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Abstract

The robust localization and tracking of faces in video
streams is a fundamental concern for many subsequent
multi-modal recognition approaches. Especially in meeting
scenarios several independent processing queues often ex-
ist that use the position and gaze of faces, such as group
action- and face recognizers.

The costs for multiple camera recordings of meeting sce-
narios are obviously higher compared to those of a single
omnidirectional camera setup. Therefore it would be desir-
able to use these easier to acquire omnidirectional record-
ings.

The present work presents an implementation of a ro-
bust particle filter based face-tracker using omnidirectional
views. It is shown how omnidirectional images have to be
unwarped before they can be processed by localization and
tracking systems being invented for undistorted material.
The performance of the system is evaluated on a part of
the PETS-ICVS 2003 Smart Meeting Room dataset.

1. Introduction
Research on smart environments has become focus for

many activities in the field of human-machine interaction.
One basic important step is the consideration about the in-
put sensors and how to capture the activities in a defined en-
vironment. With a view to image based scene interpretation
this means, how many cameras are needed and where have
they to be installed. Depending on the scenario, several rea-
sonable approaches exist for this task. However, the amount
of collected data has to be small and the setup should be eas-
ily installable and configurable.

Especially for smart meeting room scenarios, which run
under typical situation-given constraints (people sit around
a table), the idea to capture the scene with just one single
omnidirectional camera is desirable. In this case there will
be no synchronization problem, which would take place for

a multiple camera setup. A camera capturing 360◦ is sim-
ply located in the middle of the table facing all participants.
The disadvantage for this easier setup is based on the dis-
tortion of the captured images. These view-point dependant
deformations can be mostly reconstructed using sophisti-
cated image transformations, but unfortunately not lossless.

This work copes with the problem of finding and track-
ing faces in omnidirectional image sequences. The output
can be the basis for further detection cues, such as action or
face recognition in meetings [2]. The system performance
of the presented integrated approach is tested on the sce-
nario A1, of the PETS-ICVS 2003 Smart Meeting Room
data [1].

The structure of this paper is as follows. After the trans-
formation from an omnidirectional image to an unwarped
one, we briefly introduce two implementations for skin
color segmentation and the computation of a face-likelihood
for face detection in still images. The output of these sys-
tems is then be merged to a particle filter based face track-
ing system for image sequences. The paper concludes with
achieved results.

2. Tranformation of Omnidirectional View
Our system is based on images captured by a standard

video camera equipped with a hyperbolic mirror, which al-
lows the capturing of a large portion of the space angle, here
360◦. The obeyed image sequences from the PETS-ICVS
database were acquired with the mirror under the camera
and contain artificial meeting scenarios, with up to six peo-
ple sitting around a table, see Figure 1 (a).

Before the face tracking, each image has to be trans-
formed to a standard perspective view. Therefore we first
apply a simple transformation that presumes a linear pixel
distribution along the radius direction to get an panoramic
view, see Figure 1 (b).

The coordinates of this panoramic view arePx andPy,
which can be transformed to the coordinates of the omni-
directional image. It is assumed that real world elements
are projected onto a cylinder with radiusd. The axis of the
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Figure 1. Original omnidirectional image (a)
and Transformation (b)

cylinder is identical to the mirror- and camera-axis [8, 5, 4].
The horizontal size of the panoramic view is a perimeter of
a cylinderWIDTH = 2πd.

XM = (d − PY ) · cos(α) + CenterX (1)

YM = (d − PY ) · sin(α) + CenterY (2)

α =
Px

d
(3)

The computed pixels in the camera image do not cor-
respond ”one to one” to the pixels in the projected image.
Therefore sub pixel anti-aliasing methods have to be used.
In our case it is sufficient to use weighted averages of neigh-
bord pixels, since the size of a output pixel is comparable to
that of the input pixel. It is further suitable to crop a part of
image that contains the center of the omnidirectional view,
which usually only displays a part of the camera itself. The
result of a part of the scene is given in Figure 2.

