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Abstract

Face view synthesis involves using one view of a face to artificially render an-
other view. It is an interesting problem in computer vision and computer graphics,
and can be applied in the entertainment industry for animated movies and video
games. The fact that the input is only a single image, makes the problem very dif-
ficult. Previous approaches learn a linear model on pair of poses from 2D training
data and then predict the unknown pose in the test example. Such 2D approaches
are much more practical than approaches requiring 3D data and more computa-
tionally efficient. However they perform inadequately when dealing with large
angles between poses. In this thesis, we seek to improve performance through
better choices in probabilistic modeling. As a first step, we have implemented a
statistical model combining distance in feature space (DIFS) and distance from
feature space (DFFS) [28] for such pair of poses. Such a representation leads
to better performance. As a second step, we model the relationship between the
poses using a Bayesian network. This representation takes advantage of the sparse
statistical structure of faces. In particular, we have observed that a given pixel is
often statistically correlated with only a small number of other pixel variables. The
Bayesian network provides a concise representation for this behavior reducing the
susceptibility to over-fitting. Compared with the linear method, the Bayesian net-

work more accurately predicts small and localized features.
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Chapter 1

Introduction

1.1 The Problem

Face view synthesis is an interesting problem in computer vision and computer
graphics. It involves using a photo of a person’s face in one pose, to synthesize a
photo of the person’s face in a different pose. For example, if we know the frontal
view of a face, such as a driver’s license photo, we may wonder what its profile
will look like (figure 1.1).

Face view synthesis can be used in the entertainment industry, such as an-
imated movies or video games, for example, synthesizing a movie involving a
historical figure such as Abraham Lincoln for whom a limited set of realistic im-
ages exist. Also, face view synthesis is one of the ways to aid face recognition for
different poses. When the gallery images belong to a different pose other than the
pose in the probe image, one way is to use face view synthesis to synthesize the

desired pose in order to do the matching process.

Face view synthesis can be accomplished in a number of ways. If multiple
images are available, one approach would be to extract and use the 3D geometry

of the face. According to the stereopsis theory in computer vision, to recover the

1
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Figure 1.1: A pair of frontal view and profile images of the same person, from
CMU PIE database

precise 3D geometry of an object, we need at least two images of this object. This
is why some approaches use multi-view images [13], or even video sequences
[46], to synthesize new views. But in real life applications, often only a single

image is available.

In this thesis, we are interested in the case where the input is only one single
photo, which makes the problem difficult, because the information contained in
one photo is insufficient to precisely recover the 3D geometry of the face. One
may think this task impossible. But human brain is very good at performing this
task. Suppose you are given a stranger’s driver’s license photo, by looking at the
photo, you will probably have an idea what this person looks like. The trick is
that you have seen many people’s faces of different poses and have learned some
relationship between poses. This prior knowledge helps you deal with strangers’
photos. That is why driver’s licenses only require one photo instead of multiple

photos.

Machine learning techniques provide a natural method for incorporating prior
knowledge into the synthesis problem. From a training set, we can learn the statis-
tics of the geometric and appearance relationships between different poses, and

apply these statistical relationships onto the single input image in order to synthe-
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size new views. In particular, Vetter and his colleagues have developed several
methods with this idea. Initially, they used only 2D images and applied linear
object class method to solve for a partial least square problem [43]. Then they
used one 3D face model to perform texture mapping between poses, with the oc-
cluded part synthesized by the linear object class method in separate regions of
faces [42]. Later on, they built a 3D morphable model learned from 3D training

examples, to synthesize novel views from a single image [5, 6, 7].

We aim to research face view synthesis with a single input image, building
upon the prior knowledge from machine learning. The main ideas of the thesis are
to find better representations of probability distributions relating facial appearance

acCross pose:

1. We have implemented a regularized holistic linear probability model using
distance in feature space (DIFS) and distance from feature space (DFES).
This representation improves upon previous methods that only use DFFS

and leads to improved performance as described in Chapter 2 [30].

2. We have observed that statistical dependency varies among different group-
ings of pixel variables. In particular, a given pixel variable is often statis-
tically correlated with only a small number of other pixel variables. We
exploit this statistical structuring by modeling the synthesis problem using
graphical probability models such as Bayesian Networks. Such representa-
tions concisely describe the synthesis problem, providing a rich model with

reduced susceptibility to over-fitting. This idea is explained in Chapter 3.

1.2 Background and Related Work

Because of a face’s 3D geometry, a single 2D image does not directly provide
enough information to synthesize another view of the same face. In fact, Bel-

humeur et al. [1] showed that different 3D-shaped faces obtained via generalized
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bas-relief transformations can look the same in 2D, given different lighting condi-
tions. The extreme case is that from a single view it is not possible to differentiate

an image of an object from an image of a flat photograph of the object [48].

Only by making various assumptions in combination with prior information is
it possible to generate a prediction of what a face will look like from a different

viewpoint. Below we list various assumptions made in earlier work.

1.2.1 Linear Object Class

In 1992 Poggio and Vetter proposed the concept of linear object class [34, 43].

