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Abstract: The aim of this paper is to determine the face collapse pressure of a circular tunnel driven by a pressurized shield. The analysis

is performed in the framework of the kinematical approach of limit analysis theory. It is based on a translational three-dimensional

multiblock failure mechanism. The present failure mechanism has a significant advantage with respect to the existing limit analysis

mechanisms developed in the case of a frictional soil: it takes into account the entire circular tunnel face and not only an inscribed ellipse

to this circular area. This was made possible by the use of a spatial discretization technique. Hence, the three-dimensional failure surface

was generated “point by point” instead of simple use of existing standard geometric shapes such as cones or cylinders. The numerical

results have shown that a multiblock mechanism composed of three blocks is a good compromise between computation time and results

accuracy. The present method significantly improves the best available solutions of the collapse pressure given by other kinematical

approaches. Design charts are given in the case of a frictional and cohesive soil for practical use in geotechnical engineering.

Keywords: Tunnel; Limit analysis; Tunnel face stability; Pressurized shield; Upper-bound method.

Introduction

The stability analysis and the assessment of ground surface settle-

ment of a pressurized shield tunneling are of major importance in

real shield tunneling projects. The aim of the stability analysis is

to ensure safety against soil collapse in front of the tunnel face.

This requires the determination of the minimal pressure �air,

slurry, or earth� required to prevent the collapse of the tunnel face.

On the other hand, the deformation analysis deals with the deter-

mination of the pattern of ground deformation that will result

from the construction works. These ground deformations should

be within a tolerable threshold to prevent damage to surface or

subsurface structures. This paper is limited to the first problem,

i.e., the face stability analysis of a shallow circular tunnel driven

by a pressurized shield. Tunneling under compressed air is con-

sidered in the analysis.

The study of the face stability of circular tunnels driven by

pressurized shields has been investigated by several writers in

literature. Some writers have considered a purely cohesive soil

�Broms and Bennermark 1967; Mair 1979; Davis et al. 1980;

Kimura and Mair 1981; Ellstein 1986; Augarde et al. 2003; Klar

et al. 2007; among others�. In this case, the stability of a tunnel

face is governed by the so-called load factor N defined as N

= ��s+�H−�t� /cu where �s�surcharge loading on the ground

surface; �t�uniform pressure applied on the tunnel face;

H�depth of the tunnel axis; and cu�soil undrained cohesion.

Broms and Bennermark �1967� stated from an experimental ap-

proach that the stability is maintained as long as N�6–7. Kimura

and Mair �1981� conducted centrifuge tests and proposed a limit

value of N between 5 and 10 depending on the tunnel cover. Later

on, Ellstein �1986� gave an analytical expression of N for homo-

geneous cohesive soils based on a limit equilibrium analytical

approach. His results are in good agreement with those by Kimura

and Mair �1981�. More recently, an interesting numerical ap-

proach was proposed by Augarde et al. �2003� using a finite-

element limit analysis method based on classical plasticity theory.

This promising approach is currently limited to a two-dimen-

sional analysis. Finally, Klar et al. �2007� have suggested a new

kinematical approach in limit analysis theory for the 2D and 3D

stability analysis of circular tunnels in a purely cohesive soil.

Their method is based on an admissible continuous velocity field.

A velocity field that is proportional to a displacement field based

on elasticity theory �e.g., Verruijt and Booker 1996; Sagaseta

1987� was suggested by these writers. For the 3D face stability

analysis, their numerical results were better than the values pub-

lished by Davis et al. �1980� for great values of C /D where

C�tunnel cover and D�tunnel diameter. A somewhat similar ap-

proach has been undertaken previously by Osman et al. �2006� for

the 2D stability analysis of circular tunnels in a cohesive soil.

However, the velocity field was based on the empirical Gaussian

settlement trough near the ground surface instead of the analytical

elasticity equations. For the case of a frictional soil, some writers

have performed experimental tests �cf., Chambon and Corté 1994;

Takano et al. 2006�. Others �Horn 1961; Leca and Dormieux

1990; Eisenstein and Ezzeldine 1994; Anagnostou and Kovari
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1996; Broere 1998; Mollon et al. 2009� have performed analytical

or numerical approaches. The aim of the centrifuge tests by

Chambon and Corté �1994� was to visualize the collapse pattern

and to determine the value of the critical face pressure. Chambon

and Corté �1994� showed that the failure soil mass resembles to a

chimney that does not necessarily outcrop at the ground surface.

An arch effect that takes place above the tunnel face was pointed

out by these writers to explain this phenomenon. On the other

hand, Takano et al. �2006� have performed 1g experimental tests

using X-ray computed tomography scanner in order to visualize

the three-dimensional shape of the failure mechanism. As in

Chambon and Corté �1994�, a soil failure in the form of a chim-

ney that does not necessarily attain the ground surface was

pointed out by these writers. Finally, it was suggested that the

shape of the failure zone can be simulated with logarithmic spi-

rals in the vertical cross sections and elliptical shapes in the hori-

zontal cross sections. Concerning the analytical models of a

frictional soil, Anagnostou and Kovari �1996� and Broere �1998�

have used the failure pattern proposed by Horn �1961� to deter-

mine the expression of the critical face pressure using the limit

equilibrium method. They concluded that this method is quite

simple to use but it is based on a priori assumptions concerning

the shape of the failure mechanism and the normal stress distri-

bution applied to the faces of the moving blocks. A more rigorous

model based on the kinematical method of limit analysis was

proposed by Leca and Dormieux �1990�. This model was then

improved by Mollon et al. �2009�. On the other hand, Eisenstein

and Ezzeldine �1994� have performed a numerical study for the

stability analysis of a tunnel face using two models �axisymetric

and three dimensional�. They stated that an axisymetric model is

not enough accurate and underestimates the value of the critical

collapse pressure.

As a conclusion, the kinematical limit analysis models by Leca

and Dormieux �1990� and Mollon et al. �2009� are among the

most recent and significant approaches. It should be mentioned

here that the upper-bound theorem �kinematical approach� states

that if a work calculation is performed for a kinematically admis-

sible collapse mechanism, then the loads thus deduced will be

higher than �or equal to� those for collapse. Since the tunnel col-

lapse pressure resists the collapse of soil into the tunnel, it is a

negative load in the sense discussed earlier. Thus, the kinematical

approach will provide an unsafe estimate of the tunnel pressure

required to maintain stability �i.e., smaller or equal to that actually

required�. The aim of this paper is to improve the existing solu-

tions given by Leca and Dormieux �1990� and Mollon et al.

�2009� in the framework of the kinematical approach. The soil

considered in the analysis is assumed to be frictional and/or co-

hesive. The main originality of the present work is that the failure

mechanism presented herein includes the whole circular tunnel

face while the existing mechanisms �except that developed by

Klar et al. �2007� in the case of a purely cohesive soil� only

involve an elliptical area inscribed to the circular face. This im-

provement required numerical generation “point by point” of

complex shapes of failure surfaces instead of simple use of exist-

ing standard geometric shapes �such as cones or cylinders� as it

was made in Davis et al. �1980�, Leca and Dormieux �1990�, and

Mollon et al. �2009�. After a short overview of the existing limit

analysis failure mechanisms by Leca and Dormieux �1990� and

Mollon et al. �2009�, the proposed mechanism and the corre-

sponding numerical results are presented and discussed.

