
ar
X

iv
:1

5
0
7
.0

7
2
4
2
v
2
  
[c

s.
C

V
] 

 2
8
 J

u
l 

2
0
1
5

MSU TECHNICAL REPORT MSU-CSE-15-11, JULY 24, 2015 1
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Abstract—Due to the prevalence of social media websites, one challenge facing computer vision researchers is to devise methods to

process and search for persons of interest among the billions of shared photos on these websites. Facebook revealed in a 2013 white

paper that its users have uploaded more than 250 billion photos, and are uploading 350 million new photos each day. Due to this

humongous amount of data, large-scale face search for mining web images is both important and challenging. Despite significant

progress in face recognition, searching a large collection of unconstrained face images has not been adequately addressed. To

address this challenge, we propose a face search system which combines a fast search procedure, coupled with a state-of-the-art

commercial off the shelf (COTS) matcher, in a cascaded framework. Given a probe face, we first filter the large gallery of photos to find

the top-k most similar faces using deep features generated from a convolutional neural network. The k retrieved candidates are

re-ranked by combining similarities from deep features and the COTS matcher. We evaluate the proposed face search system on a

gallery containing 80 million web-downloaded face images. Experimental results demonstrate that the deep features are competitive

with state-of-the-art methods on unconstrained face recognition benchmarks (LFW and IJB-A). More specifically, on the LFW

database, we achieve 98.23% accuracy under the standard protocol and a verification rate of 87.65% at FAR of 0.1% under the BLUFR

protocol. For the IJB-A benchmark, our accuracies are as follows: TAR of 51.4% at FAR of 0.1% (verification); Rank 1 retrieval of 82.0%

(closed-set search); FNIR of 61.7% at FPIR of 1% (open-set search). Further, the proposed face search system offers an excellent

trade-off between accuracy and scalability on datasets consisting of millions of images. Additionally, in an experiment involving

searching for face images of the Tsarnaev brothers, convicted of the Boston Marathon bombing, the proposed cascade face search

system could find the younger brother’s (Dzhokhar Tsarnaev) photo at rank 1 in 1 second on a 5M gallery and at rank 8 in 7 seconds

on an 80M gallery.

Index Terms—face search, unconstrained face recognition, deep learning, big data, cascaded system, scalability.

✦

1 INTRODUCTION

Social media has become pervasive in our society. It is hence

not surprising that a growing segment of the population has a

Facebook, Twitter, Google, or Instagram account. One popular

aspect of social media is the sharing of personal photographs.

Facebook revealed in a 2013 white paper that its users have

uploaded more than 250 billion photos, and are uploading 350

million new photos each day1. To enable automatic tagging of

these images, strong face recognition capabilities are needed.

Given an uploaded photo, Facebook and Google’s tag suggestion

systems automatically detect faces and then suggest possible name

tags based on the similarity between facial templates generated

from the input photo and previously tagged photographs in their

datasets. In the law enforcement domain, the FBI plans to include

over 50 million photographs in its Next Generation Identification

(NGI) dataset2, with the goal of providing investigative leads by

searching the gallery for images similar to a suspect’s photo. Both

tag suggestion in social networks and searching for a suspect in

criminal investigations are examples of the face search problem

(Fig. 1). We address the large-scale face search problem in the

context of social media and other web applications where face

images are generally unconstrained in terms of pose, expression,

and illumination [1], [2].

The major focus in face recognition literature lately has been

to improve face recognition accuracy, particularly on the Labeled

Faces in the Wild (LFW) dataset [3]. But, the problem of scale

1. https://goo.gl/FmzROn

2. goo.gl/UYlT8p

Law Enforcement

Social Media

Who is this?

Large-Scale Face Dataset

One of them?

Face Search System

Fig. 1. An example of large-scale face search problem.

in face recognition has not been adequately addressed3. It is now

accepted that the small size of the LFW dataset (13, 233 images

of 5, 749 subjects) and the limitations in the LFW protocol do

not address the two major challenges in large-scale face search:

(i) loss in search accuracy with the size of the dataset, and (ii)

increase in computational complexity with dataset size.

The typical approach to scalability (e.g. content-based image

retrieval [2]) is to represent objects with feature vectors and

employ an indexing or approximate search scheme in the feature

space. A vast majority of face recognition approaches, irrespective

of the representation scheme, are ultimately based on fixed length

feature vectors, so employing feature space methods is feasible.

3. An earlier version of the paper appeared in the Proc. IEEE International
Conference on Biometrics (ICB), Phuket, June 2015 [4].

http://arxiv.org/abs/1507.07242v2
https://goo.gl/FmzROn
goo.gl/UYlT8p
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However, some techniques are not compatible with feature space

approaches such as pairwise comparison models (e.g. Joint-

Bayes [5]), which have been shown to improve face recognition

accuracy. Additionally, most COTS face recognition SDKs define

pairwise comparison scores but do not reveal the underlying

feature vectors, so they are also incompatible with feature-space

approaches. Therefore, using a feature space based approximation

method alone may not be sufficient.

To address the issues of search performance and search time

for large datasets (80M face images used here), we propose

a cascaded face search framework (Fig. 2). In essence, we

decompose the search problem into two steps: (i) a fast filtering

step, which uses an approximation method to return a short

candidate list, and (ii) a re-ranking step, which re-ranks the

candidate list with a slower pairwise comparison operation,

resulting in a more accurate search. The fast filtering step

utilizes a deep convolutional network (ConvNet), which is an

efficient implementation of the architecture in [6], with product

quantization (PQ) [7]. For the re-ranking step, a COTS face

matcher (one of the top performers in the 2014 NIST FRVT [8])

is used. The main contributions of this paper are as follows:

• An efficient deep convolutional network for face recogni-

tion, trained on a large public domain data (CASIA [6]),

which improves upon the baseline results reported in [6].

• A large-scale face search system, leveraging the deep

network representation combined with a state-of-the-art

COTS face matcher in a cascaded scheme.

• Studies on three types of face datasets of increasing

complexity: the PCSO mugshot dataset, the LFW dataset

(only includes faces detectable by a Viola-Jones face

detector), and the IJB-A dataset (includes faces which are

not automatically detectable).

• The largest face search experiments conducted to date on

the LFW [3] and IJB-A [9] face datasets with an 80M

gallery.

• Using face images of the Tsarnaev brothers involved in

the Boston Marathon bombing as queries, we show that

Dzhokhar Tsarnaev’s photo could be identified at rank 8
when searching against the 80M gallery.

The rest of this paper is organized as follows. Section

2 reviews related work on face search. Section 3 details the

proposed deep learning architecture and large-scale face search

framework. Section 4 introduces the face image datasets used

in our experiments. Section 5 presents experiments illustrating

the performance of the deep face representation features on face

recognition tasks of increasing difficulty (including public domain

benchmarks). Section 6 presents large-scale face search results

(with 80M web downloaded face images). Section 7 presents a

case study based on the Tsarnev brothers, convicted in the 2013

Boston Marathon bombing. Section 8 concludes the paper.

2 RELATED WORK

Face search has been extensively studied in multimedia and

computer vision literature [20]. Early studies primarily focused

on faces captured under constrained conditions, e.g. the FERET

dataset [14]. However, due to the growing need for strong

face recognition capability in the social media context, ongoing

research is focused on faces captured under more challenging

conditions in terms of pose, expression, illumination and aging,

similar to images in the public domain datasets LFW [3] and IJB-

A [9].