This method relates feature locations in two viewpoints of the same object through

[Yl ] :iajlébl,j]
Yo j=1 ¢2,j

where y; and y, are the feature locations in the two viewpoints. ¢ ; and ¢, ; are

a linear equation:

training examples or vectors derived from the training examples (e.g., principal
components). This model involves two assumptions. The first assumption is that
given a basis set (¢ 1, - -+, @1 n), there exists another basis set (¢21, -+, P2 )
such that for any instance represented by the combination y; = Zj-vzl ;¢ ; in
the first view, the instance in the second view will be accurately represented by
yo = Z;V:l a;jpo ;. In order for this to hold, the object must be viewed under
orthographic projection. In practice, this assumption requires that the variation in
depth across a face is relatively small compared to the distance of the face to the
camera. The second assumption is that the space of linear combinations of the
training examples sufficiently describe the general class; that is, given a training
set of the faces, any other face can be generated through a particular choice of

o = (alf",CYN)T-

To use this model to synthesize y, given y, they solve for « in the standard
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view using least squares
T +
a= (o, -, an) = (P1)" yi1,

where ®; = (¢11,- -+, ¢1.n) and (®1)7" is the pseudo-inverse of ®,. They then

use the coefficients « to synthesize the virtual shape

Y2 = (¢2,17 T, ¢2,N) a=®, (‘1)1)+ yi,

where ®; = (¢21, -, ¢2.v). Note that this method does not require correspon-
dence between the two viewpoints, i.e., the feature points in y; and y can be
different landmarks. With no need for correspondence, this method can be ap-

plied to large rotations.

Gross et al. [17] used the similar math in their implementation of appearance-
based face recognition and light-fields . This method has also been discussed in
some related problems [24, 3, 26]. Hwang and Lee [24] use exactly the same
method as above in predicting occluded parts of human faces. Black et al. [3]
and Leonardis et al.[26] slightly modify the approach, by either excluding [26] or

putting less weight [3] on some rows of ®, that they assume are outliers.

However, experiments show that when the number of training examples is
limited, the results are usually not good. The reason could be that a small number
of training examples do not span the space of the class, therefore there exists a
significant error term 0; and d, in equations 1.1 and 1.2 below, in describing the

novel object as linear combination of the examples.

N

y1 = Z ;o1 + 01 (L.1)
j=1
N

Y2 = Z Qo + O2 (1.2)
j=1

The original linear object class method ignores those error terms, which leads to
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the poor results.

Considering the error terms, Beymer and Poggio [2] assumed that §; and d, are
highly correlated between the known view and the novel view. So they proposed
that simply subtracting equation (1.2) from equation (1.1) can cancel out the error
terms and get ys.

N
Yo =y1+ Zl a; (@25 — d1,5)
j=
Furthermore, instead of assuming ¢; and 9, are equal, Sali and Ullman [35] found
a way of computing how the error terms change from 9, to s in the rotation, in
order to predict the error term 9, in the novel view. Assuming d2 = Ady, they
have
N
Y2 =D ajpa; + Ady
j=1
where matrix A can be learned from a given transformation from the prototype
examples. The cost in these two papers is the “cross correspondence”, i.e., cor-
responding elements in y; and y, must describe the same physical point on the
object. The correspondence between different views has to be computed in order
to cancel out the error terms or determine the new error term. The “cross corre-
spondence” may also restrict the method from dealing with large rotation angles,

since it requires a set of feature points visible in both views.

Blanz et al. [4] proposed a regularization framework to solve this math prob-
lem, and applied in 3D shape reconstruction when part of the landmarks are
known, with the requirement of lots of 3D training data obtained by a 3D laser
scanner. They use Bayes rule to derive the tradeoff between DIFS and DFFS,
leaving the weight factor 1 undetermined in the equation and having to try differ-
ent 7) in the experiments. We describe in Chapter 2 a different way of derivation
and reached the similar tradeoff between DIFS and DFFS, and in our derivation

the weight factor 7) can be determined in the equation.
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1.2.2 Lambertian Assumption and Texture Mapping

In 1998, Vetter introduced two variations [42] to the pure linear class method
[43]. First, the linear class approach was applied to the parts of a face separately.
Second, they used a 3D laser scanner to record 3D data of human heads, and
averaged them to get a single 3D-model, which was used to establish pixelwise
correspondence between the two reference face images in the two different poses.
This correspondence field allows texture mapping across the view point change,
which leads to better quality of synthesized texture in the visible pixels, while the

occluded pixels are still synthesized using linear class method.

Wei [44] also used texture mapping techniques to synthesize novel views of
faces. He built the 3D model for each input image by finding the symmetric
landmarks and estimated depth. This method does not require 3D training data,
because all the 3D information is recovered by the symmetry. The symmetric
landmarks were labeled by hand. He also tried automatic detecting the symmetric
landmarks by neural networks trained from 2D images, but did not integrate this

automatic procedure into the whole framework.

1.2.3 3D Parametric Models

In 1999, Blanz and Vetter [5] proposed using a 3D morphable model in face view
synthesis. With a database of many 3D human heads recorded via a 3D laser
scanner, they performed principal component analysis (PCA) on these 3D data to
learn the statistics in the shape and texture, to build a 3D morphable face model.
When a new input face image is given, the coefficients of the 3D morphable model
are optimized along with a set of rendering parameters such that they produce an
image as close as possible to the input image. Once the optimization is done, the
3D model is rotated to give the 2D rendered face image in the desired view. Later

they applied this approach to face recognition [6, 7].

The above two methods [42, 5] gave better results than [43], but incorporating
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a 3D model requires hardwares such as 3D laser scanners, and the 3D model
makes them computationally expensive, especially the optimization process of

fitting the 3D model in [5] is very time-consuming.

Gu and Kanade [19] also proposed aligning a 3D deformable model to a single
face image. They adjust the 3D deformable model to fit the image by comparing

the view-based patches at the sparse points.