Overview of Previous Kinematical Limit Analysis
Approaches

The problem of computation of the tunnel face collapse pressure

�c can be idealized as shown in Fig. 1 by considering a circular

rigid tunnel of diameter D driven under a depth of cover C. Ac-

tive collapse of the tunnel is triggered by application of surcharge

�s and self-weight, with the tunnel face pressure �c providing

resistance against failure. Under passive conditions, these roles

are reversed, and blow-out of the soil mass in front of the tunnel

face is caused by the tunnel pressure with resistance being pro-

vided by the surcharge and self-weight. The assumption of a uni-

form pressure at the tunnel face may be justified in the present

paper where shield tunneling under compressed air is considered

in the analysis. In this paper, only the active collapse of the tunnel

face is considered in the analysis; the blow-out of the soil in front

of the tunnel face being likely of less practical interest. As men-

tioned before, several theoretical models have been presented in

literature for the computation of the tunnel face collapse pres-

sures. The most recent and significant approaches are the ones

presented by Leca and Dormieux �1990� and Mollon et al. �2009�

who considered three-dimensional failure mechanisms in the

framework of the kinematical method in limit analysis. The

mechanism by Mollon et al. �2009� constitutes an improvement of

the failure mechanism by Leca and Dormieux �1990� since it

allows the three-dimensional slip surface to develop more freely

in comparison with the available two-block mechanism given by

Leca and Dormieux �1990�. Both failure mechanisms are briefly

described in the following sections in order to facilitate the un-

derstanding of the new failure mechanisms developed in the

present paper.

The collapse mechanism presented by Leca and Dormieux in

1990 �cf., Fig. 1� is composed of two truncated conical blocks

with circular cross sections and with opening angles equal to 2�

in order to respect the normality condition in limit analysis. The

lower conical block has an axis inclined at an angle � with respect

to the horizontal, and it intersects the tunnel face with a vertical

ellipse tangent to the invert and to the crown of the tunnel face.

The upper conical block has a vertical axis and it intersects the

lower conical block with an elliptical area. In order to ensure the

same contact area between both blocks, the inclination of the

contact plane between the two blocks is such that the upper block

is the mirror image of the lower block with respect to the normal

to the area between both blocks �i.e., plane � shown in Fig. 1�.

This is the reason why this mechanism is entirely defined by only

one angular parameter �. Notice that the assumption of a vertical

Fig. 1. Two-block failure mechanism by Leca and Dormieux �1990�
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axis for the upper block is not adequate and leads to nonoptimal

collapse pressures.

The failure mechanism presented by Mollon et al. �2009� and

described in more detail in Oberlé �1996� is an improvement of

the two-block collapse mechanism presented by Leca and

Dormieux �1990�. This mechanism is a multiblock �cf., Fig. 2�.

It is composed of n truncated rigid cones with circular cross sec-

tions and with opening angles equal to 2�. A mechanism with

n=5 is presented in Fig. 2. The geometrical construction of this

mechanism is similar to that of Leca and Dormieux �1990�, i.e.,

each cone is the mirror image of the adjacent cone with respect to

the plane that is normal to the contact surface separating these

cones. This is a necessary condition to ensure the same elliptical

contact area between adjacent cones. In order to make clearer the

geometrical construction of the 3D failure mechanism, Fig. 3

shows how the first two truncated conical blocks adjacent to

the tunnel face are constructed. The geometrical construction of

the remaining truncated conical blocks is straightforward. As for

the mechanism by Leca and Dormieux �1990�, Block 1 is a trun-

cated circular cone adjacent to the tunnel face. The intersection of

this truncated cone with the tunnel face is an elliptical surface that

does not cover the entire circular face of the tunnel. This is a

shortcoming not only of the multiblock mechanism by Mollon

et al. �2009� but also of the two-block mechanism by Leca and

Dormieux �1990�. On the other hand, Block 1 is truncated with

Plane 1 which is inclined at an angle �1 with the vertical direction

�cf., Fig. 3�. In order to obtain the same contact area with the

adjacent truncated conical block, Block 2 is constructed in such a

manner to be the mirror image of Block 1 with respect to the

plane that is normal to the surface separating the two blocks �i.e.,

Plane 2 as shown in Fig. 3�. The mechanism by Mollon et al.

�2009� is completely defined by n angular parameters � and �i

�i=1, . . . ,n−1� where n is the number of the truncated conical

blocks �cf., Fig. 2�.

Notice finally that the upper rigid cone in the mechanisms by

Leca and Dormieux �1990� and Mollon et al. �2009� will or will

not intersect the ground surface depending on the � and C /D

values. This phenomenon of no outcropping at the ground surface

was also pointed out by Chambon and Corté �1994� and Takano et

al. �2006� while they performed experimental tests: As mentioned

before, a failure soil mass which has the shape of a chimney that

does not necessarily outcrop at the ground surface was observed

by these writers.

Both mechanisms by Leca and Dormieux �1990� and Mollon

et al. �2009� are translational kinematically admissible failure

mechanisms. The different truncated conical blocks of these

mechanisms move as rigid bodies. These truncated rigid cones

translate with velocities of different directions, which are collin-

ear with the cones axes and make an angle � with the conical

discontinuity surfaces in order to respect the normality condition

required by the limit analysis theory. The velocity of each cone is

determined by the condition that the relative velocity between the

cones in contact has the direction that makes an angle � with the

contact surface.

The numerical results obtained by Mollon et al. �2009� have

shown that a five-block �i.e., n=5� mechanism was found suffi-

cient since the increase in the number of blocks above five blocks

increases �i.e., improves� the solutions by less than 1%. The im-

provement of the solution by Mollon et al. �2009� with respect to

the one by Leca and Dormieux �1990� is due to the increase in the

degree of freedom of the failure mechanism by Mollon et al.

�2009�. Notice however that the solutions by Mollon et al. �2009�

and those by Leca and Dormieux �1990� suffer from the fact that

only an inscribed elliptical area to the entire circular tunnel face is

involved by failure due to the conical shape of the rigid blocks;

the remaining area of the tunnel face being at rest. This is striking

and is contrary to what was observed in numerical simulations.

This shortcoming will be removed in the following failure mecha-

nisms developed in this paper.

Kinematical Approach for the Computation
of the Tunnel Face Collapse Pressure

The aim of this paper is to compute the tunnel face collapse

pressure of a shallow circular tunnel driven by a pressurized

shield in a frictional and/or cohesive soil. The theoretical model is

based on a three-dimensional multiblock failure mechanism in the

framework of the kinematical approach of the limit analysis

theory. In order to render clearer the theoretical formulation of the

multiblock mechanism, the geometrical construction of a mecha-

nism composed of a single rigid block is first presented. It is then

followed by the presentation of the multiblock mechanism. The

one- and multiblock mechanisms developed in this paper will be

referred to as improved mechanisms since they allow �1� to con-

sider the entire circular area of the tunnel face and not only an

inscribed ellipse inside this area; �2� to improve the solutions

presented by Leca and Dormieux �1990� and Mollon et al. �2009�

in the framework of the kinematical approach of limit analysis.

