that of features (i.e.,
the dimension of the input space);

• the number of outputs to be equal to that of classes (see
Fig. 2).

It is cumbersome to select the hidden nodes. Different ap-
proaches revolving around increasing or decreasing the com-
plexity of the architecture have been proposed [19]–[28]. Many
researchers have illustrated that the number of hidden units de-
pends on the geometrical properties of the training patterns as
well as the type of activation function [24]. Nevertheless, this is
still an open issue in implementing RBF neural networks. Our
proposed approach is as follows.

1) Initially, we set the number of RBF units to be equal to
that of the output, , i.e., we assume that each class
has only one cluster.
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2) For each RBF unit , , the center is se-
lected as the mean value of the sample patterns belonging
to class , i.e.,

(11)

where is the th sample belonging to classand is
the total number of training patterns in class.

3) For any class , compute the Euclidean distancefrom
the mean to the furthest point belonging to
class , i.e.,

(12)

4) For any class :
• Calculate the distance between the mean of

class and the mean of other classes as follows:

(13)

• Find

(14)
• Check the relationship between and ,

.

Case 1)No overlapping.If ,
class has no overlapping with other
classes [see Fig. 5(a)].

Case 2)Overlapping.If ,
class has overlapping with other
classes and misclassification may occur
in this case. Fig. 5(b) represents the
case that and

, while Fig. 5(c)
depicts the case that
and .

5) Splitting Criteria:

i) Embody Criterion: If class is embodied in class
completely, i.e., and

, class will be split into two clus-
ters, see Fig. 6.

ii) Misclassified Criterion: If class contains many
data of other classes (in the following experiment,
this implies that if the number of misclassified data
in class is more than one), then classwill be
split into two clusters.

If class satisfies one of the above conditions, class
will be split into two clusters in which the centers are

calculated based on their corresponding sample patterns
according to (11).

6) Repeat (2)–(5), until all the training sample patterns meet
the above two criteria.

B. Estimation of Widths

Essentially, RBF neural networks overlap localized regions
formed by simple kernel functions to create complex decision

(a)

(b)

(c)

Fig. 5. Clusters and distribution of sample patterns: (a)d +d � d (k; l).
(b)d +d > d (k; l) andjd �d j < d (k; l). (c)d +d > d (k; l)
andjd + d j � d (k; l).

Fig. 6. Splitting of one class into two clusters.

regions while the amount of overlapping is controlled by the
widths of RBF units [22], [24]. If no overlapping occurs, the
system will not give meaningful outputs for inputs between the
inputs for which the system is designed, i.e., the RBF units do
not generalize well. However, if the widths are too large, the
interaction of different classes will be great and the output be-
longing to the class will not be so significant [25], while the
output of other classes may be large so that it will lead to mis-
classification greatly. Hence, our goal is to select the widths in
such a way that they would minimize overlapping of nearest
neighbors of different classes to preserve local properties, as
well as maximize the generalization ability of the network [25].
Here, we present a general approach to select the widths of an
RBF neural classifier according to two criteria.

1) Majority Criterion: The majority criterion can be de-
scribed as follows: In any class, each datum should have
more than 50% confidence level for the class it belongs
to. The detailed calculations are presented as follows:

First, , the distance from the mean to the furthest
point belonging to class, is calculated according to (11)
and (12).
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Next, define the width of class considering the
confidence level as

(15)

where is called the confidence coefficient, which lies in
the range .

2) Overlapping Criterion: The overlapping criterion can be
described as follows: For any class, the choice of
considering the overlapping of the nearest classis deter-
mined by

(16)

where is an overlapping factor that controls the overlap
of different classes, is the minimum distance
between the center of classand centers of other classes.

Then, the width of class is finally determined by

(17)

The key idea of this approach is to consider not only the
intra-data distribution but also the inter-data variations.

In order to efficiently determine the width , the pa-
rameter could be approximately estimated as follows:

(18)

The choice of is determined by the distribution
of sample patterns. If the data are scattered

largely, but the centers are close, a smallshould be
selected as demonstrated in Table IV. Normally,lies
in the range . The best values of and
are selected when the best performance is achieved for
training patterns.