Figure 2. Part of ”unrolled” panoramic image
together with alignment for equalization

After this first transformation, the resulting images are
still deformed. The problem arises from different distances
between the mirror and the observed objects. Geometrical
corrections can be applied based on knowledge about the
geometrical setup of the room and information about the po-
sitions of the participants. Therefore the user has to define
two setup describing curves by marking three points in the
image for each one (red lines in Figure 2). The curves are
approximated by circles, each characterized by the center-
coordinates and a radius. These circles are used to make

pixel interpolations to solve deformations in the vertical di-
rection. A second deformation arises by the cylindrical pro-
jection of the image. The impact is that depending on the
angle, the vertical width of a pixel has to be different. This
deformation can be transformed by using a perspective pro-
jection of the cylindrical image into the plane, see Fig. 3.

Figure 3. Perspective correction

An image can be transformed with equation 4, where
xOMNI is the position in the omnidirectional im-
age,WidthOMNI is width of the omnidirectional image,x
is the position in the perspective image anddM is the dis-
tance between the center of the cylinder and the projection
plane.

xOMNI = arctan
(

x

dM

)
· WidthOMNI

2π
(4)

For smoothing the image and removing non-uniformity
in the horizontal and vertical direction we again use a sim-
ple weighted interpolation method. Figure 4 depicts the re-
sult after applying all transformations.

Figure 4. Equalized image.

After all images within a sequence are preprocessed the
way described above, they can be processed by the subse-
quent face tracking system, where skin color localization
techniques as well as a neural network are used. The funda-
mental functionality is briefly described below.

3. Skin Detection and Segmentation
Color is a key feature for the detection of hands and

heads in images. It is probably one of the most used meth-
ods for the detection of human body parts, which may be
rested on its low computational cost. The disadvantage is



the low reliability, caused by the change of skin-tone color
appearance under different lightning conditions.

3.1. Gaussian Mixture Skin Color Model

One approach to recognize skin color under varying il-
lumination and brightness conditions is to transform the
RGB-color intensities into the normalizedrg-Chroma
space.

The r = R
R+G+B andg = G

R+G+B components create
a 2D color space. Skin colored pixels can be modeled with
a normal probability distribution, respectively a Gaussian
mixture model (GMM). To find the right GMM-parameters,
various face color pixels are picked manually to estimate the
distribution of the color classΩk. A color classΩk is deter-
mined by its mean vectorµk and the covariance matrixKk.
The probability of an unknown pixel being skin colored can
be computed by the following equation:

p(c|Ωk) =
1

2π
√
||Kk||

e−
1
2 (c−µk)T K−1

k (c−µk) (5)

A suitable parameter constellation, which fits on typical
in-door conditions and for the current scenario is given by:

µk =
(

44.548
28.935

)
, Kk =

[
4.0916 −0.3925
−0.3925 1.53269

]

3.2. Global Skin Color Model

Because of the restriction, that the parameters of the
GMM above are specialized to a certain environment, a sec-
ond more robust approach for unconstrained environments
desirable. The basic assumption is that a skin colored pixel
lies within a certain area in therg-Chroma plane, the so-
called skin locus [7].

In this approach a skin color candidate has to be between
two circlesgup and gdown in the rg-plane, wheregup =
aupr

2+bupr+cup andgdown = adownr2+bdownr+cdown

(aup = −1.8423, bup = 1.5294, cup = 0.0422, adown =
−0.7279, bdown = 0.6066 andcdown = 0.1766,). Further-
more whitish and gray pixels which lie in a circle with the
radius 0.02 around the color white (r = g = 0.333) are dis-
carded. Together with the neighbored pixels, a skin color
probabilityp(c|Ωk) can also be introduced.