The three main challenges in large-scale face search are: i)

face representation, ii) approximate k-NN search, and iii) gallery

selection and evaluation protocol. For the face representation,

features learned from deep networks (deep features) have been

shown to saturate performance on the standard LFW evaluation

protocol4. For example, the best recognition performance reported

to date on LFW (99.65%) [21] used a deep learning approach

leveraging training with 1M images of 20K individuals (outside

the protocol). A comparable result (99.63%) was achieved by a

Google team [22] by training a deep model with about 150M

images of 8M subjects. It has even been reported that deep features

exceed the human face recognition accuracy (99.20% [10]) on

the LFW dataset. To push the frontiers of unconstrained face

recognition, the IJB-A dataset was released in 2015 [9]. IJB-A

contains face images that are more challenging than LFW in terms

of both face detection and face recognition. In order to recognize

web downloaded unconstrained face images, we also adopt a deep

learning based face representation by improving the architecture

outlined in [6].

Given our goal of using deep features to filter a large gallery

to a small set of candidate face images, we use approximate k-NN

search to improve scalability. There are three main approaches for

approximate face search:

• Inverted Indexing. Following the traditional bag-of-words

representation [23], Wu et al. [2] designed a component-

based local face representation for inverted indexing. They

first split aligned face images into a set of small blocks

around the detected facial landmarks and then quantized

each block into a visual word using an identity-based

quantization scheme. The candidate images were retrieved

from the inverted index of visual words. Chen et al. [1]

improved the search performance in [2] by leveraging

human attributes.

• Hashing. Yan et al. [15] proposed a spectral regression

algorithm to project facial features into a discriminative

space; a cascaded hashing scheme (similarity hashing) was

used for efficient search. Wang et al. [24] proposed a weak

label regularized sparse coding to enhance facial features

and adopted the Locality-Sensitive Hash (LSH) [25] to

index the gallery.

• Product Quantization (PQ). Unlike the previous two

approaches which require index vectors to be stored in

main memory, PQ [7] is a compact discrete encoding

method that can be used either for exhaustive search or

inverted indexing search. In this work, we adopt product

quantization for fast filtering.

Face search systems published in the literature have been

mainly evaluated under closed-set protocols (Table 1), which

assume that the subject in the probe image is present in the gallery.

However, in many large scale applications (e.g., surveillance and

watch list scenarios), open-set search performance, where the

probe subject may not be present in the gallery, is more relevant

and appropriate.

A search operating in open-set protocol requires two steps: first

determine if the identity associated with the face in the probe is

present in the gallery, and if so find the top-k most similar faces in

4. http://vis-www.cs.umass.edu/lfw/results.html

http://vis-www.cs.umass.edu/lfw/results.html
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TABLE 1
A summary of face search systems reported in the literature

Authors
Probe Gallery

Dataset Search Protocol

# Images # Subjects # Images # Subjects

Wu et al. [2] 220 N/A 1M+ N/A LFW [3] + Web Facesa closed set
Chen et al. [1] 120 12 13, 113 5, 749 LFW [3] closed set

4, 300 43 54, 497 200 Pubfig [10] closed set

Miller et al. [11] 4, 000 80 1M+ N/A FaceScrub [12] + Yahoo Imagesb closed set
Yi et al. [13] 1, 195 N/A 201, 196 N/A FERET [14] + Web Faces closed set
Yan et al. [15] 16, 028 N/A 116, 028 N/A FRGC [16] + Web Faces closed set
Klare et al. [17] 840 840 840 840 LFW [3] closed set

25, 000 25, 000 25, 000 25, 000 PCSO [17] closed set
Best-Rowden et al. [18] 10, 090 5, 153 3, 143 596 LFW [3] open set
Liao et al. [19] 8, 707 4, 249 1, 000 1, 000 LFW [3] open set

Proposed System 7, 370 5, 507 80M+ N/A LFW [3] + Web Faces closed & open set
5, 828 4, 500 80M+ N/A IJB-A [9] + LFW [3] + Web Faces closed & open set

a. Web Faces are downloaded from the Internet and used to augment the gallery; different face search systems use their own web faces.

b. http://labs.yahoo.com/news/yfcc100m/

the gallery. To address face search application requirements, sev-

eral new protocols for unconstrained face recognition have been

proposed, including the open-set identification protocol [18] and

the Benchmark of Large-scale Unconstrained Face Recognition

(BLUFR) protocol [19]. However, even in these two protocols

used on benchmark datasets, the gallery sizes are fairly small

(3, 143 and 1, 000 gallery images), due to the inherent small size

of the LFW dataset. Table 1 shows that the largest face gallery

size reported in the literature to date is about 1M, which is not

even close to being a representative of social media and forensic

applications. To tackle these two limitations, we evaluate the

proposed cascaded face search system with an 80M face gallery

under closed-set and open-set protocols.

3 FACE SEARCH FRAMEWORK

Given a probe face image, a face search system aims to find the

top-k most similar face images in the gallery. To handle large

galleries (e.g. tens of millions of images), we propose a cascaded

face search structure, designed to speed up the search process

while achieving acceptable accuracy [13], [26].

Figure 2 outlines the proposed face search architecture con-

sisting of three main steps: i) template generation module which

extracts features for the N gallery faces offline as well as from

the probe face; ii) face filtering module which compares the

probe representation against the gallery representations using

product quantization to retrieve the top-k most similar candidates

(k ≪ N ); and (iii) re-ranking module which fuses similarity

scores of deep features with scores from a COTS face matcher to

generate a new ordering of the k candidates. These three modules

are discussed in detail in the remainder of this section.

3.1 Template Generation

Given a face image I , the template generator is a non-linear

mapping function

F(I) = x ∈ R
d (1)

which projects I into a d-dimensional feature space. The discrim-

inative ability of the template is critical for the accuracy of the

search system. Given the impressive performance of deep learning

Fig. 2. Illustration of the proposed large-scale face search system.

techniques in various machine learning applications, particularly

face recognition, we adopt deep learning for template generation.

The architecture of the proposed deep ConvNet (Fig. 3) is

inspired by [6], [27]. There are four main differences between

the proposed network and the one in [6]: i) input to the

network is color images instead of gray images; ii) a robust face

alignment procedure; iii) an additional data argumentation step

that randomly crops a 100 × 100 region from the 110 × 110
input color image; and iv) deleting the contrastive cost layer

for computational efficiency (experimentally, this did not hinder

recognition accuracy).

The proposed deep convolutional network has three major

parts: i) convolution and pooling layers, ii) a feature representation

layer, and iii) an output classification layer. For the convolution

layers, we adopt a very deep architecture [28] (10 convolution

layers in total) and filters with small supports (3 × 3). The small

filters reduce the total number of parameters to be learned, and the

very deep architecture enhances the nonlinearity of the network.

Based on the basic assumption that face images usually lie on a

low dimensional manifold, the network outputs 320 dimensional

feature vector.

The input layer accepts the RGB values of the aligned face

image pixels. Faces are aligned as follows: i) Use the DLIB5

implementation of Kazemi and Sullivan’s ensemble of regression

5. http://blog.dlib.net/2014/08/real-time-face-pose-estimation.html

http://labs.yahoo.com/news/yfcc100m/
http://blog.dlib.net/2014/08/real-time-face-pose-estimation.html
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Fig. 3. The proposed deep convolutional neural network (ConvNet).

trees method [29] to detect 68 facial landmarks (see Fig. 4); ii)

rotate the face in the image plane to make it upright based on

the eye positions; iii) find a central point on the face (the blue

point in Fig. 4) by taking the mid-point between the leftmost and

rightmost landmarks; the center points of the eyes and mouth (red

points in Fig. 4) are found by averaging all the landmarks in the

eye and mouth regions, respectively; iv) center the faces in the

x-axis, based on the central point (blue point); v) fix the position

along the y-axis by placing the eye center point at 45% from

the top of the image and the mouth center point at 25% from

the bottom of the image, respectively; vi) resize the image to a

resolution of 110×110. Note that the computed midpoint is not

consistent across pose. In faces exhibiting significant yaw, the

computed midpoint will be different from the one computed in

a frontal image, so facial landmarks are not aligned consistently

across yaw.