V. HYBRID LEARNING ALGORITHM

The adjustment of RBF unit parameters is a nonlinear process
while the identification of weight is a linear one. Though
we can apply the gradient paradigm to find the entire set of
optimal parameters, the paradigm is generally slow and likely
to become trapped in local minima. Here, a hybrid learning al-
gorithm, which combines the gradient paradigm and the linear
least square (LLS) paradigm to adjust the parameters, is pre-
sented.

A. Weight Adjustment

Let and be the number of inputs and outputs respec-
tively, and suppose that RBF units are generated according
to the above clustering algorithm for all training patterns. For
any input , the th output of the system is

(19)

or

(20)

Given and , where
is the total number of sample patterns,is the target matrix

consisting of “1’s” and “0’s” with exactly one per column that
identifies the processing unit to which a given exemplar belongs,
find an optimal coefficient matrix such that the
error energy is minimized. This
problem can be solved by the LLS method [15]

(21)

where is the transpose of , and is the
pseudoinverse of .

B. Modification of Parameters of RBF Units

Here, the parameters (centers and widths) of the prototypes
are adjusted by taking the negative gradient of the error function

(22)

where and represent the th real output and the target
output at the th pattern, respectively. The error rate for each
output can be calculated readily from (22)

(23)

For the internal nodes (centerand width ), the error rate
can be derived by the chain rule as follows [15]:

(24)

(25)

where is the central error rate of theth input variable
of the th prototype at theth training pattern, is the width
error rate of the th prototype at theth pattern, is the
th input variable at theth training pattern and is the learning

rate.
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C. Learning Procedure

In the forward pass, we supply input data and functional sig-
nals to calculate the output of the th RBF unit. Then, the
weight is modified according to (21). After identifying the
weight, the functional signals continue going forward till the
error measure is calculated. In the backward pass, the errors
propagate from the output end toward the input end. Keeping the
weight fixed, the centers and widths of RBF nodes are modified
according to (24) and (25). The learning procedure is illustrated
in Table I.

Remarks:
1) If we fix the parameters of the RBF units, the weights found

by the LLS are guaranteed to be global optimum. Accord-
ingly, the dimension of the search space is drastically re-
duced in the gradient paradigm so that this hybrid learning
algorithm converges much faster than the gradient descent
paradigm.

2) It is well known that the learning rateis sensitive to the
learning procedure. If is small, the BP algorithm will
closely approximate the gradient path, but the convergence
speed will be slow since the gradient must be calculated
many times. On the other hand, ifis large, convergence
speed will be very fast initially, but the algorithm will
oscillate around the optimum value. Here, we propose an
approach so that will be reduced gradually. We compute

(26)

where , are maximum and minimum learning
rates, respectively, is the number of epochs, andis a
descent coefficient which lies in the range .

3) As the widths are sensitive to the generalization of an RBF
neural classifier, a larger learning rate is adopted for width
adjustment than for center modification (twice as that for
center modification).

4) As the system with high dimension is liable to overtraining,
the early stop strategy in [24] is adopted.

VI. EXPERIMENTAL RESULTS

A. ORL Database

Our experiments were performed on the face database
which contains a set of face images taken between April 1992
and April 1994 at the Olivetti Research Laboratory (ORL)
in Cambridge University, U.K. There are 400 images of 40
individuals. For some subjects, the images were taken at
different times, which contain quite a high degree of variability
in lighting, facial expression (open/closed eyes, smiling/non-
smiling etc), pose (upright, frontal position etc), and facial
details (glasses/no glasses). All the images were taken against a
dark homogeneous background with the subjects in an upright,
frontal position, with tolerance for some tilting and rotation of
up to 20 . The variation in scale is up to about 10%. All the
images in the database are shown in Fig. 7.1

In the following experiments, a total of 200 images were ran-
domly selected as the training set and another 200 images as
the testing set, in which each person has five images. Next, the

1The ORL database is available from http//www.cam-orl.co.uk/face-
database.html.

TABLE I
TWO PASSES IN THEHYBRID LEARNING PROCEDURE

Fig. 7. The ORL face database.

training and testing patterns were exchanged and the experiment
was repeated one more time. Such procedure was carried out
several times.