Improved One-Block Mechanism M1

M1 is a rigid translational one-block mechanism. It is defined by

a single angular parameter 	 �cf., Fig. 4�. This angle corresponds

Fig. 2. Multiblock failure mechanism by Mollon et al. �2009� �after

Mollon et al. 2009�

Fig. 3. Detail of the construction of the multiblock failure mecha-

nism by Mollon et al. �2009� �after Mollon et al. 2009�
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to the inclination of the velocity of this block with respect to the

longitudinal axis of the tunnel. Since a failure mechanism involv-

ing the whole circular area of the tunnel face is explored here, no

simple geometrical shape �such as a cone� can be considered. It is

necessary to generate the three-dimensional failure surface point

by point using a spatial discretization technique.

Method of Generation of the Improved One-Block

Mechanism

It is assumed �cf., Fig. 4� that the cross section of the improved

one-block mechanism in the vertical plane �y ,z� containing the

longitudinal axis of the tunnel is the same as that of the one-block

mechanism composed of a single conical block with an opening

angle equal to 2�. This is to be expected because the conical

one-block mechanism involves the entire diameter of the tunnel

face only along the vertical diameter of the tunnel face. Referring

to the �y ,z� coordinate system shown in Fig. 4, the z-coordinate

of the apex of the mechanism �i.e., Point A� is denoted zmax. In

case of no outcrop of the failure mechanism at the ground surface

�cf., Fig. 4�a��, zmax is given by

zmax = D/�tan�	 + �� − tan�	 − ��� �1�

Otherwise, the failure mechanism outcrops at the ground surface

�cf., Fig. 4�b�� and zmax becomes equal to

zmax = �C + D�/tan�	 + �� �2�

The three-dimensional failure surface of the improved one-block

mechanism is determined here by defining the contours of this

surface at several vertical planes parallel to the tunnel face �cf.,

Fig. 5�. Notice that the contour of a given plane is defined from

that of the preceding plane. The first vertical plane to be consid-

ered is that of the tunnel face for which the contour of the failure

surface is circular as required. The different vertical planes are

equidistant; the horizontal distance separating two successive

planes being 
z=zmax /nz where nz�number of slices considered in

the spatial discretization of the 3D failure surface along the z-axis

�cf., Fig. 4�. The vertical planes are denoted by index j where

j=0, . . . ,nz; j=0 being that of the tunnel face �cf., Fig. 5�. In the

following, the generation of only the first contour �i.e., that cor-

responding to j=1� of the failure surface located at a distance 
z

from the tunnel face and using the contour of the tunnel face

�which is circular of diameter D� will be presented. The genera-

tion of the subsequent contours is straightforward.

The contour of the tunnel face is discretized by a number n� of

points Pi,0 uniformly distributed along this contour. Point Pi,0 is

defined by the parameters �R ,�i� in the polar coordinate system

and by the following coordinates in the �x ,y� plane corresponding

to the tunnel face �cf., Fig. 5�:

� xi,0 = R · sin��i�

yi,0 = R · cos��i�
� �3�

Thus, each point of the failure surface is defined by two indices i

�index indicating the position of the point in a given vertical

plane� and j �index of the vertical plane�. The generation of point

Pi,1 in the first contour makes use of three points Pi,0, Pi−1,0, and

Pi+1,0 belonging to the tunnel face �cf., Fig. 5�. The position of

point Pi,1 must satisfy the three following conditions �cf., Fig. 6�:

• Pi,1 belongs to plane j=1, i.e.

zi,1 = zi,0 + 
z = 
z �4�

• The triangular surface formed by points Pi,0, Pi−1,0, and Pi,1

should respect the normality condition in limit analysis, i.e.,

the normal to the plane of this triangle should make an angle

� /2+� with the velocity vector V. This normality condition is

necessary for the failure mechanism to be kinematically ad-

missible and for the limit analysis theory to be applicable.

• The triangular surface formed by points Pi,0, Pi+1,0, and Pi,1

should also respect the normality condition.

(a) (b)

Fig. 4. Cross section of the improved one-block mechanism in the

�y ,z� plane in two cases: �a� no outcrop of the mechanism at the

ground surface; �b� outcrop at the ground surface

Fig. 5. Principle of generation of the 3D failure surface by using

several contours parallel to the tunnel face and several points on each

contour

Fig. 6. Principle of generation of point Pi,1 from point Pi,0 located on

the contour of the tunnel face
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The procedure described earlier allows one to create for each

point Pi,j a corresponding point Pi,j+1 in the following plane by

respecting the normality condition in the neighborhood of Pi,j.

The mathematical formulation of this problem can thus be briefly

described as follows.

The three points Pi,1, Pi,0, and Pi−1,0 define a plane named

��1�, with a normal vector N1 �which is as yet unspecified�. Also,

vector A1 belonging to the plane j=0 is defined as: A1

=Pi−1,0Pi,0 where the coordinates of points Pi,0, and Pi−1,0 are

given, respectively, by �xi,0 ,yi,0 ,zi,0� and �xi−1,0 ,yi−1,0 ,zi−1,0�. Vec-

tors N1 and A1 are given as follows:

N1�
xn1

yn1

zn1

; A1�
xa1 = xi,0 − xi−1,0

ya1 = yi,0 − yi−1,0

za1 = zi,0 − zi−1,0

�� �5�

The normal vector N1 must satisfy the three following conditions:

�
N1 is a unit vector ⇒ 	N1	 = 1

N1 is orthogonal to ��1�, and consequently to A1 ⇒ N1 · A1 = 0

��1� should respect the normality condition ⇒ N1 · V = cos��/2 + �� = − sin���
� �6�

From the three conditions, one can deduce the following system

of equations:

�
xn1

2 + yn1
2 + zn1

2 = 1

xn1 · xa1 + yn1 · ya1 + zn1 · za1 = 0

yn1 · sin�	� + zn1 · cos�	� = sin���
� �7�

The following intermediate variables are defined:

A1 = �tan�	� · za1 − ya1�/xa1

B1 = �sin��� · za1�/�xa1 · cos�	��

C1 = − tan�	�

D1 = sin���/cos�	�


1 = �2 · A1 · B1 + 2 · C1 · D1�2 − 4 · �A1
2 + C1

2 + 1� · �B1
2 + D1

2 − 1�

�8�

Then, the coordinates of N1 can be expressed as follows:

�
xn1 = A1 · yn1 − B1

yn1 = �2 · A1 · B1 + 2 · C1 · D1 � 

1�/�2 · A1
2 + 2 · C1

2 + 2�

zn1 = C1 · yn1 − D1

�
�9�

Thus, the normal to plane ��1� containing point Pi,1 has been

defined. By proceeding in the same manner, one can also define

the coordinates �xn2 ,yn2 ,zn2� of vector N2 normal to plane ��2�
which contains the points Pi,1, Pi,0, and Pi+1,0. Notice that point

Pi,1 is located at the intersection between the two planes ��1� and

��2�, and the vertical plane corresponding to j=1 �cf., Fig. 6�.