(a) (b) (c)

Fig. 4. A face image alignment example. The original image is shown in
(a); (b) shows the 68 landmark points detected by the method in [29],
and (c) is the final aligned face image, where the blue circle was used
to center the face image along the x-axis, and the red circles denote the
two points used for face cropping.

We augment our training set using a couple of image transform

operations: transformed versions of the input image are obtained

by randomly applying horizontal reflection, and cropping random

100× 100 sub-regions from the original 110× 110 aligned faces

images.

Following the input layer, there are 10 convolutional layers, 4
max-pooling layers, and 1 average-pooling layer. To enhance the

nonlinearity, every pair of convolutional layers is grouped together

and connected sequentially. The first four groups of convolutional

layers are followed by a max-pooling layer with a window size of

2×2 and a stride of 2, while the last group of convolutional layers

is followed by an average-pooling layer with window size 7 × 7.

The dimensionality of the feature representation layer is the same

as the number of filters in the last convolutional layer. As discussed

in [6], the ReLU [30] neuron produces a sparse vector, which is

undesirable for a face representation layer. In our network, we use

ReLU neurons [30] in all the convolutional layers, except the last

one, which is combined with an average-pooling layer to generate

a low dimensional face representation with a dimensionality of

320.

Although multiple fully-connected layers are used in [27],

[30], in our network we directly feed the deep features generated

by the feature layer to an N -way softmax (where N = 10, 575
is the number of subjects in our training set). We regularize the

feature representation layer using dropout [31], keeping 60% of

the feature components as-is and randomly setting the remaining

40% to zero during training.

We use a softmax loss function for our network, and train it

using the standard back-propagation method. We implement the

network using the open source cuda-convnet26 library. We set

the weight decay of all layers to 5 × 10−4. The learning rate

for stochastic gradient descent (SGD) is initialized to 10−2, and

gradually reduced to 10−5.

3.2 Face Filtering

Given a probe face I and a template generation function F , finding

the top-k most similar faces Ck(I) in the gallery G is formulated

as follows:

Ck(I) = Rankk({S(F(I),F(Ji))|Ji=1,2,...,N ∈ G}) (2)

where N is the size of gallery G, S is a function, which measures

the similarity of the probe face I and the gallery image Ji, and

Rank is a function that finds the top-k largest values in an

array. The computational complexity of naive face comparison

functions is linear with respect to the gallery size N and the feature

dimensionality d. However, approximate nearest neighbor (ANN)

algorithms, which improve runtime without a significant loss in

accuracy, have become popular for large galleries.

Various approaches have been proposed for ANN search.

Hashing based algorithms use compact binary representations

to conduct an exhaustive nearest neighbor search in Hamming

space. Although multiple hash tables [25] can significantly

improve performance and reduce distortion, their performance

degrades quickly with increasing gallery size in face recognition

applications. Product quantization (PQ) [7], where the feature

template space is decomposed into a Cartesian product of low

dimensional subspaces (each subspace is quantized separately)

has been shown to achieve excellent search results [7]. Details

of product quantization used in our implementation are described

below.

Under the assumption that the dimensionality d of the feature

vectors is a multiple of m, where m is an integer, any feature vec-

tor x ∈ R
d can be written as a concatenation (x1,x2, . . . ,xm)

of m sub-vectors, each of dimension d/m. In the i-th subspace

R
d/m, given a sub-codebook Ci = {cij=1,2,...,z|c

i
j ∈ R

d/m},

where z is the size of codebook, the sub-vector xi can be mapped

to a codeword c
i
j in the codebook Ci, with j as the index value.

The index j can then be represented by a binary code with

log2(z) bits. In our system, each codebook is generated using

the k-means clustering algorithm. Given all the m sub-codebooks

{C1, C1, . . . , Cm}, the product quantizer of feature template x is

q(x) = (q1(x1), . . . , qm(xm))

6. https://code.google.com/p/cuda-convnet2/

https://code.google.com/p/cuda-convnet2/


MSU TECHNICAL REPORT MSU-CSE-15-11, JULY 24, 2015 5

where qj(xj) ∈ Cj is the nearest sub-centroid of sub-vector

x
j in Cj , for j = 1, 2, . . . ,m, and the quantizer q(x) requires

m log2(z) bits. Given another feature template y, the asymmetric

squared Euclidean distance between x and y is approximated by

D(y,x) = ‖y− q(x)‖2 =
m∑

j=1

‖yj − qj(xj)‖2

where qj(xj) ∈ Cj , and the distances ‖yj − qj(xj)‖ are

pre-computed for each sub-vector of y
j , j = 1, 2, . . . ,m and

each sub-centroid in Cj, j = 1, 2, . . . ,m. Since the distance

computation requires O(m) lookup and add operations [7],

approximate nearest neighbor search with product quantizers is

fast, and significantly reduces the memory requirements with

binary coding.

To further reduce the search time, a non-exhaustive search

scheme was proposed in [7], [32] based on an inverted file system

and a coarse quantizer; the query image is only compared against

a portion of the image gallery, based on the coarse quantizer.

Although a non-exhaustive search framework is essential for

general image search problems based on local descriptors (where

billions of local descriptors are indexed, and thousands of

descriptors per query are typical), we found that non-exhaustive

search significantly reduces face search performance when used

with the proposed feature vector.

Two important parameters in product quantization are the

number of sub-vectors m and the size of the sub-codebook z,

which together determine the length of the quantization code:

m log2 z. Typically, z is set to 256. To find the optimal m,

we empirically evaluate search accuracy and time per query for

various values of m, based on a 1 million face gallery and over

3, 000 queries. We noticed that the performance gap between

product quantization (PQ) and brute force search becomes small

when the length of the quantization code is longer than 512 bits

(m = 64). Considering search time, the PQ-based approximate

search is an order of magnitude faster than the brute force search.

As a trade-off between efficiency and effectiveness, we set the

number of sub-vectors m to 64; The length of the quantization

code is 64 log2(256) = 512 bits.

Although we use product quantization to compute the similar-

ity scores, we also need to pick a distance or similarity metric.

We empirically evaluated cosine similarity, L1 distance, and L2
distance using a 5M gallery. The cosine similarity achieves the

best performance, although after applying L2 normalization, L2

distance has an identical performance.

3.3 Re-Ranking

After the short candidate list is acquired, the re-ranking module

aims to improve search accuracy by using several face matchers to

re-rank the candidate list. In particular, given a probe face I and

the corresponding k topmost nearest similar faces, Ck(I) returned

from the filtering module, the k candidate faces are re-ranked by

fusing the similarity scores from l different matchers. The ranking

module is formulated as:

Sortd({Fusion(Sj=1,...,l(I, Ji))|Ji=1,...,k ∈ Ck(I)}) (3)

where Sj is the j-th matcher, and Sortd is a descending order

sorting function. In general, there is a trade-off between accuracy

and computational cost when using multiple face recognition

approaches. To make our system simple yet effective, we set

l = 2 and generate the final similarity score using the sum-

rule fusion [33] of the cosine similarity from the proposed deep

network, and the scores generated by a stat-of-the-art COTS face

matcher with z-score normalization [34].

The main benefits of combining the proposed deep features

and a COTS matcher are threefold: 1) the cosine similarities

can be easily acquired from the fast filtering module; 2) an

important guideline in fusion is that the matchers should have

some diversity [33], [35]. We noticed that the set of impostor

face images that are incorrectly assigned high similarity scores

by deep features and COTS matcher do not overlap. 3) COTS

matchers are widely deployed in many real world applications [8],

so the proposed cascade fusion scheme can be easily integrated in

existing applications to improve scalability and performance.

3.3.1 Impact of Size of Candidate Set (k)
In the proposed cascaded face search system, the size of candidate

list k is a key parameter. In general, we expect the optimal value of

k to be related to the gallery size N (a larger gallery would require

a larger candidate list to maintain good search performance). We

evaluate the relationship between k and N by computing the mean

average precision (mAP) as the gallery size (N ) from 100K to 5M

and the size of candidate list (k) from 50 to 100K.
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Fig. 6. Impact of candidate set size k as a function of the size of the
gallery (N ) on the search performance. Red points mark the optimal
value of the candidate set (k) size for each gallery size.