1.2.4 User-Specified Constraints

Li Zhang et al. [48] proposed a method that solves for single view shape re-
construction for free-form objects, such as portraits, sculptures, mountains, can-
dies, under the assumption of orthographic projection. Their method requires
user-specified constraints: point constraints, depth discontinuities, creases, pla-
nar region constraints, and fairing curve constraints. Point constraints specify the
position or the surface normal of any point on the surface. Surface discontinu-
ity constraints identify tears in the surface, and crease constraints specify curves
across which surface normals are not continuous. Planar region constraints deter-
mine surface patches that lie on the same plane. Fairing curve constraints allow
users to control the smoothness of the surface along any curve in the image. They
also define a surface objective function as a measure of surface smoothness penal-

izing for large derivatives,

Ql9) = 32 %ij {ai,j (gi+15 — 290 + gi-1,5)°
+20;5 (Gis1j1 = Gige1 — Givry + 9ig)’
2
+%i,5 (Gij+1 — 29i5 + Gij—1) }

where o ;, 3; ;, 7i,; are weights, g; ; is the depth value at grid (id, jd) on the depth
map and d is the distance between adjacent grid cells. With the constraints and the
objective function, they solve for a constrained optimization problem to find the

3D shape reconstruction that satisfies these constraints and optimizes the surface
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Figure 1.2: Results of Li Zhang et al.’s method[48]. The first image is a painting.
The second image is its 3D reconstruction. Courtesy of Li Zhang.

objective function. Figure 1.2 is an example of their results.

1.2.5 Bilateral Symmetry

Wei Hong et al. [22] uses the bilateral symmetry as an assumption on some sym-
metric objects under perspective projection. They pointed out that one image of
a symmetric object is equivalent to multiple images, and proved that symmetric
objects can be recovered given only a single view. Assuming the symmetry re-
lationship is fully known, e.g., let = be the 2D projection of a 3D point X, g(x)
denotes the symmetric pixel of z in 2D, where z, g(z), X are all homogeneous

coordinates. Matrix g represents the plane of symmetry in 3D. Then the projection
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Figure 1.3: Results of Wei Hong et al.’s method[22]. The left images show a
symmetric checker board and the corresponding points. The right image shows
the 3D reconstruction. Courtesy of Wei Hong.

functions are
AT = H()goX = [Ro, T()] X

Ng(z) = HogogX

where Iy = [/,0] € R3*4, and gy, Ry and T represent the camera parameters,
i.e., the 3D relationship between camera and the object. This is a set of 6 equations
with only 5 unknowns: 3 entries of X, A and )\, and can be solved. Figure 1.3 is

an example.
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1.2.6 View-Based Active Appearance Model

Cootes et al.’s view-based active appearance model (AAM) [9] assumes a formula

that describe the relationship between AAM parameters and the viewing angle.
¢ = cp+ c.cos(0) + cssin(0) (1.3)

where c is a vector of the AAM parameters, and ¢ is the orientation angle. The
constants ¢, ¢. and ¢, in the formula are learned from regression between {¢; } and
{(1, cos(;), sin(@i))'} on the training data. When given a first example image
with parameters c, first they estimate 6 in equation (1.3) as tan™!(y,/x,), where
(Ta,va) = R (c—cp) and R 'is the left pseudo-inverse of the matrix (c.|c,). In
order to do view synthesis at a new angle «, they compute the residual vector not

explained by the rotation model at the first image as
Cres = € — (co + cccos(0) + cssin(0))
and add this to the computed parameters at o

cla) = ¢ + cecos(a) + cssin(a) + Cres.

1.2.7 Shape from Shading

In many AAM-based methods, Lambertian surfaces are assumed, and also the
relative position between the light source and the object is supposed to be un-
changed during the rotation. Therefore after warping, the pixel intensities are
directly copied to the corresponding locations on the new pose. However, Zhao
et al. [49] discussed the case where the absolutely position of the light source re-
mains unchanged while the object is rotated. Under the shape-from-shading (SFS)
theory, the pixel intensity changes between the two poses. The new pixel intensity

can be computed given the rotation angle and the normals on both surfaces.
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Figure 1.4: Results in Zhao et al.’s paper[49]. Column 1 and 4 are original frontal
views. Column 2 and 5 are original rotated views. Column 3 and 6 are synthesized
frontal views. Courtesy of Zhao.

However, in their experiments they did not use this SFS theory. Instead they
directly copied the pixel intensities after warping, using a general 3D face model.
Figure 1.4 shows their results, in which the synthesized frontal views usually have
one side a little distorted because some pixels on that side are occluded in the

rotated view.

1.2.8 Scene Geometry in Perspective Projection

Instead of assuming orthographic projection as the methods described in section

1.2.4, there is another class of single view reconstruction methods that use per-
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spective projection cues to recover the 3D structures. These methods rely on
assumptions in scene geometry. Horry et al. [23] and Criminisi et al. [12] re-
constructed piecewise planar models based on user-specified vanishing points and
geometric invariants. For example, they compute the perspective distortion of the
parallel lines and other easy cues, in order to do the single view reconstruction.
Their results are very interesting, for example, showing a virtual museum where
you can walk into the 2D paintings such that the structures have 3D appearance.
Hoiem et al. [21] added automatic segmentation to separate objects in the scene.
However, these methods require that certain geometric easy cues exist, such as
lines, planar surfaces, squares and so on. It is not clear, however, how such meth-

ods could be generalized to general objects of free-form, such as faces.

1.3 Our Approaches: Probabilistic Modeling

We aim to research face view synthesis with a single input image, building upon
the prior knowledge from machine learning. The main ideas of the thesis are to
find better representations of probability distributions relating facial appearance

aCross pose:

1. We have implemented a regularized holistic linear probability model using
distance in feature space (DIFS) and distance from feature space (DFES).
This representation improves upon previous methods that only use DFFS

and leads to improved performance as described in Chapter 2.