Thus, its coordinates should verify the following system:

�
xn1 · xi,1 + yn1 · yi,1 + zn1 · zi,1 − �xn1 · xi,0 + yn1 · yi,0 + zn1 · zi,0� = 0 ��1�

xn2 · xi,1 + yn2 · yi,1 + zn2 · zi,1 − �xn2 · xi,0 + yn2 · yi,0 + zn2 · zi,0� = 0 ��2�

zi,1 = zi,0 + 
z �j = 1�
� �10�

The following intermediate variables are defined:

E1 = zn1 · �zi,0 + 
z� − �xn1 · xi,0 + yn1 · yi,0 + zn1 · zi,0�

E2 = zn2 · �zi,0 + 
z� − �xn2 · xi,0 + yn2 · yi,0 + zn2 · zi,0� �11�

Finally, the coordinates of point Pi,1 are given by

�
xi,1 = − �yn1/xn1� · yi,1 − E1/xn1

yi,1 = �xn2 · E1/xn1 − E2�/�− xn2 · yn1/xn1 − yn2�

zi,1 = zi,0 + 
z = 
z

� �12�

The procedure described earlier should be repeated for all the n�

points of the tunnel face to generate the corresponding n� points

in the plane j=1 �cf., Fig. 5�. Once the first contour is generated,

the same procedure is again applied to generate the points of the

plane j=2 from those of plane j=1, and so on up to the plane

j=nz.

Since a collapse �i.e., an active state of stress� of the soil mass

in front of the tunnel face is considered in this paper, the failure

mechanism must “close to itself” as is the case of the failure

mechanisms by Leca and Dormieux �1990� and Mollon et al.

�2009�. When this mechanism closes, some erroneous Pi,j points

systematically appear out of the intuitive collapse mechanism in

the case of nonoutcropping mechanisms. Those points, which

were generated by the numerical algorithm, can not be avoided

with the use of the method of generation proposed in this paper.

They should be removed to conserve only the points correspond-

ing to the failure surface.

Notice finally that similar to the mechanisms by Leca and

Dormieux �1990� and Mollon et al. �2009�, the rigid block will or
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will not intersect the ground surface depending on the � and C /D

values. In case of outcrop of the failure mechanism at the ground

surface, the points generated by the present algorithm and located

above the ground surface have also to be removed. The exact

intersection points between the failure mechanism and the ground

surface are computed here by linear interpolation between the

points located directly above and below the ground surface. Fig. 7

shows the layout of the 3D generated one-block mechanism when

�=15°, C /D=0.2, and 	=50°.

Improved Multiblock Mechanism Mn

The improved one-block mechanism described before does not

offer a great degree of freedom since it is characterized by only a

single angular parameter. In order to get better solutions of

the collapse pressure, efforts were concentrated in this section

on the improvement of the preceding one-block mechanism M1

by increasing the number of blocks. Thus, a multiblock failure

mechanism Mn is suggested hereafter. Notice that the idea

of a multiblock failure mechanism was first introduced by

Michalowski �1997� and Soubra �1999� when dealing with the

two-dimensional analysis of the bearing capacity of strip founda-

tions and then by Soubra and Regenass �2000�, Michalowski

�2001�, and Mollon et al. �2009� for the analysis of some stability

problems in three dimensions. It was shown by these writers that

a multiblock mechanism significantly improves the solutions

given by the traditional two-block and logsandwich mechanisms

in the case of a ponderable soil. This is due to the great freedom

offered by this mechanism to move more freely with respect to

the traditional mechanisms. The three-dimensional multiblock

failure mechanism presented in this paper makes use of the idea

of a multiblock mechanism suggested by Mollon et al. �2009� in

order to obtain greater �i.e., better� solutions. A detailed descrip-

tion of this mechanism is as follows.

As mentioned before, the failure surface of the improved one-

block mechanism was generated from the circular tunnel face, but

it can also be generated from any arbitrarily section since the

surface is generated from the discretized contour of the tunnel

face and not from its analytical expression. Consequently, it is

possible to add a second block above the first block �cf., Fig. 8�.

Thus, the first block called “Block 1” adjacent to the tunnel face

is truncated with a plane named “Plane 1” inclined at an angle �2

with the vertical direction. The area resulting from this intersec-

tion �which has a nonstandard shape� is used to generate the sec-

ond block called “Block 2” whose axis is inclined at 	2 with the

horizontal direction. Thus, Block 2 is defined by two angular

parameters �2 and 	2. Notice also that Block 1 is defined by only

one angular parameter 	1 which is the inclination of the axis of

Block 1. One can see from Fig. 8 that Block 2 moves as a rigid

body with velocity V2 inclined at 	2 with the horizontal. The

velocity of the first block is now denoted V1 and it is inclined at

	1 with the horizontal.

The numerical implementation of the geometrical construction

of Block 2 consists in determining the intersection points of

the lateral surface of the first block with Plane 1 defined by �2.

The process is similar to that of the ground surface, i.e., the points

located above Plane 1 are deleted, and the exact intersection

points are calculated by linear interpolation. These intersection

points �cf., Fig. 9� located on the contact area between adjacent

blocks are used for the generation of the second block, using

exactly the same equations as those for the first block except the

fact that these equations are now used in the local axes related

to the contact plane separating both blocks. Notice that the tenta-

tive �i.e., nonoptimal� failure surface shown in Fig. 9 corresponds

to the case where �=17°, C /D�0.8, 	1=40°, 	2=75°, and

�2=60°.

Notice finally that the geometrical procedure of construction

(a) (b)

Fig. 7. Layout of the 3D generated one-block mechanism in case of outcrop at the ground surface: �a� view in the �x ,y ,z� space; �b� plan view

Fig. 8. Cross section of a two-block mechanism in the �y ,z� plane

6



of an additional block described earlier is successively applied to

generate the multiblock mechanism. This mechanism is entirely

defined by the 2n−1 as yet unspecified angular parameters �k

�k=2, . . . ,n� and 	l �l=1 , . . . ,n� where n is the number of blocks

of the failure mechanism.