Fig. 6 shows the search performance, as expected, decreases

with increasing gallery size. Further, if we increase k for a fixed

N , search performance will initially increase, then drop off when

k gets too large. We find that the optimal candidate set size k
scales linearly with the size of the gallery N . Because the plots in

Fig 6 flatten out, a near optimal value of k (e.g., k = 0.01N) can

drastically reduce the candidate list with only a very small loss in

accuracy.

3.3.2 Fusion Method
Another important issue for the proposed cascaded search system

is the fusion of similarity scores from deep features (DF) and

COTS. We empirically evaluated the following strategies:

• DF+COTS: Score-level fusion of similarities based on

deep features and the COTS matcher, without any filtering.

• DF→COTS: Filter the gallery using deep features, then

re-rank the candidate list based on score-level fusion

between the deep features and the COTS scores.
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(a) PCSO (b) LFW [3] (c) IJB-A [9] (d) CASIA [6] (e) Web Faces

Fig. 5. Examples of face images in five face datasets.
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Fig. 7. Comparison of fusion strategies based on a 1M gallery.

• DF→COTSonly: Only use the similarity scores of COTS

matcher to rank the k candidate faces.

• DF→COTSrank: Rank all the k candidate faces with

COTS and deep features scores separately, then combine

the two ranked lists using rank-level fusion. This is useful

when the COTS matcher does not report similarity scores.

We evaluated the different fusion methods on a 1M face gallery.

The average precision vs. average recall curves of these four

fusion strategies are shown in Fig. 7. As a base line, we also

show the performance of just using DF and COTS alone. The

fusion scheme (DF→COTS) consistently outperforms the other

fusion methods as well as simply using DF and COTS alone. Note

that omitting the filtering step results does not perform as well

as the cascaded approach, which is consistent with results in the

previous section: when k is too large (e.g. k = N ), the search

accuracy decreases.

4 FACE DATASETS

We use four web face datasets and one mugshot dataset in our

experiments: PCSO, LFW [3], IJB-A [9], CASIA-WebFace [6]

(abbreviated as “CASIA” in the following sections), and general

web face images, referred to as “Web Faces”, which we down-

loaded from the web to augment the gallery. We briefly introduce

these datasets, and show example face images from each dataset

(Fig. 5).

• PCSO: This dataset is a subset of a larger collection of

mugshot images acquired from the Pinellas County Sher-

iffs Office (PCSO) dataset, which contains 1, 447, 607
images of 403, 619 subjects.

• LFW [3]: The LFW dataset is a collection of 13, 233 face

images of 5, 749 individuals, downloaded from the web.

Face images in this dataset contain significant variations

in pose, illumination, and expression. However, the face

images in this dataset were selected on the bias that they

could be detected by the Viola-Jone detector [3], [40].

• IJB-A [9] IARPA Janus Benchmark-A (IJB-A) contains

500 subjects with a total of 25, 813 images (5, 399 still

images and 20, 414 video frames). Compared to the LFW

dataset, the IJB-A dataset is more challenging due to:

i) full pose variation making it challenging to detect all

the faces using a commodity face detector, ii) a mix of

images and videos, and iii) wider geographical variation of

subjects. To make evaluation of face recognition methods

feasible in the absence of automatic face detection and

landmarking methods for images with full-pose variations,

ground-truth eye, nose and face locations are provided

with the IJB-A dataset (and used in our experiments

when needed). Fig. 5 (c) shows the images of two

different subjects in the IJB-A dataset, captured in various

conditions (video/photo, indoor/outdoor, pose, expression,

illumination).

• CASIA [6] dataset provides a large collection of labeled

(based on subject names) training set for deep learning

networks. It contains 494, 414 images of 10, 575 subjects.

• Web Faces To evaluate the face search system on a

large-scale gallery, we used a crawler to automatically

download millions of web images, which were filtered to

only include images with faces detectable by the OpenCV

implementation of the Viola-Jones face detector [40]. A

total of 80 million face images were collected in this

manner, which were used to augment the gallery in our

experiments.

5 FACE RECOGNITION EVALUATION

In this section, we first evaluate the proposed deep models on a

mugshot dataset (PCSO), then we evaluate the performance of the

proposed deep model on two publicly available unconstrained face

recognition benchmarks (LFW [3] and IJB-A [9]) to establish its

performance relative to the state of the art.
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TABLE 2
Performance of various face recognition methods on the standard LFW verification protocol.

Method #Nets Training Set (private or Public face dataset) Training Setting Mean accuracy ± sd

DeepFace [36] 1 4.4 million images of 4, 030 subjects, Private cosine 95.92%±0.29%
DeepFace 7 4.4 million images of 4, 030 subjects, Private unrestricted, SVM 97.35%±0.25%
DeepID2 [37] 1 202, 595 images of 10, 117 subjects, Private unrestricted, Joint-Bayes 95.43%
DeepID2 25 202, 595 images of 10, 117 subjects, Private unrestricted, Joint-Bayes 99.15 ± 0.15%

DeepID3 [38] 50 202, 595 images of 10, 117 subjects, Private unrestricted, Joint-Bayes 99.53 ± 0.10%

Face++ [39] 4 5 million images of 20, 000 subjects, Private L2 99.50 ± 0.36%

FaceNet [22] 1 100 ∼ 200 million images of 8 million subjects, Private L2 99.63 ± 0.09%

Tencent-BestImage [21] 20 1, 000, 000 images of 20, 000 subjects, Private Joint-Bayes 99.65 ± 0.25%

Li et al. [6] 1 494, 414 images of 10, 575 subjects, Public cosine 96.13%±0.30%
Li et al. 1 494, 414 images of 10, 575 subjects, Public unrestricted, Joint-Bayes 97.73%±0.31%
Human, funneled N/A N/A N/A 99.20%
COTS N/A N/A N/A 90.35%±1.30%

Proposed Deep Model 1 494, 414 images of 10, 575 subjects, Public cosine 96.95%±1.02%
Proposed Deep Model 7 494, 414 images of 10, 575 subjects, Public cosine 97.52%±0.76%
Proposed Deep Model 1 494, 414 images of 10, 575 subjects, Public unrestricted, Joint-Bayes 97.45%±0.99%
Proposed Deep Model 7 494, 414 images of 10, 575 subjects, Public unrestricted, Joint-Bayes 98.23%±0.68%

5.1 Mugshot Evaluation

We evaluate the proposed deep model using the PCSO mugshot

dataset. Some example mugshots are shown in Fig. 5 (a). Images

are captured in constrained environments with a frontal view of

the face. We compare the performance of our deep features with

a COTS face matcher. The COTS matcher is designed to work

with mugshot-style images, and is one of the top performers in the

2014 NIST FRVT [8].

Since mugshot dataset is qualitatively different from the

CASIA [9] dataset that we used to train our deep network, similar

to [4], we first retrained the network with a mugshot training set

taken from the full PCSO dataset, consisting of 471, 130 images

of 29, 674 subjects. Then, we compared the performance of deep

features with the COTS matcher on a test subset of the PCSO

dataset containing 89, 905 images of 13, 665 subjects, which

contains no overlapping subjects with the training set. We evaluate

performance in the verification scenario, and make a total of about

340K genuine pairwise comparisons and over 4 billion impostor

pairwise comparisons. The experimental results are shown in

Table 3. We observe that the COTS matcher outperforms the deep

features consistently, especially at low false accept rates (FAR)

(e.g. 0.01%). However, a simple score-level fusion between the

deep features and COTS scores results in improved performance.