2. We have observed that statistical dependency varies among different group-
ings of pixel variables. In particular, a given pixel variable is often statis-
tically correlated with only a small number of other pixel variables. We
exploit this statistical structuring by modeling the synthesis problem using
graphical probability models such as Bayesian Networks. Such representa-

tions concisely describe the synthesis problem, providing a rich model with
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reduced susceptibility to over-fitting. This idea is explained in Chapter 3



Chapter 2
Regularized Holistic Linear Model

The performance of face view synthesis depends on the accuracy and appropri-
ateness of the probability model. In this thesis, we will explore several models
beginning with an improved version of Vetter and Poggio’s linear object class
method [43]. We show how simple representation improves its performance. We

then explore several observations that may lead to further improvements.

In the notations, we use uppercase bold fonts for matrices, lowercase bold

fonts for vectors, and regular fonts for scalars.

2.1 Introduction

Vetter and Poggio’s linear-object-class method [43] models images as linear sums

of other images, and solves a set of linear equations with missing data:

&, _ b: @D
& )7 |\ b, | '
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where b, is the unknown pose and b, is the known pose of the test example.

P = ( ! ) is the training set (or vectors formed from a linear combination of
2
. . . . b,
the training set, i.e., PCA of the training set) containing the two poses. £
2

@,
is represented as a linear combination of the columns in . The vector
2

y contains the parameters describing the linear combination. The linear-object-

2 s
, then uses it to predict by =

class method solves for y = arg min H<I>1 Yy — b,
®,y. (In the view synthesis problem for faces, shape and appearance are usually

analyzed and predicted separately.)

We believe that the problems with the linear-object-class method lie with
an incorrect assumption: there are no errors inherent in the solution for y in
y = arg min H<I>1 -y — l~)1H2. However, as it is well known, there are measure-
ment errors in the training data due to many factors. These errors will prop-
agate into the solution for b, using the linear-object-class method. We can
improve upon this solution with a probabilistic formulation. This formulation
combines ‘“distance-from-feature-space” (DFFS) and “distance-in-feature-space”
(DIFS) [28], whereas the linear-object-class solution is purely based on DFFS. By

P
considering DIFS, our method penalizes for points within the subspace, (I)l ,
2

that have low probability (figure 2.1). Our representation leads to solutions that
have higher probability and, as we will show, significantly better empirical per-

formance.

Blanz et al. [4] also proposed a regularization framework to solve this math
problem. The way they derive the probabilistic formulation was through Bayes
rule, which is different from our derivation, although both lead to similar results.
We will illustrate the difference in the chapter. Also we will analyze how to deter-

mine the weight factor which was undetermined in Blanz et al.’s approach.

This chapter is organized as follows. In Section 2.2, a probabilistic model
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Figure 2.1: Linear object class will choose x;, whereas our method chooses x,,

combining DFFS and DIFS is introduced, and the solution for equation (2.1) is
derived. In Section 2.3, we explain the necessary steps of separating the shapes
from the appearance of faces, and apply the solution in Section 2.2 to predict a new
view of faces. Section 2.4 shows experimental results of synthetic face images at

new views. In Section 2.5, we discuss this approach.

2.2 Probabilistic Modeling

The problem of linear equations with missing data described in equation (2.1) is
restated in the following way:

Nr
=1’

We have Np training vectors {x; each of which is an N-by-1 vector.

b
Usually N > Nrp. A test example b = bl belongs to the same class defined
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by the training set. b is N-by-1. We only know b, which contains the first /V;

elements of b. The task is to predict b, given b; and {x,}ZN:T1

2.2.1 Probabilistic Modeling

Let’s first discuss the ideal case that we have enough independent training exam-

ples to span the whole /N-dimensional space, i.e., N7 > N.

Here we apply several assumptions:

1. The class defined by the training set is an M -dimensional linear subspace,
denoted as ¢. M < N and determined by PCA from the training set. PCA
is computed from the training set {x; ZN:TI, and the M largest eigenvalues of
the principal components A\ > Ay > --- > \j; are the variances along the

M dimensions of @.

2. In this subspace @, samples are drawn from an M -dimensional Gaussian

distribution with zero mean.

3. If the complete space has N dimensions, there is another (N — M) dimen-
sional linear subspace @, which is orthogonal and complementary to the

eigenspace @ (Fig. 2.2). We assume & and @ are statistically independent.

4. The samples also contain random noise distributed over all the (N — M)
dimensions of ¢. Each of the (N — M) dimensions of ¢ has approximately

equal non-zero variance, i.e., Apj11 = Appio & - &= Ay > 0.

Under these assumptions, the probability of x is
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3

Figure 2.2: Decomposition into the eigenspace @ and its orthogonal subspace &.
The DFFS and DIFS are also shown.

_ =1 i=M+1
o N
(27T)M/2 H)\Zl/2 (27T)(N M)/2 H )\3/2
=1 i=M-+1

where (2 denotes the class described by the training set. x is a random point from
this class, and its projection onto each dimension is denoted as {y;}~ ,. Ps(x|Q)
and Pz(x|2) are two marginal Gaussian distributions, in @ and @ respectively.
In Blanz et al.[4]’s paper, they modeled the posterior probability P (¢ | x) = v -
P (x| c)-p(c) by Bayes rule where ¢; = £, i =1,--+, M.