B. Clustering Error Before Learning

The structure of RBF neural networks and parameters of pro-
totypes are obtained according to the algorithm shown in Sec-
tion IV. In order to test how the clustering algorithm works, the
data distributions on six simulations are illustrated in Table II
and the misclustering number based on different dimensions of
feature patterns in six runs of simulations before learning are
listed in Table III. We see from Table II that there are a total of
five classes which are in well-separated distribution as depicted
in Fig. 5(a) and 235 classes are distributed as shown in Fig. 5(b)
when the dimension of the feature vectors is 39. The separation
of data becomes better and better as the dimension decreases.
Correspondingly, the clustering performance is better when the
number of feature vectors reduces, as shown in Table III. How-
ever, as we will see later, it does not imply that the recognition
performance will improve along with reduction in the dimen-
sion. We also find from Table III that the maximum misclus-
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TABLE II
DATA DISTRIBUTION BASED ON THEPROPOSEDAPPROACHBEFORELEARNING

(THE RESULTSARE OBTAINED BASED ON SIX SIMULATIONS)

tering number within a class for each simulation is one except
for one case which occurred when the dimension is 39. We can
conclude that the clustering paradigm presented is good for all
cases.

C. Error of Classification After Learning

After the structure of RBF neural networks and parameters of
prototypes are selected, the hybrid learning algorithm presented
in Section V is employed to train the network. One run of the
recognition results is shown in Table IV.

From Table IV, we can see that:

1) If the information is sufficient (feature dimension is
larger than 20), the results are stable in each case for
different choice of initial parameters and in terms
of the number of misclassifications. Otherwise, the error
rate will increase drastically.

2) On the other hand, it does not mean that more informa-
tion (dimension is larger than 30) will result in higher per-
formance. The reason may be that high dimension will
lead to complexity in structure and increase difficulty
in learning. Moreover, the addition of some unimportant
information may become noise and degrade the perfor-
mance. The best results are achieved when the dimension
is 25–30.

3) Along with the increase in the feature dimension, the
training patterns have more overlapping, and a small
should be selected.2

The total results based on six simulations are summarized in
Tables V and VI.

D. Comparisons With Other Approaches

Recently, a number of researchers use the ORL database to
verify their algorithms [11], [12], [29], [37]–[45]. Here, we
adopt the same definition of average error rate, used in
[11], [37], which is given by

(27)

2It should be noted that� lies in the range0:5 � � < 1. Even the RMSE
is smaller in the case of� < 0:5 when the dimension is 39, the generalization
will be very bad.

TABLE III
CLUSTERING ERRORS FORTRAINING PATTERNS BEFORELEARNING (THE

RESULT IS THE SUM OF SIX SIMULATIONS)

TABLE IV
SPECIFIEDPARAMETERS AND CLASSIFIED PERFORMANCE

* RMSE—Root Mean Squared Error

** NOM—Number of Misclassifications

TABLE V
CLASSIFIED PERFORMANCES ONSIX SIMULATIONS

TABLE VI
BESTPERFORMANCES ON6 SIMULATIONS (DIMENSION r = 25 OR 30)

where is the number of experimental runs, each one being
performed on random partitioning of the database into two sets,

is the number of misclassifications for theth run, and
is the number of total testing patterns of each run. Using the
criterion of , comparisons with CNN [11], NFL [37] and
M-PCA [38] performed on the same ORL database are shown
in Table VII.

Here, the best value of for the CNN is based on three
runs of experiments, and the SOM size is 8 and 9. For NFL,
the best error rate is obtained when the number of feature vec-
tors is 40, and the average error rate is evaluated based on four
runs of experiments. For M-PCA, it was reported that the overall
performance is the average of ten runs of experiments. For our
proposed paradigm, the best error rate is based on six runs, and
the feature dimension is 25 and 30, respectively. The face fea-
tures are the same as [37], and the way to partition the training
set and query set is the same as the methods in [11] and [37].
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TABLE VII
ERRORRATES OFDIFFERENTAPPROACHES

Some other results recently performed on the ORL database
are listed in Table VIII as references (these results are tabulated
separately from Table VII because we are not aware of how
their experiments are exactly performed). It should be noted that
some approaches used different number of training data (for ex-
ample, only one training pattern per person is used in [39], [40],
and eight patterns per person in [29]); some results were eval-
uated based on the best performance of one run, such as [41],
[42]; some experiments were performed based on part of the
database [40]. It is not clear how the experiments were carried
out and how the performances were evaluated in [12], [43]–[45].
It is not fair to compare the performances under different exper-
imental conditions.