Work Equation

The work equation is written here for the general case of a multi-

block failure mechanism and for a frictional and cohesive �� ,c�
soil. This mechanism is a translational kinematically admissible

failure mechanism. The different truncated rigid blocks involved

in this mechanism move as rigid bodies. These blocks translate

with velocities of different directions, which are collinear with the

blocks axes and make an angle � with the lateral discontinuity

surfaces in order to respect the normality condition required by

the limit analysis theory. The velocity of each block is determined

by the condition that the relative velocity between the blocks in

contact has the direction that makes an angle � with the contact

surface. The velocity hodograph is given in Fig. 10. The velocity

vi+1 of block i+1 and the interblock velocity vi,i+1 between blocks

i and i+1 are determined from the velocity hodograph as follows:

vi+1 =
cos�� + �i+1 − 	i�

cos�� + �i+1 − 	i+1�
· vi

vi,i+1 = � cos�	i�
sin��i+1 + ��

−
cos�	i+1�

sin��i+1 + ��
·

cos�� + �i+1 − 	i�
cos�� + �i+1 − 	i+1�

� · vi

�13�

It can be easily shown that vi and vi,i+1 are given by

vi = 

k=1

i−1 � cos�� + �k+1 − 	k�
cos�� + �k+1 − 	k+1�

� · v1

vi,i+1 = 

k=1

i−1 � cos�	k�
sin��k+1 + ��

−
cos�	k+1�

sin��k+1 + ��
·

cos�� + �k+1 − 	k�
cos�� + �k+1 − 	k+1�

� · v1 �14�

Notice that the external forces involved in the present mechanism

are the weights of the different truncated rigid blocks, the sur-

charge loading acting on the ground surface, and the collapse

pressure of the tunnel face. The rate of external work of the sur-

charge loading should be calculated only in case of outcrop of the

mechanism at the ground surface. The computation of the rate of

external work of the different external forces is straightforward as

follows:

• Rate of work of the weight of the different truncated blocks

Ẇ� =� �
V

� � · v dV = �
i=1

n

�i · vi Vi = ��
i=1

n

vi sin�	i�Vi

�15�

• Rate of work of a possible uniform surcharge loading on the

ground surface

Ẇ�s
=� �

An

�s · v dA� = �sAn� sin�	n�vn �16�

• Rate of work of the collapse pressure of the tunnel face

Ẇ�c
=� �

A0

�c · v dA = − �cA0 cos�	1�v1 �17�

where Vi=volume of block i; An�=possible area of intersection of

the last upper block with the ground surface �if the mechanism

outcrops�; and A0=surface of the tunnel face.

Since no general plastic deformation of the truncated blocks is

permitted to occur, the rate of internal energy dissipation takes

place only along the different velocity discontinuity surfaces.

These are �1� the radial surfaces which are the contact areas be-

tween adjacent truncated blocks; �2� the lateral surfaces of the

different truncated blocks. Notice that the rate of internal energy

dissipation along a unit velocity discontinuity surface is equal to

c ·
u �Chen 1975� where 
u is the tangential component of the

velocity along the velocity discontinuity surface. Calculation of

the rate of internal energy dissipation along the different velocity

discontinuity surfaces is straightforward. It is given by

ḊAi,Si
=� �

S

c · v · cos���dS +� �
A

c · v · cos���dA

= c · cos��� · ��
i=1

n

viSi + �
i=1

n−1

vi,i+1Ai,i+1� �18�

where Si=lateral surface of block i and Ai,i+1=contact area be-

tween blocks i and i+1. Details on the computation of the vol-

umes and surfaces are given in Appendix. The work equation

consists in equating the rate of work of external forces to the rate

of internal energy dissipation. It is given as follows:

Fig. 9. Principle of generation of the second upper block

Fig. 10. Velocity hodograph between two successive blocks
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c · cos��� · ��
i=1

n

viSi + �
i=1

n−1

vi,i+1Ai,i+1� = ��
i=1

n

vi sin�	i�Vi

+ �sAn� sin�	n�vn − �cA0 cos�	1�v1 �19�

After some simplifications, it is found that the tunnel collapse

pressure is given by

�c = �DN� − cNc + �sNs �20�

where N�, Nc, and Ns are nondimensional coefficients. They rep-

resent, respectively, the effect of soil weight, cohesion, and sur-

charge loading. The expressions of the different coefficients N�,

Nc, and Ns are given as follows:

N� = �
i=1

n � Vi

A0D
·

vi

v1

·
sin�	i�
cos�	1�

� �21�

Nc = �
i=1

n � Si

A0

·
vi

v1

·
cos���
cos�	1�

� + �
i=1

n−1 �Ai,i+1

A0

·
vi,i+1

v1

·
cos���
cos�	1�

�
�22�

Ns =
An�

A0

·
vn

v1

·
sin�	n�
cos�	1�

�23�

In Eq. �20�, �c depends not only on the physical, mechanical

and geometrical characteristics �, c, �, and C /D, but also on the

2n−1 angular parameters �k �k=2, . . . ,n� and 	l �l=1, . . . ,n�. In

the following sections, the critical tunnel collapse pressure is ob-

tained by maximization of �c given by Eq. �20� with respect to

the �k �k=2, . . . ,n� and 	l �l=1, . . . ,n� angles.

Numerical Results

A computer program has been written in Matlab language to de-

fine the different coefficients N�, Nc, and Ns and the tunnel face

collapse pressure �c using Eqs. �20�–�23�. The maximization of

the collapse pressure �c with respect to the angular parameters of

the failure mechanism was performed using the optimization tool

implemented in Matlab. The number of subdivisions used for the

generation of the collapse mechanism were n�=180 and nz=200.

These values are optimal and represent a good compromise be-

tween results accuracy and computation time. The increase in the

number of subdivisions with respect to the aforementioned values

slightly improves the obtained results, the difference being

smaller than 0.1%. The CPU time necessary for the computation

of the critical collapse pressure was about 5–10 min on a 2.4 GHz

quad-core CPU.

Influence of the Number of Blocks

Table 1 gives the values of the critical collapse pressure �c ob-

tained from the maximization of the tunnel pressure with respect

to the angular parameters of the failure mechanism for three dif-

Table 1. Influence of the Number of Blocks on the Critical Collapse Pressure: �a� Purely Cohesive Soils; �b� Cohesionless soils; and �c� Frictional and

Cohesive Soils

�a� Purely cohesive soils

Number

of blocks

c=20 kPa, �=0° c=30 kPa , �=0°

Collapse pressure

�kPa�

Improvement

�%�

Collapse pressure

�kPa�

Improvement

�%�

1 67.35 stable

2 105.84 57.1 23.92

3 107.86 1.9 26.93 12.6

4 108.32 0.4 27.59 2.5

5 108.43 0.1 27.80 0.8

�b� Cohesionless soils

Number

of blocks

c=0 kPa, �=20° c=0 kPa, �=40°

Collapse pressure

�kPa�

Improvement

�%�

Collapse pressure

�kPa�

Improvement

�%�

1 41.39 13.15

2 44.64 7.9 13.45 2.3

3 45.27 1.4 13.48 0.2

4 45.31 0.1 13.49 0.0

5 45.34 0.1 13.50 0.1

�c� Frictional and cohesive soils

Number

of blocks

c=7 kPa, �=17° c=10 kPa, �=25°

Collapse pressure

�kPa�

Improvement

�%�

Collapse pressure

�kPa�

Improvement

�%�

1 28.01 8.90

2 33.38 19.2 10.51 18.1

3 34.26 2.6 10.76 2.4

4 34.42 0.5 10.87 1.0

5 34.48 0.2 10.88 0.1
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ferent types of soil: �1� a purely cohesive soil with cu=20 and 30