In practice, since N is very large and N > Np, we lack sufficient data to
compute each {\;}1,, 1 in Pg(x|€2). Recall the assumption that (NI, L are

about the same magnitude. Then it is reasonable to use the arithmetic average

N
> \; [28] to get an estimation of P(x|(2), which is
i=M+1

1
P=~N-m

A

P(x|Q) = Ps(x|Q)- Ps(x|Q)
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o 2 1 - 2
exp <—%Zy—> eXp (=3, Z Yi

) i=M-+1
1/2 (27Tp)(N_M)/2

The distance characterizing the P(x]|(2) is

M, 2
o Y 1
d(x) = lg —21 +—-

oA P =M1

N
> y?] : (22)

In Blanz et al.[4]’s derivation, they maximized the posterior probability P (c | x)

and reached similar characteristic distance £ = ||c||> + 7 - ||Qc — x||*. In fact

M N
2
c||* = lz?/’\—] Qe —x[> = | Y y?|. In their derivation, the weight factor
i=1 i=M+1
7 1s left undetermined, while we determine this weight factor in Section 2.2.4.

b
In our problem, we only know the upper part of b = !

b,
from class €2. In order to solve for the unknown part by, we want to maximize the

) , and know it is

likelihood of P(b|€2) by choosing {;} ,, where {y;} | are the measurements of
projecting b — X onto each of the N dimensions and X is the mean of the training

set. We then generate b, = X, + ®, - y. This optimization depends upon three

M N
quantities: [Zi—ﬂ , [ > yf] and the weight p. Let’s look at them one by one.
i=1 i=M+1

2.2.2 Distance in Feature Space

This is the Mahalanobis distance, also called the “distance-in-feature-space” (DIFS)

[28]. It describes how far the projection of x onto @ is from the origin. Let
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1
L 0
1
Ay = o ,andy = (y1,4s, -+, yn)" , then
1
0 Xor

M y2
[ZA—?] =y Ayy. (2.3)

=171
2.2.3 Distance from Feature Space

The residual reconstruction error, also called DFFS [28] is i y? = éf(x) =
|x’ — x|, where X’ is the projection of x on . -

The linear-object-class method [43] minimizes the DFFS to find y in order to
predict bs. Split the eigenvector matrix ® containing the first M eigenvectors into
P = il ) and split the mean X of training data into X = }:(1 , where @,

2 X2
and X; have the same number of rows as b;. No matter what method we use to

solve for y, since by is defined as X, + P, - y, the residual reconstruction error of

. by .
resulting b = is
2

Z y,'2262(b) _ Hb—(f{-l—q)~y)||2 _ H(b1>_(xl+q)1~y>

i=M+1 Xo+ Py y
= by — (1 + @1 - y) |
= b2y ’

2

2.4)
where 151 = b; — X;. Thus the linear-object-class method [43] solves a least

square problem to solve for y :

-2
y = argminH<I>1 -y _blH .
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2.2.4 Determining the Weight

N
Moghaddam and Pentland [28] define p = == Y \;, under the assumption
i=M+1

that the number of training examples N > N, and that {)\;}.",, ., are about the

same magnitude. However, in practice, N is very large and we have Ny < N.
These Np training examples can only span an (N7 — 1) dimensional subspace,
resulting in that Ay, = Ay, 01 =+ = Ay = 0.

We use the non-zero eigenvalues, {)\i}g\iTJ\}—ll-l’ to guess what {\;}1" np Would

be like had we been given sufficient training data. Here we add another assump-

tion:

e We assume that the actual values of {)\Z}ZN: np Will be about the same mag-

nitude as the average of the known eigenvalues {)\Z}f\f]v;il

Np—1
Under this assumption, p = —5— > i
i=M+1

2.2.5 Solving the Optimization Problem

Given by, we want to find b, that minimizes J(b). Substituting equations (2.3)
and (2.4) into (2.2),

d _ - y; | €(b)
(b) = ;A—ﬁT
= y'Ayly + % HBl — P, ‘yHZ
= y'AY Y+ (51 2 ~y)T (f)l — P, - y)
= 5 (yTpAX}y +y el ®y —2 (‘I>1T51)T v+ B{Bl) .
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Letting the partial derivative to be zero,

0= %g’” = 20A,}y +28T® )y — 2@{61
= 2 [(pAJ_V} + @{‘I)l) y — ‘@?bl} .

The solution of y is
-1 T V' &I
y = (pAy + ®[®;) - @by (2.5)

And the unknown by can be predicted as by = Xy + P, - y.

2.3 Separating Shape and Appearance

Let’s use the above technique to solve the problem of synthesizing new views of
human faces. The problem is described as follows. Given a probe face image I un-
der pose 1, we need to synthesize a new image J of this person’s face under pose 2.
The training set consists of N pairs of face images, {[I1, J1], [I2, J2], - -, [Ing, Ing) b
I, and J; are faces of the ith subject in the training set. {I; Z]\fl are under pose 1,

and {J;}'" are under pose 2.

In our approach, we make the common assumption [10, 43, 17] that the char-

acteristics of shape can be separated from appearance.

2.3.1 Shape

On each face image, a set of landmarks are labeled by hand. For the ith training
image under pose 1, denote the coordinates of each landmark as (z;,y;), j =
1,---, Ly, where L; is the number of landmarks on the faces under pose 1. Define

the shape vector of this ith face image under pose 1 as

T
Si1 = (1'1,1'2, Ty Y1, Y2, '7yL1) :
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A similar vector s; » can also be defined in the same way for pose 2. Concatenating

these two vectors, we get a vector

as a combined shape vector for the ith subject in the training set.