VII. D ISCUSSION

In this paper, a general and efficient approach for designing an
RBF neural classifier to cope with high-dimensional problems
in face recognition is presented. For the time being, many algo-
rithms have been proposed to configure RBF neural networks
for various applications including face recognition, as shown in
[19]–[29]. Here, we would like to provide more insights into
these algorithms and compare their performances with our pro-
posed method.

A. Face Features, Classifiers, and Performances

Here, the face features are first extracted by the PCA par-
adigm so that the resulting data are compressed significantly.
Then, the information is further condensed via the FLD ap-
proach. Corresponding to Tables II and III in which the pat-
terns are obtained from the PCA FLD, the data distribution
resulting from the PCA and the clustering errors for training pat-
terns based on our proposed approach are tabulated in Tables IX
and X. Comparing Tables II and III with Tables IX and X, we
have the following observations: 1) Class overlapping gradually
reduces along with decrease in the number of feature vectors
for the data resulting from both the PCA and the PCAFLD
methods; 2) For the data from the PCA, the clustering errors
increase along with decrease in the feature dimension, but the
clustering errors decrease for the data from the PCAFLD; and
3) The data from the PCA FLD are still overlapping without
complete separation unless the feature dimension is less than 20.
However, the FLD indeed alleviates the class overlapping as ev-
idenced in comparing Tables IX and II.

Different face features are then used for testing by different
classifiers. Figs. 8 and 9 illustrate the effect of data dimension
resulted from the PCA and the PCAFLD methods on perfor-
mance classified by the nearest neighbor method. We see that

TABLE VIII
OTHER RESULTSRECENTLY PERFORMED ON THEORL DATABASE

TABLE IX
DATA DISTRIBUTION RESULTED FROM THE PCA BASED ON THEPROPOSED

APPROACH(THE RESULTSARE OBTAINED BASED ONSIX SIMULATIONS)

TABLE X
CLUSTERING ERRORS FORTRAINING PATTERNS RESULTED FROM THE PCA

(THE RESULT IS THE SUM OF SIX SIMULATIONS)

more information (more dimensions) result in higher perfor-
mance in the PCA. However, the performance resulting from the
PCA FLD is not monotonically improved along with increase
in the feature dimension, and the best performance is a little de-
crease in PCA FLD because of information loss.3 . Table XI
illustrates the performances by using different face features and
classifiers.

As foreshadowed earlier, the FLD is a linear transformation
and the data resulting from this criterion are still heavily over-
lapping. It is also indicated in [34] that this separability criterion

3This is also indicated in several papers, for example, [35] and [36]
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Fig. 8. Error rate as a function of pattern dimension in PCA (this is the average
result of two runs).

Fig. 9. Error rate as a function of pattern dimension in PCA+ FLD (this is
the average result of two runs).

is not directly related to the classification accuracy in the output
space. Accordingly, nonlinear discriminant analysis is neces-
sary for classification among which neural networks are one of
the popular approaches [15].

The advantage of neural classifiers over linear classifiers is
that they can reduce misclassifications among the neighborhood
classes as shown in Fig. 10. However, this ability will gradu-
ally decrease along with increase in the feature dimension. We
can see from Table XI that the performance gained by the PCA

FLD is better than that obtained from the PCA. This is be-
cause the FLD can alleviate data overlapping, and reduction
in the number of feature dimension moderates the architecture
complexity of the RBF neural classifier and reduces the com-
putational burden significantly in order to avoid overtraining
and overfitting. However, for those data falling into nonnearest
classes as shown in Fig. 10, the neural classifier still cannot clas-
sify correctly.