TABLE 3
Performance of face verification on a subset of the PCSO dataset

(89, 905 images of 13, 666 subjects). There are about 340K genuine
pairs and over 4 billion imposter pairs.

TAR@FAR=0.01% TAR@FAR=0.1% TAR@FAR=1%

COTS 0.985 0.993 0.997

Deep Features 0.935 0.977 0.993

DF + COTS 0.992 0.996 0.997

5.2 LFW Evaluation

While mugshot data is of interest in some applications, many

others require handling more difficult, unconstrained face images.

In this section, we evaluate the proposed deep models on a more

difficult dataset, the LFW [3] unconstrained face dataset, using

two protocols: the standard LFW [3] protocol and the BLUFR

protocol [19].

5.2.1 Standard Protocol
The standard LFW evaluation protocol defines 3, 000 pairs of

genuine comparisons and 3, 000 pairs of impostor comparisons,

involving 7, 701 images of 4, 281 subjects. These 6, 000 face

pairs are divided into 10 disjoint subsets for cross validation, with

each subset containing 300 genuine pairs and 300 impostor pairs.

We compare the proposed deep model with several state-of-the-

art deep models: DeepFace [36], DeepID2 [37], DeepID3 [38],

Face++ [39], DeepNet [22], Tencent-BestImage [21], and Li et

al. [6]. Additionally, we report the performance of a state-of-

the-art commercial face matcher (COTS), as well as human

performance on “funneled” LFW images [41].

Based on the experimental results shown in Table 2, we can

make the following observations: (i) the COTS matcher performs

poorly relative to the deep learning based algorithms. This is to be

expected since most COTS matchers have been trained to handle

face images captured in constrained environments, e.g. mugshot

or driver license photos. (ii) The superior performance of deep

learning based algorithms can be attributed to (a) large number

of training images (> 100K), (b) data augmentation methods,

e.g., use of multiple deep models, and (c) supervised learning

algorithms, such as Joint-Bayes [5], used to learn a verification

model for a pair of faces in the training set.

To generate multiple deep models, we cropped 6 different sub-

regions from the aligned face images (by centering the positions

of the left-eye, right-eye, nose, mouth, left-brow, and right-brow)

and trained six additional networks. As a result, by combining

seven models together and using Joint-Bayes [5], the performance

of our deep model can be improved to 98.23% from 96.95%
for a single network using the cosine similarity. Despite using

only publicly available training data, the performance of our deep

model is highly competitive with state-of-the-art on the standard

LFW protocol (see Table 2).

5.2.2 BLUFR Protocol
It has been argued in the literature that the standard LFW eval-

uation protocol is not appropriate for real-world face recognition

systems, which require high true accept rates (TAR) at low false

accept rates ( FAR = 0.1%). A number of new protocols for

unconstrained face recognition have been proposed, including the

open-set identification protocol [18] and the Benchmark of Large-

scale Unconstrained Face Recognition (BLUFR) protocol [19]. In
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this experiment, we follow the BLUFR protocol, which defines 10-

fold cross-validation face verification and open-set identification

tests, with corresponding training sets for each fold.

For face verification, in each trial, the test set contains the

9, 708 face images of 4, 249 subjects, on average. As a result,

over 47 million face comparison scores need to be computed

in each trial. For open-set identification, the dataset in the

previous verification task (9, 708 face images of 4, 294 subjects) is

randomly partitioned into three subsets: gallery set, genuine probe

set, and impostor probe set. In each trial, 1, 000 subjects from the

test set are randomly selected to constitute the gallery set; a single

image per subject is put in the gallery. After the gallery is selected,

the remaining images from the 1, 000 selected subjects are used

to form the genuine probe set, and all other images in the test set

are used as the impostor probe set. As a result, in each trial, the

genuine probe set contains 4, 350 face images of 1, 000 subjects,

the impostor probe set contains 4, 357 images of 3, 249 subjects,

on average, and the gallery set contains 1, 000 images.

Following the protocol in [19], we report the verification rate

(VR) at FAR = 0.1% for the face verification and the detection

and identification rate (DIR) at Rank-1 corresponding to an FAR

of 1% for open-set identification. As yet, only a few other deep

learning based algorithms have reported their performance using

this protocol. We report the published results on this protocol,

along with the performance of our deep network, and a state of

the art COTS matcher in Table 4.

TABLE 4
Performance of various face recognition methods using the BLUFR
LFW protocol reported as Verification Rate (VR) and Detection and

Identification Rate (DIR).

Method Training Setting VR DIR@FAR=1%

@FAR=0.1% Rank=1

HDLBP+JB [19] Joint-Bayes 41.66% 18.07%

HDLBP+LDA [19] LDA 36.12% 14.94%

Li et al. [6] Joint-Bayes 80.26% 28.90%
COTS N/A 58.56% 36.44%

Proposed Deep Model #Nets = 1, Cosine 83.39% 46.31%

Proposed Deep Model #Nets = 7, Cosine 87.65% 56.27%

We notice that the verification rates at low FAR (0.1%) under

the BLUFR protocol are much lower than the accuracies reported

on the standard LFW protocol. For example, the performance of

the COTS matcher is only 58.56% under the BLUFR protocol

compared to 90.35% in the standard LFW protocol. This indicates

that the performance metrics for the BLUFR protocol are much

harder as well as realistic than those of the standard LFW protocol.

The deep learning based algorithms still perform better than

the COTS matcher, as well as the high-dimensional LBP based

features. Using cosine similarity and a single deep model, our

method achieves better performance (83.39%) than the one in [6],

which indicates that our modifications to the network design (us-

ing RGB input, random cropping, and improved face alignment)

does improve the recognition performance. Our performance is

further improved to 87.65% when we fuse 7 deep models. In

this experiment, Joint-Bayes approach [5] did not improve the

performance. In the open-set recognition results, our single deep

model achieves a significantly better performance (46.31%) than

the previous best reported result of 28.90% [6] and the COTS

matcher (36.44%).

5.3 IJB-A Evaluation

The IJB-A dataset [9] was released in an attempt to push the

frontiers of unconstrained face recognition. Given that the recog-

nition performance on the LFW dataset was getting saturated and

the deficiencies in the LFW protocols, the IJB-A dataset contains

more challenging face images and defines both verification and

identification (open and close sets) protocols. The basic protocol

consists of 10-fold cross-validation on pre-defined splits of the

dataset, with a disjoint training set defined for each split.

(a) Probe template (ID=110), #Images=1

(b) Gallery template (ID=319), #Images=4

(c) Gallery template (ID=5, 762), #Images=95

Fig. 8. Examples of probe/gallery “templates” in the first folder of IJB-A
protocol in 1:N face search.

One unique aspect of the IJB-A evaluation protocol is that

it defines “templates,” consisting of one or more images (still

images or video frames), and defines set-to-set comparisons, rather

than using face-to-face comparisons. Fig. 8 shows examples of

templates in the IJB-A protocol (one per row), with varying

number of images per template. In particular, in the IJB-A

evaluation protocol the number of images per template ranges

from a single image to a maximum of 202 images. Both the search

task (1:N search) and verification task (1:1 matching) are defined

in terms of comparisons between templates (consisting of several

face images), rather than single face images.

The verification protocol in IJB-A consists of 10 sets of pre-

defined comparisons between templates (groups of images). Each

set contains about 11, 748 pairs of templates (1, 756 genuine plus

9, 992 impostor pairs), on average. For the search protocol, which

evaluates both closed-set and open-set search performance, 10
corresponding gallery and probe sets are defined, with both the

gallery and probe sets consisting of templates. In each search

fold, there are about 1, 187 genuine probe templates, 576 impostor

probe templates, and 112 gallery templates, on average.