Thus, for the Np subjects in the training set, we get a training set of shape

N
vectors {s;}; .

2.3.2 Appearance

For each pose, a reference face is chosen by averaging over the training set, so
that every face under this pose is warped to the shape of the reference face, giving
a normalized image (Figure 2.3). The warping is done by first connecting the
landmarks into a set of triangles via Delaunay triangulation algorithm' and then
doing an affine transform to each triangle [10] (Figure 2.4), assuming that the faces
have Lambertian surfaces. On each normalized image, only the pixels within the
convex hull of the landmarks are kept and all other pixels are discarded. This is
done to remove the unnecessary variations of the hair or the background scenery.
Let’s call the resultant normalized images under pose 1 as I,L,---, IvaT, and
those under pose 2 as Tl ) j;, S j]; Reshape them into vectors as {t“}ZN:Tl and

{tm}f\fl for pose 1 and pose 2 respectively.

For the ¢th subject in the training set, define

ti1
t;o

ti:

!Given a set of data points, the Delaunay triangulation algorithm connects them as a set
of triangles such that no data points are contained in any triangle’s circumscribed circle. See
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/delaunay.html
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image of pose 1 with normalized shape reference face 1

image of pose 2 with normalized shape reference face 2

Figure 2.3: An example showing the separation of shape and appearance. In each
of the two poses, the image is labeled with some landmarks and then warped to
the normalized shape of the reference face in that pose. The reference faces are
obtained by averaging the shapes and appearances of the training images.

as a combined appearance vector. Thus, for the N, subjects in the training set, we
get a training set of appearance vectors {t; fiTl

2.3.3 Probe Image and Prediction

Given a probe face image I under pose 1, we need to synthesize a new image J
of this person’s face under pose 2. With a set of landmarks on I and the reference
face under pose 1, we can again decompose I into its shape vector s; and appear-
ance vector t;. The landmarks can be obtained using AAM fitting [10]. In our
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input shape normalized shape

Figure 2.4: The Delaunay triangulation and affine warping. In the input image and
the reference image, the landmarks are connected as triangular meshes via Delau-
nay triangulation algorithm, and each triangle is warped via affine transformation
to its corresponding part in the reference face. The gray area shows an example
of such corresponding pair of triangles.

experiments, we hand labeled these landmarks on the probe image I.

If we can predict the shape vector §, and the appearance vector t, of the un-
known image J, by warping t, from the reference face under pose 2 back to the
shape defined by s,, we will be able to get the synthesized new image J.

So the problem turns into: How to predict S5, given §; and the training set
{SZ}ZN:T1'7 And how to predict t,, given t; and the training set {ti}ij\fl? They are the
same mathematical problem. Using exactly the equation (2.5) that we described

in Section 2.2 will predict the unknown shape $, and the unknown appearance t..
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Figure 2.5: The 13 poses in CMU PIE database.

Then we can combine them to get the synthesized new image J, which is the new

view of the probe face under pose 2 .

2.4 Experimental Results

2.4.1 Experiments on PIE database

We tested the performance of this method on the CMU PIE database [39]. The
database contains 68 subjects. We chose 64 subjects as the training set, and 4
subjects (04016, 04022, 04026 and 04029) as the test set. Our experiments were
performed on the “expression” subset including those images with neutral expres-
sions, and those images containing glasses if the subject normally wears glasses.
All images were converted to gray-scale images. The database contains 13 poses,
illustrated in Fig. 2.5. We used combinations of ‘c27’ (frontal view), ‘c37" (45°
view) and ‘c22’ (profile) to test our algorithm. The landmarks were provided
courtesy of Ralph Gross [17]. The number of landmarks vary depending on the
pose, from 39 landmarks to 54 landmarks. So the number of shape variables, in-
cluding both x and y coordinates and a pair of poses, is around 200. The sizes of
the reference faces in each pose are around 180x180, so the number of appearance
variables is around 60,000.

We performed 3 sets of experiments, including predicting frontal view from
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profile (Fig. 2.6), predicting profile from frontal view (Fig. 2.7), predicting 45°
view from frontal view (Fig. 2.8). These experiments all involve large out-of-
plane rotations, such as 90° or 45°. In each experiment, the result of our approach
is compared with that of linear-object-class method. We also computed the PCA

. . b
reconstruction of the ground truth, by projecting the true b = " | onto the
2

eigenspace, to show the best possible reconstruction under the linear eigenspace
assumption. In each experiment, for either the shape or the appearance, we al-
ways choose the number of principal eigenvectors that occupies 98% of energy.
Although the number of shape variables is around 200 and the number of appear-
ance variables is around 60,000, we only have 64 pairs of training images, so the
maximum number of dimensions is 63. With 98% energy, the dimensions for

shape and appearance are reduced to around 40 and 54 respectively.

Each synthesis takes an average of 4 - 5 seconds on a PC with a 3GHz Pentium
4 processor, including predicting shape and appearance and also warping the ap-
pearance to the shape. More specifically, the prediction of shape and appearance

takes about 0.3 second, and the warping takes about 4 seconds.

Fig. 2.6 - 2.8 show how our approach improves upon the results of the linear-
object-class method, especially in predicting the shapes and handling large out-
of-plane rotations. Although our synthetic images are not perfect replicas of the
ground truth, they are similar to the PCA reconstructions of the ground truth,
which are the best possible synthetic images under the linear eigenspace assump-
tion. We performed these experiments using a training set of only 64 subjects.
With more training data, the eigenspace would be more accurately described and

better results could be expected.