It has been reported in [11] that error rates of the multilayer
networks (MLNs) classifier are 41.2% and 39.6% respectively
on the ORL database when the features are extracted by the PCA
and the SOM respectively. Our proposed approach, which is dif-
ferent from the MLN, wherein a particular supervised learning
paradigm is employed, is a tremendous improvement over the
results of MLN, CNN [11] and the RBF method shown in [29].

TABLE XI
PERFORMANCECOMPARISONS OFVARIOUS FACE FEATURES ANDCLASSIFIERS

Fig. 10. An RBF neural classifier versus a linear classifier.

B. Training Samples versus Performances

Due to the fact that there are very small sample patterns for
each face in the ORL database, and further, as mentioned in
Section I that similarities between the different face images with
the same pose are almost always larger than those between the
same face image with different poses, the choice of training data
is consequently very crucial for generalization of RBF neural
networks. If the training data are representative of face images,
the generalization of RBF neural classifier implies to interpolate
the testing data. Otherwise, it means to predict the testing data.

From the viewpoint of images, it is shown that the proposed
approach is not as sensitive to illumination (see Fig. 11), as
other paradigms do [2], [6]. Usually, the proposed method also
discounts the variations of facial pose, expression and scale
when such variations are presented in the training patterns. If
the training patterns are not representative of image variations
which appear during the testing phase, say, upward, then the
face turning up in the testing phase will not be recognized
correctly, as shown in Fig. 11. According to this principle,
another database consisting of 600 face images of 30 individ-
uals, which comprise different poses (frontal shots, upward,
downward, up-right, down-left and so on), and high degree
of variability in facial expression, has been set up by us. All
the images were taken under the same background with the
resolution of 160 120 pixels. A total of 300 face images, in
which each person has ten images, were selected to represent
different poses and expressions as the training set. Another 300
images were used as the testing set. Our results demonstrated
that the success rate of recognition is 100%.
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(a)

(b)

Fig. 11. An example of incorrect classification: (a) training images and (b) test
images.

C. Initialization versus Performances

1) Selection of Gaussian Centers :Several paradigms have
been proposed for kernel location estimation. The simplest ap-
proach is to select from the training data as shown in [20], [23],
[25], [28]. Other typical techniques can be found by using clus-
tering algorithms [19], [21] or median operation [26]. If we also
select the same six groups of face data resulting from the PCA
FLD with a feature dimension of 40, the initial clustering errors
for training data by other clustering algorithms are tabulated in
Table XII.

We can see from Table XII that many data are misclassified by
the unsupervised-means clustering method and the regression
clustering method [23]. It also implies that these data are signifi-
cantly overlapped. However, the clustering error will be remark-
ably reduced if the category information about patterns is used,
for example, the MRBF paradigm [26] shown in Table XII, and
our proposed method achieves the best clustering performance
as shown in Table III.

2) Determination of Gaussian Widths:The appropriate es-
timation of widths of Gaussian units is very significant for gen-
eralization [20], [22], [24]–[29]. Frequently, the widths are se-
lected by heuristics [19], [21], [23], [29]. Also many researchers
choose the widths as the common variance (CV) (i.e., calculated
over all sample patterns) [20], [33] or the class-related variance
(CRV) (i.e., calculated over all the patterns belonging to the cor-
responding class) [24], [27]. Recently, some new methods have
been proposed to estimate the widths, for example, the sample
covariance (i.e., the class-related variance) plus common co-
variance (SCCC) [32], the minimum distance between cluster
centers (i.e., using ) [25], the median operation (MO) [26],
or the evolutionary optimization [28]. If we use the same six
groups of data resulting from the PCAFLD, where the cen-
ters are determined by our proposed clustering method, and the
cluster number is still 40, the initial clustering errors in different
widths chosen by different methods are tabulated in Table XIII.
Table XIV illustrates the generalization performance for testing
patterns performed on the ORL database.