kPa; �2� a cohesionless soil with �=20° and 40° �i.e., a loose and

a dense sand, respectively�; and �3� a frictional and cohesive soil

with c=7 kPa and �=17° �i.e., a soft clay� and with c=10 kPa

and �=25° �i.e., a stiff clay�. The computation is made in the case

where �=18 kN /m3 and C /D=1. The results are given for differ-

ent numbers of the rigid blocks varying from one to five. This

table also gives the percent increase �i.e., improvement� in the

collapse pressure with the increase in the number of blocks. The

percent improvement corresponding to a given number n of

blocks is computed with reference to the mechanism with n−1

blocks. From Table 1, it can be seen that the increase �i.e., im-

provement� in the collapse pressure decreases with the number of

blocks increase and is smaller than 2.5% for n=4. Therefore, in

the following, the three-block mechanism will be used to obtain

the collapse pressure for the different types of soil considered in

the paper. This mechanism is defined by five angular parameters

��2, �3, 	1, 	2, and 	3�. Finally, it should be noticed that the

one-block mechanism would be adequate only in the case of a

cohesionless soil and for great values of the friction angle �for

example �=40°�. This is because the increase in the number of

blocks slightly improves the solution in that case. Notice however

that the improvement obtained by the use of a multiblock mecha-

nism is significant for all the other cases; it is maximal in the case

of a purely cohesive soil. For instance, when using two rigid

blocks instead of one, an improvement of 57% was obtained in

the case of a purely cohesive soil when cu=20 kPa.

Analysis of the Face Stability by the Superposition
Method

Table 2 provides the critical values of N�, Nc, and Ns for different

values of C /D and � as given by individual maximization of each

coefficient with respect to the five angular parameters of the fail-

ure mechanism. The critical values of N�, Nc, and Ns allow a

quick calculation of the critical collapse pressure for practical

purposes. This can be performed by simple application of Eq. �20�

using the superposition principle. Notice that while the values of

the critical coefficients N�, Nc, and Ns and the critical collapse

pressure �c obtained by maximization are rigorous solutions in

limit analysis, the collapse pressure �c computed using the super-

position method is not a rigorous solution since it is approxi-

mately calculated and it includes an error due to the superposition

effect. In order to evaluate this error, Table 3 gives the values of

the collapse pressures as obtained �1� by direct maximization of

this pressure; �2� by application of Eq. �20� using the critical N�,

Nc, and Ns coefficients presented in Table 2, for the two cases of

soft and stiff clays given before when C /D=1, and �

=18 kN /m3. One can observe that the error is quite small �smaller

than 0.5%� and is always conservative. From Table 2, one can

observe that the values of Nc and Ns found by numerical optimi-

zation verify the following equation:

Nc =
1 − Ns

tan �
�24�

Table 2. Numerical Results for the Nondimensional Coefficients N�, Nc, and Ns: �a� Values of N�; �b� Values of Nc; and �c� Values of Ns

�

�degrees�

C /D

0.4 0.6 0.8 1 1.3 1.6 2

�a� Values of N�

15 0.346 0.365 0.374 0.378 0.378 0.378 0.378

20 0.247 0.251 0.252 0.252 0.252 0.252 0.252

25 0.179 0.179 0.179 0.179 0.179 0.179 0.179

30 0.132 0.132 0.132 0.132 0.132 0.132 0.132

35 0.099 0.099 0.099 0.099 0.099 0.099 0.099

40 0.075 0.075 0.075 0.075 0.075 0.075 0.075

�b� Values of Nc

15 3.172 3.399 3.558 3.708 3.731 3.731 3.731

20 2.601 2.704 2.744 2.744 2.744 2.744 2.744

25 2.141 2.141 2.141 2.141 2.141 2.141 2.141

30 1.732 1.732 1.732 1.732 1.732 1.732 1.732

35 1.428 1.428 1.428 1.428 1.428 1.428 1.428

40 1.191 1.191 1.191 1.191 1.191 1.191 1.191

�c� Values of Ns

15 0.150 0.089 0.047 0.006 0 0 0

20 0.053 0.016 0 0 0 0 0

25 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0

40 0 0 0 0 0 0 0

Table 3. Comparison of the Collapse Pressures as Given by the Super-

position Method and by Direct Optimization

Collapse pressure

Soft clay

�c=7 kPa,�=17°�
Stiff clay

�c=10 kPa,�=25°�

�c �superposition� �kPa� 34.38 10.81

�c �optimization� �kPa� 34.26 10.76
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This may be explained by the theorem of corresponding states

�Caquot 1934�. Notice that this theorem allows one to compute

the coefficient Nc using the coefficient Ns as can be easily seen

from Eq. �24�.

Collapse Pressures of a Purely Cohesive Soil

As mentioned in the introduction of this paper, the stability analy-

sis of a tunnel face in the case of a purely cohesive soil is gov-

erned by the load factor N. It should be remembered here that the

load factor N at failure is N= ��s+�H−�t� /cu where �t=�c.

Therefore, unlike the collapse pressure parameter �c for which a

greater value is searched to improve the best existing solutions,

one should obtain a smaller value of the parameter N to improve

the best solutions of this parameter. From the computed values of

the critical collapse pressures �c, the present critical load factors

corresponding to the failure state �i.e., �t=�c� were plotted versus

C /D in Fig. 11. The N values may also be obtained by an alter-

native and equivalent method by minimizing the N parameter

given earlier with respect to the angular parameters of the failure

mechanism. The critical values of N calculated based on the

model by Mollon et al. �2009� and those given by Broms and

Bennermark �1967�, Davis et al. �1980�, Kimura and Mair �1981�,

and Ellstein �1986� are also given in this figure. Notice that Fig.

11 may be used to check the stability of the tunnel face in a purely

cohesive soil in two different ways. Stability is ensured as long as

N computed using the applied tunnel pressure �t is smaller than

the critical value of N deduced from Fig. 11. This check may also

be performed by computing the collapse pressure �c from the

critical N value of Fig. 11 and comparing this pressure to the

applied one �i.e., �t�.

From Fig. 11, it appears that the present critical values of N are

smaller �i.e., better� than the available solutions by Mollon et al.

�2009� and Davis et al. �1980� using a kinematical approach. The

improvement is equal to 8% with respect to the results by Mollon

et al. �2009� and to 3.5% with respect to the results by Davis et al.

�1980� in the case where C /D=2.5. Finally, it appears that a

significant scatter exists between the solutions given by the kine-

matic and static approaches by Davis et al. �1980�. This may be

explained by the simplified stress field used in the static approach

of limit analysis. The centrifuge results by Kimura and Mair

�1981� and the results by Ellstein �1986� show significant differ-

ences with the present solutions. The scatter attains 40% when

C /D=2. This means that the case of a purely cohesive soil re-

quires further investigations.