We have also included the numerical comparison of errors for shape prediction
in each set of experiments (Table 2.1, 2.2, 2.3). In each table, we compare the
square roots of the mean-squared-errors in the coordinates of the predicted shape,
using the linear-object-class method, our approach, and the PCA reconstructions

of ground truth, respectively. From the numerical errors, we can see our approach
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Synthetic PCA reconstruction

linear object class ~ Our approach o groundtruth  ground ruth

Figure 2.6: Synthesizing a frontal view from a given profile. Column 1 to 5:
(1) input image under pose 1 (2) synthetic image using linear-object-class. (3)
synthetic image using our approach. (4) PCA reconstruction of ground truth of
pose 2. (5) ground truth of pose 2.

is efficient in reducing the errors by at least 30%.

2.4.2 Experiments on Multi-PIE and FERET databases

The above experiments have a training set of only 64 subjects. Such a small
training set has limited capability to span a feature space to represent a number of
possible human faces. So we did the experiments again with a much larger training
set. We use data from two databases: Multi-PIE [18] and Color-FERET [32, 33],
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) ~ Synthetic PCA reconstruction
Input linear object class Our approach of ground truth ground truth

Figure 2.7: Synthesizing a profile from a given frontal view. Column 1 to 5:
(1) input image under pose 1 (2) synthetic image using linear-object-class. (3)
synthetic image using our approach. (4) PCA reconstruction of ground truth of
pose 2. (5) ground truth of pose 2.

Table 2.1: Square roots of mean squared errors in pixel location for shape predic-
tion from profile to frontal view
| Linear-object-class method | Our approach | PCA reconstruction of ground truth |

4.7714 3.5099 1.2343
3.0689 2.6584 1.1250
4.9929 3.2950 1.1216
7.2097 4.7792 1.2631
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Synthetic PCA reconstruction
Input linear object class  Our approach of ground truth ground truth

.

Figure 2.8: Synthesizing a 45° view from a given frontal view. Column 1 to 5:
(1) input image under pose 1 (2) synthetic image using linear-object-class. (3)
synthetic image using our approach. (4) PCA reconstruction of ground truth of
pose 2. (5) ground truth of pose 2.

Table 2.2: Square roots of mean squared errors in pixel location for shape predic-
tion from frontal view to profile
| Linear-object-class method | Our approach | PCA reconstruction of ground truth |

7.4199 4.2115 1.7578
4.7118 3.5389 1.3191
5.2369 3.4810 1.4949
5.5709 3.1199 1.7967
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Table 2.3: Square roots of mean squared errors in pixel location for shape predic-

tion from frontal view to 45° view
‘ Linear-object-class method ‘ Our approach ‘ PCA reconstruction of ground truth ‘

4.4719 3.3408 1.5467
4.1070 3.0246 1.1708
5.4397 3.3834 1.7336
6.2868 3.9477 1.4638

of frontal view (0°) and half profile (30°). We chose 1842 pairs of faces from
337 subjects in Multi-PIE database, and 1582 pairs of faces from 738 subjects in
Color-FERET database, to form a training set of 3352 pairs of faces from 1075
subjects. We also chose 20 frontal images from 10 subjects Multi-PIE and 20
images from 15 subjects in Color-FERET, to form the test set. Our goal is to
synthesize a half profile face from its frontal view.

We labeled 54 landmarks for each frontal view face and 47 landmarks for each
half profile face. So the number of shape variables is 108+94=202. We chose
the reference faces to be 100x100 size, so the number of appearance variables is
2x10000 = 20000. With 3352 pairs of training images, the maximum possible
dimension of appearance is 3351. We also adjusted the pixel intensities of each
warped image to be zero mean and unit variance. With eigen decompositions and
keeping 98% energy, the dimensionality of shape variables reduces from 202 to

113, and the dimensionality of appearance variables reduces from 3351 to 1485.

In linear-object-class method, in order to make the set of equations as an over-
constrained problem in shape prediction, we limit the number of eigenvectors to
1/3 of the number of known shape variables, i.e., 1/3 x 108 = 36. Without such
limitation, had we kept 98% energy which are 113 dimensions, the equations
would have been an underconstrained problem and the result would have been
unreliable. For appearance prediction, we still keep 98% energy because 1485

dimensions will still make the equations as an over-constrained problem.

Below (figure 2.9) we list some results of the two approaches for comparison,
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groundtruth  linear prediction linear-object-class

Figure 2.9: Comparison of prediction results of linear method and linear-object-
class method on Multi-PIE and FERET database.

where it shows the linear method outperforms the linear-object-class method. Es-
pecially the linear-object-class method has severe distortion in shape prediction.
The average square roots of mean-squared-error in shape prediction for the 40 test
images is 1.4536, which is pretty small compared to the results of PIE databases.
This shows with a large training set, the shape prediction can be quite accurate and
satisfactory. And the average square roots of mean-squared-error in appearance
prediction for the 40 test images is 13.1247, which means approximately the error

in predicting the intensity of each pixel.