Given an image or video frame from the IJB-A dataset, we first

attempt to automatically detect 68 facial landmarks with DLIB. If

the landmarks are successfully detected, we align the detected

face using the alignment method proposed in Section 3.1. We call

the images with automatically detected landmarks well-aligned

images. If the landmarks cannot be automatically detected, as is

the case for profile faces or when only the back of the head is

showing (Fig. 9), we align the face based on the ground-truth

landmarks provided with the IJB-A protocol. All possible ground

truth landmarks (left eye, right eye, and nose tip) may be visible

in every image, and so the M-Turk workers who manually marked

the landmarks skipped the missing ones. For example, in faces

exhibiting a high degree of yaw, only one eye is typically visible.



MSU TECHNICAL REPORT MSU-CSE-15-11, JULY 24, 2015 9

(a) (b) (c) (d)

Fig. 9. Examples of web images in the IJB-A dataset with overlayed
landmarks (top row), and the corresponding aligned face images
(bottom row); (a) example of a well-aligned image obtained using
automatically detected landmarks by DLIB [29]; (b), (c), and (d)
examples of poorly-aligned images with 3, 2, and 0 ground-truth
landmarks provided in IJB-A, respectively. DLIB fails to output landmarks
for (b)-(d). The web images in the top row have been cropped around
the relevant face regions from the original images.

If all the three landmarks are available, we estimate the mouth

position and align the face images using the alignment method in

Section 3.1; otherwise, we directly crop a square face region using

the provided ground-truth face region. We call images for which

the automatic landmark detection fails poorly-aligned images.

Fig. 9 shows some examples from these two categories in the

IJB-A dataset.

The IJB-A protocol allows participants to perform training

for each fold. Since the IJB-A dataset is qualitatively different

from the CASIA dataset that we used to train our network, we

retrain our deep model using the IJB-A training set. The final face

representations consists of a concatenation of the deep features

from five deep model trained just on the CASIA dataset and one

re-trained (on the IJB-A training set following the protocol) deep

model. We then reduce the dimensionality of the combined face

representation to 100 using PCA.

Since all the IJB-A comparisons are defined between sets of

faces, we need to determine an appropriate set-to-set comparison

method. We choose to prioritize well-aligned images, since they

are most consistent with the data used to train our deep models.

Our set-to-set comparison strategy is to check if there are one

or more well-aligned images in a template. If so, we only use

the well-aligned images for the set comparison, we call the

corresponding template well-aligned templates. Otherwise we

use the poorly-aligned images, with naming the corresponding

template poorly-aligned templates. The pairwise face-to-face

similarity scores are computed using the cosine similarity, and

the average score over the selected subset of images is the final

set-to-set similarity score.

In terms of evaluation, verification performance is summarized

using True Accept Rates (TAR) at a fixed False Accept Rate

(FAR). The TAR is defined as the fraction of genuine templates

correctly accepted at a particular threshold, and FAR is defined as

the fraction of impostor templates incorrectly accepted at the same

threshold. Closed-set recognition performance is evaluated based

on the Cumulative Match Characteristic (CMC) curve, which

computes the fraction of genuine samples retrieved at or below

a specific rank. Open-set recognition performance is evaluated

using the False Positive Identification Rate (FPIR), and the False

70% 78%

34%

30% 22%

66%

0%

50%

100%

All Probe 

Templates

Correct 

Match@Rank-1

Incorrect 

Match@Rank1

Well-aligned Templates Poorly-aligned Templates

Fig. 11. Distribution of well-aligned templates and poorly-aligned
templates in 1:N search protocol of IJB-A, averaged over 10 folds.
Correct Match@Rank-1 means that the mated gallery template is
correctly retrieved at rank 1. Well-aligned images use the landmarks
automatically detected by DLIB [29]. Poorly-aligned images mainly
consist of side-views of faces. We align these images using the three
ground-truth landmarks where available, or else by cropping the entire
face region.

Negative Identification Rate (FNIR), where FPIR is the fraction

of impostor probe images accepted at a given threshold, while

FNIR is the fraction of genuine probe images rejected at the same

threshold. Key results of the proposed method, along with the

baseline results reported in [9] are shown in Table 5. Our deep

network based method performs significant better than the two

baselines at all evaluated operating points. Fig. 10 shows three

sets of face search results. We failed to find the mated templates

at rank 1 for the third probe template. A template containing a

single poorly-aligned image is much harder to recognize than the

templates containing one or more well-aligned images. Fig. 11

shows the distribution of well-aligned images and poorly-aligned

images in probe templates. Compared to the distribution of poorly

aligned templates in the overall dataset, we fail to recognize

a disproportionate number of templates containing only poorly-

aligned face images at rank 1.

6 LARGE-SCALE FACE SEARCH

In this section, we evaluate our face search system using an

80M gallery. The test datasets we use include LFW and IJB-A

data, but now we do not follow the protocols associated with

these two datasets, and instead use those images as the mated

portion of a retrieval database with an enhanced gallery. We report

search results, both under open-set and closed-set protocols, with

increasing size of the gallery up to 80M faces. We evaluate the

following three face search schemes:

• Deep Features (DF): Use our deep features and product

quantization (PQ) to directly retrieve the top-k most

similar faces to the probe (no re-ranking step).

• COTS: Use a state-of-the-art COTS face matcher to

compare the probe image with each gallery face, and

output the top-k most similar faces to the probe (no

filtering step).

• DF→COTS: Filter the gallery using deep features and

then re-rank the k candidate faces by fusing cosine

similarities computed from deep features with the COTS

matcher’s similarity scores.

For closed-set face search, we assume that the probe always

has at least one corresponding face image in the gallery. For
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Probe Template
Retrieved templates from the gallery under the closed-set 1:N search protocol of IJB-A

Rank-1 Rank-2 Rank-3 Rank-4 Rank-5

Template ID:234

#Images=2

Template ID:226

#Images=34

Template ID:5754

#Images=10

Template ID:234

#Images=27

Template ID:234

#Images=42

Template ID:234

#Images=4

Template ID:232

#Images=1

Template ID:5750

#Images=15

Template ID:599

#Images=49

Template ID:226

#Images=34

Template ID:724

#Images=47

Template ID:1577

#Images=12

Template ID:414

#Images=1

Template ID:2176

#Images=68

Template ID:3779

#Images=4

Template ID:2572

#Images=4

Template ID:410

#Images=6

Template ID:2859

#Images=32

Fig. 10. Examples of face search in first fold of the IJB-A closed-set 1:N search protocol, using “templates.” The first column contains the probe
templates, and the following 5 columns contain the corresponding top-5 ranked gallery templates, where red text highlights the correct mated gallery
template. There are 112 gallery templates in total; only a subset (four) of the gallery images for each template are shown.

TABLE 5
Recognition accuracies under the IJB-A protocol. Results for GOTS and OpenBR are taken from [9]. Results reported are the average ± standard

deviation over the 10 folds specified in the IJB-A protocol.

TAR @ FAR (verification) CMC (closed-set search) FNIR @ FPIR (open-set search):

Algorithm 0.1 0.01 0.001 Rank-1 Rank-5 0.1 0.01

GOTS 0.627± 0.012 0.406± 0.014 0.198 ± 0.008 0.443± 0.021 0.595 ± 0.020 0.765 ± 0.033 0.953± 0.024

OpenBR 0.433± 0.006 0.236± 0.009 0.104 ± 0.014 0.246± 0.011 0.375 ± 0.008 0.851 ± 0.028 0.934± 0.017

Proposed Deep Model 0.895± 0.013 0.733± 0.034 0.514 ± 0.060 0.820± 0.024 0.929 ± 0.013 0.387 ± 0.032 0.617± 0.063

open-set face search, given a probe we first decide whether a

corresponding image is present in the gallery. If it is determined

that the probe’s identity is represented in the gallery, then we

return the search results for the probe image. For open-set

performance evaluation, the probe set consists of two groups: i)

genuine probe set that has mated images in the gallery set, and ii)

impostor probe set that has no mated images in the gallery set.