It is shown from Table XIII that the SCCC method is the best
method to describe the training patterns. However, a method for
good description of training patterns does not imply that it has
good generalization, as we see from Table XIV. On the other
hand, the testing errors before learning for the MO and CRV
approaches are very high (the total NOM’s are 95 and 117, re-

TABLE XII
CLUSTERING ERRORS FORTRAINING PATTERNS BY OTHER CLUSTERING

ALGORITHMS (THE RESULT IS THE SUM OF SIX SIMULATIONS)

TABLE XIII
CLUSTERING ERRORS FORTRAINING PATTERNS CONSIDERINGWIDTHS

CHOSEN BY DIFFERENT METHODS (THE RESULT IS THE SUM OF SIX

SIMULATIONS)

* The widths are best chosen for each case

TABLE XIV
GENERALIZATION ERRORS FORTESTINGDATA BY DIFFERENTINITIAL WIDTHS

(THE RESULT IS THE SUM OF SIX SIMULATIONS)

* The results are obtained when the feature dimension is 30

spectively). But their final performances after learning are com-
parable to other paradigms (CV, SCCC and). Theoretically,
the final results should be the same regardless of initial param-
eters if the learning algorithm is good enough for optimization.
The discrepancies are mainly caused by overfitting and over-
training due to small sets of patterns with high dimension.

Two unsupervised algorithms with growing structure, i.e.,
ORBF [23] and D-FNN [25] have been employed to test the
ORL database. Tables XV and XVI illustrate the generalization
results for the first group data with different clusters. We see
that the loss of category information will be at the cost of
more clusters for the comparable performance. However, it
should be noted that the increase of clusters is likely to result in
overfitting, as shown in Table XVI.
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TABLE XV
GENERALIZATION ERRORS FORTESTINGDATA BY THE ORBF METHOD

TABLE XVI
GENERALIZATION ERRORS FORTESTINGDATA BY THE D-FNN METHOD

D. The Problem of Small Sample Sets

One of the difficulties for neural networks to train in face
recognition is the small sample data. This severe limitation al-
ways results in poor generalization. An alternative paradigm to
improve generalization is to adopt the technique of regulariza-
tion [15], [33], i.e., to encourage smoother network mappings
by adding a penalty term to the error function. But, the ap-
propriate choice of regularization parameter is time consuming.

Another direct method to improve generalization is to use
more data patterns, i.e., by adding some patterns with noise
[46]. According to the procedure proposed in [46], another set of
training patterns with noise randomly chosen from the uniform
distribution is replenished. The learning algorithm is executed
with and without adding noise to the inputs. Our experiments
show that if the variance of noise is small, there is no effect on
generalization, whereas large variance of noise will deteriorate
the performance.

High dimension may be one of the reasons that lead to poor
generalization. As the values in each dimension vary greatly and
different features have different influences for face recognition,
a uniformly distributed noise may affect some features substan-
tially and has no influence on some other features. On the other
hand, different features may have different weights for different
face features. Therefore, normalization of the inputs should be
taken when the noise is injected into the inputs.

Another reason may be due to the presupposition that the ac-
quisition of generalization capability by noise injection into the
inputs relies on the assumption that the mapping from the input
space to the output space should be smooth [46]. For high-di-
mensional classifications, it is not easy to determine whether
the assumption could be satisfied in advance.

VIII. C ONCLUSION

It is well known that if the dimension of the network input
is comparable to the size of the training set, which is the usual
case in face recognition, the system will easily bring about over-
fitting and result in poor generalization. In this paper, a gen-
eral design approach using an RBF neural classifier for face
recognition to cope with small training sets of high-dimensional
problem is presented. Firstly, face features are first extracted
by the PCA. Then, the resulting features are further projected
into the Fisher’s optimal subspace in which the ratio of the be-
tween-class scatter and the within-class scatter is maximized. A
novel paradigm, whereby training data information is used in the

choice of structure and parameters of RBF neural networks be-
fore learning takes place, is presented. Finally, a hybrid learning
algorithm is proposed to train the RBF neural networks. Simu-
lation results show that the system achieves excellent perfor-
mance both in terms of error rates of classification and learning
efficiency.

In this paper, the feature vectors are only extracted from
grayscale information. More features extracted from both
grayscale and spatial texture information and a real-time
face detection and recognition system are currently under
development.
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