Collapse Pressures of a Cohesionless Soil

The solutions of the critical tunnel face pressure as determined by

Leca and Dormieux �1990�, Mollon et al. �2009�, and by the

present approach are given in Fig. 12 for two cases of a cohesion-

less soil: �=20° and 40°. It should be remembered here that all

these results are based on the kinematical approach of limit analy-

sis. One can see that the improvement �i.e., increase of the col-

lapse pressure� of the present solution attains 12% with respect to

the one by Mollon et al. �2009� and 19% with respect to that by

Leca and Dormieux �1990� when �=20° and C /D�0.5. This

figure also shows that in the common range of variation of �

��=20–40°�, the parameter C /D has no influence on the collapse

pressures when C /D is higher than 0.5 �this geometrical condition

is always true in practice�. This is because the critical failure

mechanism obtained from the maximization process is a nonout-

cropping mechanism for these cases and it does not change with

the increase of C /D.

Fig. 13 presents a comparison between the collapse pressures

given by the proposed mechanism and those given by Anagnostou

and Kovari �1996� using a limit equilibrium method, Eisenstein

and Ezzeldine �1994� using a numerical approach, and Leca and

Dormieux �1990� using kinematic and static approaches in limit

analysis. Again, one can observe that the solutions obtained by

Leca and Dormieux �1990� using the static approach in limit

analysis are quite far from the results given by the other methods.

This is because of the simplified stress field used by Leca and

Dormieux �1990�. The present results improve the solutions given

Fig. 11. Comparison of present load factor N of a purely cohesive

soil with that of other writers

Fig. 12. Comparison of present solutions of �c with those of other

kinematical approaches for two cases of a cohesionless soil
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by Leca and Dormieux �1990� using a kinematic approach and are

between the results given by Eisenstein and Ezzeldine �1994� and

Anagnostou and Kovari �1996�.

Table 4 presents the collapse pressures obtained by Chambon

and Corté �1994� from centrifuge tests in Nantes LCPC using

sand. The ranges of shear strength characteristics given by

Chambon and Corté �1994� are as follows: �=38–42°, and

c=0–5 kPa. As can be seen, these values of the shear strength

parameters show that the soil exhibits a small nonnull cohesion

for the sand. Chambon and Corté �1994� explained this phenom-

enon by some uncertainty in the measurements of internal friction

angle and cohesion obtained from the shear box. Notice that the

centrifuge tests were realized for several values of D, C /D, and �.

Table 4 also presents the corresponding collapse pressures as

given by the proposed three-block mechanism, for the four com-

binations of extreme values of c and � suggested by Chambon

and Corté �1994�. In this table, a unique value of the calculated

pressure is given for several values of C /D because of the high

values of � proposed by Chambon and Corté �the mechanism

never outcrops in these cases�. As one can see, the results ob-

tained by centrifuge tests are within the large range of values of

the tunnel pressures computed based on the three-block mecha-

nism using the different values of the soil shear strength param-

eters. The wide range of values of the shear strength parameters

given by Chambon and Corté �1989� does not allow a fair and

accurate comparison with the experimental collapse pressures.

Collapse Pressures of a Frictional and Cohesive Soil

Fig. 14 presents the solutions of the collapse pressure as given

by Leca and Dormieux �1990�, Mollon et al. �2009�, and by

Fig. 13. Comparison of present solutions of �c with those of other

writers in the case of a cohesionless soil

Table 4. Comparison between Experimental and Computed Collapse Pressures

c

�kPa�

�

�degrees�

�

�kN /m3�
D

�m� C/D

�c as given by

Chambon and Corté

�kPa�

�c as given by the proposed three-block mechanism �kPa�

c=0 kPa,

�=38°

c=5 kPa,

�=38°

c=0 kPa,

�=42°

c=5 kPa,

�=42°

0–5 38–42 16.1 5 0.5 3.6 6.8 0.4 5.3 Stable

0.5 3.5

1 3.5

1 3.0

1 3.3

2 4.0

0–5 38–42 15.3 5 0.5 4.2 6.5 0.1 5.0 Stable

1 5.5

2 4.2

0–5 38–42 16.0 10 1 7.4 13.6 7.1 10.5 5.0

2 8.0

4 8.2

0–5 38–42 16.2 13 4 13.0 17.9 11.4 13.8 8.3

Fig. 14. Comparison of present solutions of �c with those of other

kinematical approaches for two cases of a frictional and cohesive soil
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the present approach for two soil configurations: c=7 kPa and

�=17° �soft clay�, and c=10 kPa and �=25° �stiff clay�. All

these results are based on the kinematical approach of limit analy-

sis. For C /D�0.8, the improvement of the present solution with

respect to the one by Leca and Dormieux �1990� and Mollon et al.

�2009� is about 44% and 20%, respectively, for the soft clay, and

attains 89% and 40%, respectively, for the stiff clay. For the C /D

values higher than 0.8 �which is almost always true in practice�,

the values of the collapse pressures remain constant. Again, this

phenomenon may be explained by the fact that the critical failure

mechanism obtained from optimization does not outcrop at the

ground surface for these cases.

Critical Collapse Mechanisms

Fig. 15 shows a comparison between the critical failure mecha-

nisms given by Mollon et al. �2009� and by the present approach

in three different cases: �1� a purely cohesive soil with cu

=20 kPa and C /D=1; �2� a cohesionless soil with �=30° and

C /D�0.5 �case of a nonoutcropping mechanism�; and �3� a soft

clay with �=17°, c=7 kPa, and C /D�1. For both approaches,

the failure mechanism outcrops in the case of a purely cohesive

soil as expected. It means that for this type of soil, the parameter

C /D is of major importance. This is not true for a cohesionless or

a frictional and cohesive soil with high to moderate friction angle

��=20–40°� since the critical tunnel pressure is independent of

the tunnel cover in these cases. From Fig. 15, one can also see

that the critical failure mechanisms given by both approaches are

quite similar. Notice however that the prior mechanism by Mollon

et al. �2009� does not intersect the whole tunnel face; the grey part

of the tunnel face being at rest in the mechanism by Mollon et al.

�2009� �cf., Fig. 15�. This incompatibility of the mechanism with

the tunnel cross section was removed in the method proposed

herein. Notice also that the upper block of the present mechanism

does not exhibit a unique apex as would appear from Fig. 15.

Instead, a curved line was obtained at the top of this block as may

be easily seen from Fig. 16. It should be emphasized here that for

a small value of the friction angle, the curved line developed at

the top of the upper block has a very limited length �not shown in

this paper�. Thus, the upper block approaches �but is not� a regu-

lar cone in this case; the lines developed along the j index �for a

given i� are approximately close to �but are not� straight lines. In

this case, the last upper block terminates with a somewhat unique

apex. Notice however that for greater values of the friction angle,

the upper block is far from a regular cone as was shown in Fig. 16

for �=30°.