Figure 5. Skinmask with potential skin color
candidates

4. Neural Network based Face Detection
In addition to the search of faces using skin color, a sec-

ond technique is involved to calculate face-likelihoods and
to reject non-face regions. For this purpose we use an imple-
mentation of an artificial neural network based face detec-
tor, similar to [6]. This technique has established itself as
being highly robust but computationally expensive. How-
ever, a combination of both cues will lead to a fast and ro-
bust system.

Figure 6. MLP based face-likelihood

With the help of a MLP structure as shown in Figure 6
(being trained with frontal upright, tilted faces and faces ro-
tated in depth) we can compute the likelihood of a given im-
age to be a face or not by a certain threshold. In the initial-
ization phase, a sliding window samples all possible regions
in the image, and is then enlarged until the window fits the
image dimensions. For each sample a face-likelihood can
be measured an possible face locations are merged.

5. Particle Filter based Tracking
Assuming a Markov-State-Space model with hid-

den states{xt} describing position, size and dynamics of
a face, the prior described observations of skin color and
face-likelihood{zt} are used to estimate the state of the sys-
tem through the filtering distributionp(xt|z1:t). In most
cases, this probability cannot be derived directly but calcu-
lated recursively by

p(xt|z1:t) ∝ p(zt|xt)
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

. The prior distributionp(xt−1|z1:t−1) describing the sys-
tem state in the last time step is predicted with dynamics
p(xt|xt−1). Then the observationp(zt|xt) updates the pre-
dicted distribution according to the measurement of the im-
age to generate the current distribution.

The filtering distribution is approximated with a set of
weighted samples, called particles. These are containing in-
formation about the system state, such as position, size, and
dynamics. This way the distribution becomesp̂N (xt|z1:t) =∑N

i=1 π
(i)
t δ(xt − x(i)

t ). This method is known as condensa-
tion algorithm (particle filter, sequential monte carlo) [3].

In the first step theN particles are initialised with
the output of the face detector (see Figure 7). Then



each particle is predicted by a linear regressive dy-
namical model with constant velocity. The parame-
ters of this dynamical model are determined by training
an adaptive linear network (ADALINE). For each parti-
cle the probability for containing a skin colored region
out of the skin color mask is derived, and a face likeli-
hood using the predescribed neural network is measured.
These observations are linked together by multiplica-
tion p(zt|x(i)

t ) = p(zskin
t |x(i)

t ) · p(zface
t |x(i)

t ) and deliver
the weight for each particleπ(i)

t ∝ π
(i)
t−1 · p(zt|x(i)

t ). A re-
sampling step for the particle set, using the new weights
keeps the particles in regions with high ”face likeli-
ness”. To allow tracking of faces of people entering the
scene, 10% of the particles are initialized by the face detec-
tion algortihm at each time step. For determination of the
number and locations of faces, connected regions of par-
ticles with a specific size, minimum amount of parti-
cles and minimum probability are searched. For each so
found location of a face a minimum number of parti-
cles is kept.

6. Results and Conclusion
Especially in critical tracking situations, where for a ex-

ample a hand overlaps a part of the face, the combination
of skin color detection with neural networks results in ro-
bust and reliable tracking performance, even on the trans-
formed images.

Figure 7. Initialisation of particle tracker with
the face detection algorithm.

Figure 8. Border regions of the image are a
problem, since the unwarping leads to rough
distortion in these regions.

Keeping a minimum amount of particles at every face
location prohibits the loss of partially bad tracked faces.
From the view of the tracker there is no difference between
the two methods for the extraction of skin colored regions.
When the lighting conditions of the room are known the

first model is more precise, but the second approach is pref-
ered here because of its generality.

Figure 9. Faces of persons entering the room
can be tracked through initialization with the
face detector at every time step.

A comparison of the tracking results on the unwarped
images from the omnidirectional views (camera 3) with real
views (camera 1 and 2) showed no major differences in per-
formance. Because the distortions of the omnidirectional
camera can be mostly reconstructed, we think such a cam-
era can be used as independent capture device for tracking
task in meeting events in a room.
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