6.1 Search Dataset

We construct a large-scale search dataset using the four web face

datasets introduced in Section 4. The dataset consists of five parts,

as shown in Table 6: 1) training set, which is used to train our

deep network; 2) genuine probe set, the probe set which has

corresponding gallery images; 3) mate set, the part of the gallery

containing the same subjects as the genuine probe set; 4) impostor

probe set, which has no overlapping subjects with the genuine

probe set; 5) background set, which has no identity labels and is

simply used as background images to enlarge the gallery size.

We use the LFW and IJB-A datasets to construct the genuine

probe set and corresponding mate set. For the LFW dataset,

we first remove all the subjects who have only a single image,

resulting in 1, 507 subjects with 2 or more images. For each of

these subjects, we take half of the images for the genuine probe

set and use the remaining images for the mate set in the gallery.

We repeat this process 10 times to generate 10 groups of probe

and mate sets. To construct the impostor probe set, we collect

4, 000 images from the LFW subjects with only a single image.

For the IJB-A dataset, a similar process is adopted to generate 10
groups of probe and mate sets. To build a large-scale background

set, we use a crawler to download millions of web images from

the Internet, then filter them to only include those with faces

detectable by the OpenCV implementation of the Viola-Jones face

detector. By combining mate set and background set, we compose

an 80 million web face gallery. More details are shown in Table 6.
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TABLE 6
Large-scale web face search dataset overview.

Source # Subjects # Images

Training Set CASIA [6] 10,575 494,414

LFW based probe and mate sets
Genuine Probe Set LFW [3] 1,507 3,370
Mate Set LFW [3] 1,507 3,845

IJB-A based probe and mate sets
Genuine Probe Set IJB-A [3] 500 10,868
Mate Set IJB-A [3] 500 10,626

Impostor Probe Set LFW [3] 4,000 4,000
Background Set Web Faces N/A 80,000,000

6.2 Performance Measures

We evaluate face search performance in terms of precision, the

fraction of the search set consisting of mated face images and

recall, the fraction of all mated face images for a given probe face

that were returned in the search results. Various trade-offs between

precision and recall are possible (for example, high recall can be

achieved by returning a large search set, but a large search set will

also lead to lower precision), so we summarize overall closed-set

face search performance using mean Average Precision (mAP).

The mAP measure is widely used in image search applications,

and is defined as follows: given a set of n probe face images

Q = {x1
q,x

2
q, . . . ,x

n
q } and a gallery set with N images, the

average precision of xi
q is:

avgP(xi
q) =

N∑

k=1

P (k)× [R(k)−R(k − 1)] (4)

where P (k) is precision at the position k and R(k) is recall at the

position k with R(0) = 0. The mean Average Precision (mAP) of

the entire probe set is then:

mAP(Q) = mean(avgP(xi
q)), i = 1, 2, . . . , n

In the open-set scenario, we evaluate search performance as a

trade-off between mean average precision (mAP) and false accept

rate (FAR) (the fraction of impostor probe images which are not

rejected at a given threshold). Given a genuine probe, its average

precision is set to 0 if it is rejected at a given threshold, otherwise,

its average precision is computed with Eq. 4. A basic assumption

in our search performance evaluation is that none of the query

images are present in the 80M downloaded web faces.

6.3 Closed-set Face Search

We examine closed-set face search performance with varying

gallery size N , from 100K to 80M. Enrolling the complete 80M

gallery in the COTS matcher would take a prohibitive amount of

time (over 80 days), due to limitations of the SDK we have, so

the maximum gallery set used for the COTS matcher is 5M. For

the proposed face search scheme DF→COTS, we chose the size

of candidate set k using the heuristic k = 1/100N when the

gallery size is smaller than 5M and k = 1, 000 when the gallery

set size is 80M. We use a fixed k for the full 80M gallery since

using a larger k would take a prohibitive amount of time, due to

the need to enroll the top-ranking images in the COTS matcher.

Experimental results for the LFW and IJB-A datasets are shown

in Figs. 12, respectively.
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Deep Features (LFW)

COTS (LFW)

DF → COTS (LFW)

Deep Features (IJB−A)

COTS (IJB−A)

DF → COTS (IJB−A)

Closed-set Search Evaluation on LFW and IJB-A datasets

Fig. 12. Closed-set face search performance (mAP) vs. gallery size N

(log-scale), on LFW and IJB-A datasets. The performance of COTS
matcher on 80M gallery is not shown, since enrolling the complete 80M
gallery with the COTS matcher would have taken a prohibitive amount
of time (over 80 days).

For both LFW and IJB-A face images, the recognition

performance of all three face search schemes evaluated here

decreases with increasing gallery set size. In particular, for all the

search schemes, mAP linearly decreases with the gallery size N on

log scale; the performance gap between a 100K gallery and a 5M

gallery is about the same as the performance gap between a 5M

gallery and an 80M gallery. While deep features outperform the

COTS matcher alone, the proposed cascaded face search system

(which leverages both deep features and the COTS matcher) gives

better search accuracy than either method individually. Results

on the IJB-A dataset are overall similar to the LFW results. It is

important to note that the overall performance on the IJB-A dataset

is much lower than the LFW dataset, which is to be expected given

the nature of the IJB-A dataset.

6.4 Open-set Face Search

Open-set search is important for several practical applications

where it is unreasonable to assume that a gallery contains images

of all potential probe subjects. We evaluate open-set search

performance on an 80M gallery, and plot the search performance

(mAP) at varying FAR in Figs. 13.

For both the LFW and IJB-A datasets, the open-set face search

problem is much harder than closed-set face search. At a FAR of

1%, the search performance (mAP) of the compared algorithms

is much lower than the closed-set face search, indicating that a

large number of genuine probe images are rejected at the threshold

needed to attain 1% FAR.

6.5 Scalability

In addition to mAP, we also report the search times in Table 7. We

run all the experiments on a PC with an Intel(R) Xeon(R) CPU

(E5-2687W) clocked at 3.10HZ. For a fair comparison, all the

compared algorithms use only one CPU core. The deep features

are extracted using a Tesla K40 graphics card.

In our experiments, template generation is applied over the

entire gallery off-line, meaning that deep features are extracted
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Deep Features (LFW)
DF → COTS (LFW)
Deep Features (IJB−A)
DF → COTS (IJB−A)

Open-set Search Evaluation on LFW and IJB-A datasets

Fig. 13. Open-set face search performance (mAP) vs. false accept
rate (FAR) on LFW and IJB-A datasets, using an 80M face gallery.
The performance of COTS matcher is not shown, since enrolling the
complete 80M gallery with the COTS matcher would have taken a
prohibitive amount of time (over 80 days).

TABLE 7
The average search time (seconds) per probe face and the search

performance (mAP).

5M Face Gallery 80M Face Gallery

COTS DF
DF→COTS

COTS DF
DF→COTS

@50K @1K

Enrollment 0.09 0.05 0.14 0.09 0.05 0.14
Search 30 0.84 1.15 480⋆ 6.63 6.64

Total Time 30.09 0.89 1.29 480.1⋆ 6.68 6.88

mAP 0.36 0.52 0.62 N/A 0.34 0.4

⋆ Estimated by assuming that search time increases linearly with gallery size.

for all gallery images and the gallery is indexed using product

quantization before we begin processing probe images. We also

enroll the gallery images using the COTS matcher and store the

templates on disk. The run time of the proposed face search system

after the gallery is enrolled and indexed consists of two parts: i)

enrollment time including face detection, alignment and feature

extraction, and ii) search time consisting of the time taken to find

the top-k search results given the probe template. Since we did

not enroll all 80M gallery images using the COTS matcher, we

estimate the query time for the 80M gallery by assuming that

search time increases linearly with the gallery size.