Design Chart

Fig. 17 depicts a design chart that may be used in practice

to determine the critical collapse pressure of a circular tunnel

face in the case of a frictional and cohesive soil. This chart allows

one to evaluate the nondimensional collapse pressure �c /�D for

different values of c /�D and for various values of � �running

from 15° to 40°� when C /D�0.8 �the condition C /D�0.8 is

almost always true in practice�. Notice that the range C /D�0.8

was chosen because the critical failure mechanism would be

a nonoutcropping mechanism in this case for all the range of

values of the soil parameters considered in the paper and this

renders the chart independent of C /D. Notice finally that this

chart may also be used for the computation of the required tunnel

face pressure for which a prescribed safety factor Fs defined with

respect to the soil shear strength parameters c and tan � is de-

sired. This may be achieved if one uses the chart with �d and cd in

lieu of � and c where �d and cd are based on the following

equations:

cd =
c

Fs

�25�

�d = arctan� tan �

Fs

� �26�

(a)

(b)

(c)

Fig. 15. Comparison of the failure mechanisms as given by the

present approach �left� and by Mollon et al. �2009� �after Mollon

et al. 2009� �right�: �a� �=0° and cu=20 kPa; �b� �=30° and

c=0 kPa; and �c� �=17° and c=7 kPa
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Conclusions

A new multiblock translational failure mechanism based on the

kinematical approach of limit analysis theory was presented in

this paper in the aim to improve the existing solutions of the

critical collapse pressure of a shallow circular tunnel driven by a

pressurized shield. The present failure mechanism has a signifi-

cant advantage with respect to the existing limit analysis mecha-

nisms by Leca and Dormieux �1990� and Mollon et al. �2009�

since it takes into account the entire circular tunnel face and not

only an inscribed ellipse to this circular area. This was made

possible by the use of a spatial discretization technique allowing

one to generate the three-dimensional failure surface point by

point. The three-dimensional failure surface was determined by

defining the contours of this surface at several vertical planes

parallel to the tunnel face. This failure mechanism respects the

normality condition required by limit analysis since the three-

dimensional failure surface so generated is constructed in such a

manner that the velocity vector makes an angle � with the veloc-

ity discontinuity surfaces anywhere along these surfaces. Al-

though the three-dimensional geometrical construction presented

in this paper is applied to a circular tunnel face, it may be easily

applied to any form of the tunnel face for the stability analysis of

a tunnel driven by the classical methods. The numerical results

have shown that:

• A one-block mechanism would be adequate only in the case

of a cohesionless soil and for great values of the friction angle

�for example �=40°�. This is because the increase in the num-

ber of blocks slightly improves the solution in that case. No-

tice however that the improvement obtained by the use of a

multiblock mechanism is significant for all the other cases; it

is maximal in the case of a purely cohesive soil. Finally, it was

found that the use of a three-block mechanism gives accurate

results for all the types of soils studied in the paper �frictional

and/or cohesive� with a reasonable computation time of about

5–10 min.

• The critical values of N�, Nc, and Ns are given in the paper for

the computation of the tunnel collapse pressure using the su-

perposition method. It was shown that the error induced by the

superposition principle is quite small �smaller than 0.5%� and

is always conservative. Notice however that the collapse pres-

sures computed based on the superposition principle can not

be considered as rigorous solutions in the framework of limit

analysis theory.

• The proposed failure mechanism improves the available solu-

tions of the load factor N and the collapse pressure �c. In the

case of purely cohesive soils, the improvement �i.e., decrease�

of the critical value of N with respect to the one by Mollon et

al. �2009� is equal to 8% for C /D=2.5. For cohesionless soils,

the improvement �i.e., increase� of the critical collapse pres-

sure �c with respect to the one given by Mollon et al. �2009� is

equal to 12% when �=20°. This improvement can attain more

than 40% for stiff clays. The comparison with other theoretical

and experimental approaches has shown that a good agreement

with other writers’ results was obtained in the case of a cohe-

sionless soil. However, significant differences exist with cen-

trifuge tests in the case of a purely cohesive soil. These

differences require further investigation.

• The failure mechanism always outcrops in the case of a purely

cohesive soil as expected. It means that in this case the param-

eter C /D is of major importance. This is not the case for a

cohesionless or a frictional and cohesive soil with high to

moderate friction angle �=20–40° since the critical tunnel

pressure is independent of the tunnel cover in these cases.

• A design chart was proposed, allowing one to evaluate the

critical collapse pressure for a frictional and cohesive soil.

This chart may also be used for the computation of the re-

quired tunnel face pressure for which a prescribed safety factor

Fs defined with respect to the soil shear strength parameters c

and tan � is desired.

Finally, it should be mentioned that the failure mechanism

Fig. 16. Shape of the curved line at the top of the upper block of the failure mechanism when �=30°

Fig. 17. Design chart of the critical collapse pressure for a frictional

and cohesive soil
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presented in this paper may be extended to the blow-out case of

failure corresponding to the passive state in the soil in front of the

tunnel face. This mechanism permits to compute the blow-out

face pressures. In this case, the velocities are acting upwards and

the failure mechanism always outcrops on the ground surface.

Although this state of failure is not realistic in the case of a

frictional and cohesive soil, it would be of some interest in the

case of a soft clay.

Appendix. Volumes and Surfaces Calculation

The calculation of the volume and lateral surface of a given block

is performed by a simple summation of elementary volumes and

lateral surfaces Vi,j and Si,j associated with the different element

areas of the failure surface of this block. This may be explained as

follows. For a given element area of the failure surface bounded

by four points �Pi,j, Pi+1,j, Pi,j+1, and Pi+1,j+1�, let �Pi,j� , Pi+1,j� ,

Pi,j+1� , and Pi+1,j+1� � be the projections of these four points on the

plane x=0 as shown in Fig. 18. This quadrilateral element area

may be subdivided into two triangular facets by two different

ways: ��Pi,j; Pi+1,j; Pi,j+1� and �Pi+1,j; Pi,j+1; Pi+1,j+1�� or ��Pi,j;

Pi,j+1; Pi+1,j+1� and �Pi,j; Pi+1,j; Pi+1,j+1��. Those four triangular

facets are denoted a, b, c, and d as shown in Fig. 18. In the same

manner, the volume bounded by the four points �Pi,j, Pi+1,j, Pi,j+1,

Pi+1,j+1� and their projection on the plane x=0, may be computed

by defining four volumes Va, Vb, Vc, and Vd, each one being

bounded by the corresponding triangular facet �a, b, c, or d� and

its projection on the plane x=0. For example, the volume Va is

bounded by the six points �Pi,j; Pi+1,j; Pi,j+1; Pi,j� ; Pi+1,j� ; Pi,j+1� � as

shown in Fig. 18. For each one of the triangular facets, it is very

easy to determine the surface and the corresponding volume

�which is equal to the projected surface of this triangle on the

plane x=0 multiplied by the distance from the barycenter of the

triangular facet to the projection plane x=0� using the coordinates

of the three points of the triangle. The surface �respectively vol-

ume� of the four-points element is approximated here as the mean

value between the surfaces �respectively, volumes� obtained from

the two ways of subdividing the quadrilateral surface into two

triangles, i.e.

Si,j =
�Sa + Sb� + �Sc + Sd�

2

Vi,j =
�Va + Vb� + �Vc + Vd�

2
�27�

Concerning the calculation of the interblock surfaces and of

the outcropping surface, this was performed using the classical

trapezoidal method.
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