Using product quantization for fast matching based on deep

features, we can retrieve the top-k candidate faces in about 0.9
seconds for a 5M image gallery and in about 6.7 seconds for an

80M gallery. On the other hand, the COTS matcher takes about

30 and 480 seconds to carry out brute-force comparison over the

complete galleries of 5 and 80 million images, respectively. In

the proposed cascaded face search system, we mitigate the impact

of the slow exhaustive search required by the COTS matcher by

only using them on a short candidate list. The proposed cascaded

scheme takes about 1 second for the 5M gallery and about 6.9
seconds for the 80M gallery, which is only a minor increase over

the time taken using deep features alone (6.68 seconds). The

search time could be further reduced by using a non-exhaustive

search method, but that most likely will result in a significant loss

in search accuracy.

probe images gallery images

1a 1b 1x 1y 1z

2a 2b 2c 2x 2y 2z

Fig. 14. Probe and gallery images of Dzhokhar Tsarnaev and Tamerlan
Tsarnaev, responsible for the April 15, 2013 Boston marathon bombing.
Face images 1a and 1b are the two probe images used for Suspect 1
(Dzhokhar Tsarnaev). Face images 2a, 2b and 2c are the three probe
images used for Suspect 2 (Tamerlan Tsarnaev). The gallery images
of the two suspects became available on media websites following the
identification of the two suspects. Face images 1x, 1y and 1z are the
three gallery images for Suspect 1 and images 2x, 2y and 2z are the
three gallery images for Suspect 2.

7 BOSTON MARATHON BOMBING CASE STUDY

In addition to the large-scale face search experiments reported

above, we report on a case-study: finding the identity of Boston

marathon bombing suspects7 in an 80M face gallery.

Klontz and Jain [42] made an attempt to identify the face

images of the Boston marathon bombing suspects in a large

gallery of mugshot images. Video frames of the two suspects were

matched against a background set of mugshots using two state-of-

the-art COTS face matcher. Five low resolution images of the two

suspects, released by the FBI (shown in left side of Fig. 14) were

used as probe images, and six images of the suspects released

by the media (shown in the right side of Fig. 14) were used as

the mates in the gallery. These gallery images were augmented

with 1 million mugshot images. One of the COTS matchers was

successful in finding the true mate (2y) of one of the probe image

(2c) of Tamerlan Tsarnaev at rank 1.

To evaluate the face search performance of our cascaded face

search system, we construct a similar search problem under more

challenging conditions by adding the six gallery images to a

background set of up to 80 million web faces. We argue that

the unconstrained web faces are more consistent with the quality

of the images of the suspects used in the gallery than mugshot

images and therefore comprise a more meaningful gallery set.

We evaluate the search results using gallery sizes of 5M and

80M leveraging the same background set used in our prior search

experiments. Since there is no demographic information available

for the web face images we downloaded, we only conduct a “blind

search” [42], and do not filter the gallery using any demographic

information.

The search results are shown in Table 8. Both the deep features

and the COTS matcher fail on probe images 1a, 2b, 2a, and 2b,

similar to the results in [42]. On the other hand, for probe 2c, the

deep features perform much better than the COTS matcher. For

the 5M gallery, the COTS matcher found a mate for probe 2c at

rank 625; however, the deep features returned the gallery image 2x

at rank 9. The proposed cascaded search system returned gallery

7. https://en.wikipedia.org/wiki/Boston Marathon bombing

https://en.wikipedia.org/wiki/Boston_Marathon_bombing
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TABLE 8
Rank search results of Boston bombers face search based on 5M and 80M gallery. The five probe images are designated as 1a, 1b, 2a, 2b, and

2c. The six mated images are designated as 1x, 1y, 1z, 2x, 2y, and 2z. The corresponding images are shown in Fig. 14

COTS (5M Gallery) Deep Features (5M Gallery) Deep Features (80M Gallery)

1x 1y 1z 1x 1y 1z 1x 1y 1z

1a 2,041,004 595,265 1,750,309 132,577 232,275 1,401,474 2,566,917 5,398,454 31,960,091

1b 3,816,874 3,688,368 2,756,641 1,511,300 1,152,484 1,699,926 33,783,360 27,439,526 44,282,173

2x 2y 2z 2x 2y 2z 2x 2y 2z

2a 67,766 86,747 301,868 174,438 39,417 105879 2,461,664 875,168 1,547,895
2b 352,062 48,335 865,043 71,783 26,525 84,012 1,417,768 972,411 1,367,694

2c 158,341 625 515,851 9 341 9,975 109 2,952 136,651

Proposed Cascaded Face Search System

2c DF→COTS@1K 7 1 9,975 46 2,952 136,651

2c DF→COTS@10K 10 1 1,580 160 8 136,651

image 2y at rank 1 in the 5M image gallery, by using the COTS

matcher to re-rank the deep features results, demonstrating the

value of the proposed cascade framework. Results are somewhat

worse for the 80M image gallery. For probe 2c, using deep features

alone, we find gallery image 2x at rank 109 and gallery image 2y

at rank 2, 952. However, using the cascaded search system, we

find gallery image 2x at rank 46 by re-ranking the top-1K faces,

and find gallery image 2y at rank 8 by re-ranking the top-10K

faces. So, even with an 80M image gallery, we can successfully

find a match for one of the probe image (2c) within the top-10

retrieved faces.

The face search results for the 80M galleries are shown in

Fig. 15. One interesting observation is that deep features will

typically return faces taken under similar conditions to the probe

image. For example, a list of candidate images with sunglasses

are returned for probe image, which exhibits partial occlusion

due to sunglasses. Similarly, a list of blurred candidate faces are

returned for probe, which is of low resolution due to blur. Another

interesting observation is that the deep features based search found

several near-duplicate images which happened to be present in the

unlabeled background dataset, images which we were not aware

of prior to viewing these search results.

8 CONCLUSIONS

We have proposed a cascaded face search system suitable for

large-scale search problems. We have developed a deep learning

based face representation trained on the publicly available CASIA

dataset [6]. The deep features are used in a product quantization

based approximate k-NN search to first obtain a short list of

candidate faces. This short list of candidate faces is then re-

ranked using the similarity scores provided by a state-of-the-art

COTS face matcher. We demonstrate the performance of our deep

features on three face recognition datasets, of increasing difficulty:

the PCSO mugshot dataset, the LFW unconstrained face dataset,

and the IJB-A dataset. On the mugshot data, our performance

(TAR of 93.5% at FAR of 0.01%) is worse than a COTS matcher

(98.5%), but fusing our deep features with the COTS matcher

still improves overall performance (99.2%). Our performance on

the standard LFW protocol (98.23% accuracy) is comparable

to state of the art accuracies reported in the literature. On the

BLUFR protocol for the LFW database we attain the best reported

performance to date (verification rate of 87.65% at FAR of 0.1%).

We outperform the benchmarks reported in [9] on the IJB-A

dataset, as follows: TAR of 51.4% at FAR of 0.1% (verification);

Rank 1 retrieval of 82.0% (closed-set search); FNIR of 61.7% at

FPIR of 1% (open-set search). In addition to the evaluations on

the LFW and the IJB-A benchmarks, we evaluate the proposed

search scheme on an 80 million face gallery, and show that the

proposed scheme offers an attractive balance between recognition

accuracy and runtime. We also demonstrate search performance

on an operational case study involving the video frames of the

two persons (Tsarnaev brothers) implicated in the 2013 Boston

marathon bombing. In this case study, the proposed system can

find one of the suspects’ images at rank 1 in 1 second on a 5M

gallery and at rank 8 in 7 seconds on an 80M gallery.

We consider non-exhaustive face search an avenue for further

research. Although we made an attempt to employ indexing

methods, they resulted in a drastic decrease in search performance.

If only a few searches need to be made, the current system’s search

speed is adequate, but if the number of searches required is on the

order of the gallery size, the current runtime is inadequate. We are

also interested in improving the underlying face representation,

via improved network architectures, as well as larger training sets.
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