Although the linear method outperformed the linear-object-class method, it

still has some failure examples (figure 2.10). It seems the linear method has some
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input groundtruth linear prediction

(a)

(b)

©

Figure 2.10: Examples of failure in the linear method. In each example, the left
image is the ground truth and the right image is the synthetic image of this pose.
(a) The subject’s mustache is removed in the synthetic image. (b) The subject’s
mole is removed in the synthetic image. (c) The subject’s eyes are surrounded by
a partially hallucinated pair of glasses in the synthetic image.

problems in predicting small and localized features, such as mustache or moles,
or determining whether the subject wear glasses.
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2.5 Conclusions

In this chapter, we proposed an approach that can efficiently synthesize accurate
new views of faces across large out-of-plane rotation, given only a single image.
In our approach, we formulate a probabilistic model combining the “distance-
from-feature-space” and the “distance-in-feature-space”, and minimize the weighted
sum of the two distances, in order to maximize the likelihood of the test example
with missing data. Experimental results show that our approach produces more
accurate results than the commonly used linear-object-class approach which is
the basis of many 2D approaches. However, this approach is not always reliable
at predicting localized features as shown in Figure 2.10. In the next chapter, we

explore a method designed to improve localized prediction.
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Chapter 3

Bayesian Network Approach

3.1 Motivation

One of the challenges of image synthesis is high dimensionality; that is, it is a pre-
diction problem over many variables. In the last chapter, we manually separated
shape and appearance, and analyzed the variables in the appearance holistically,
as well as the variables in the shape; that is, that method does not decompose
the variables any further. However, such a representation may be ill-suited to this
problem. Examples of failure are shown in figure 2.10, where the subject’s dis-
tinctive characteristics such as mustache or moles are removed in the synthetic
image, or the subject’s eyes are surrounded by artifacts of glasses in the synthetic

image while the subject actually does not wear glasses.

The holistic approach is ill-suited to this problem because sparse statistical
structure usually exists among the random variables [36, 37, 20]. Each random
variable usually has strong statistical dependency with a few variables, and has
weak dependency with the others (Figure 3.1). If we ignore such statistical struc-
ture and group all the variables together, the high dimensionality of the model

will be susceptible to over-fitting. Such a holistic representation also models

37
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relationships among variables that have no statistical dependency and is, there-
fore, wasteful. Instead, we propose to take advantage of the statistical structure
which will allow us to formulate our solution as a combination of smaller models
and thereby be less susceptible to over-fitting and to devote more representational

power to true dependencies among the variables.

We aim to build models that exploit this sparse statistical structure among
the random variables. Graphical models, such as Bayesian networks, are well
matched to this task. In such models, each node represents a single variable.
Connections between nodes exist only if there are direct statistical dependencies.
Variables are unconnected if they are statistical independent or conditionally in-
dependent. Such a graphical structure concisely captures sparseness. In doing
so, it greatly reduces the dimensionality of the problem. Instead of a single high-
dimensional model, a graph consists of a collections of lower-dimensional models
at each node. The dimensionality of each such model is given by the number of
edges flowing into the node. Such a representation makes good use of the training

data we have and reduces over-fitting.

In particular, a Bayesian network represents a probability distribution over a

group of variables X, ..., X, as:

p(Q) =]]p(z:| Pas,) (3.1)

i=1
The probability representation in each lower dimensional model is p (z; | Pay,),
representing the probability of variable X; conditioned on all the variables flowing

into it on the graph, Pax,.
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Figure 3.1: Mutual information between pixels on pairs of human faces. Each red
rectangle denotes the pixel we are analyzing, and the brightness of other pixels
show the relative magnitude of mutual information with that pixel visually. The
five pictures show areas of eyebrows, eyes, eye glasses, cheekbones and mustache
respectively.
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3.2 Opverview

3.2.1 Three Steps

The Bayesian network approach for prediction contains three steps.

e The first step is to learn the structure of the Bayesian network, which means
the connectivity among the nodes in the graph. With the network structure
learned, it can represent the joint probability distribution using factorization
(Eq. 3.1).

e The second step estimates the parameters in the representation of the prob-
ability distribution functions, for example, the mean and covariance if the
distribution were represented as a Gaussian. With the structure and param-

eters learned, the Bayesian network is fully known.

e Then in the third step, given the known variables, we predict the unknown
variables by maximizing the joint probability. That means, we can predict
the random variables in pose 2, denoted as by, from the random variables
in pose 1, denoted as by, by maximizing the probability p (by | by), using
standard inference techniques in the graphical models.

3.2.2 Approaches

Learning the structure of the Bayesian network is difficult when the number of
variables is large, because the number of all possible structures is exponential
to the number of variables. There are two general approaches: score-based ap-
proaches and constraint-based approaches. The score-based approach uses a score
function to evaluate many possible structures selecting the structure with the largest
score, and is efficient when the score function is decomposable. Since searching
for the optimal structure is NP-hard, it applies heuristics in the search, and is sus-

ceptible to local optima. The constraint-based approach is very intuitive in that it
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does conditional independence test (CI test) to every pair of nodes to determine
whether the pair should be connected with an edge. However, a CI test with a
large size condition set may not be reliable because it may cause overfitting in
the data when the size of training set is not large enough to estimate the proba-
bility distribution. In this research, we decided to use a constraint-based method

because it is intuitive and easy to implement.

In the constraint-based approaches, we need to choose some measurement for
the conditional dependency between nodes. 2 and conditional mutual informa-
tion are both good measurements. We choose conditional mutual information.

The conditional mutual information of X and Y given U is defined as:

1G] C) =L Ple ZZPWW[OQ Pz |(i)y|(;)|c)

3.2.3 Challenges

There are many challenges of using constraint-based approach of Bayesian net-

work structure inference for face view synthesis problem.

First of all, the number of variables is huge. With 108 and 94 shape variables
in the two poses, and 100x100 pixels in the appearance variables in each pose, we
have a total of 20,202 variables. Many constraint-based approaches require the
number of CI test being exponential to the number of variables, which makes the

computation very expensive.

Also in each ClI test, the size of the condition set might be very large if the vari-
able has many possible parents. CI tests over large condition sets are unreliable

because of overfitting.

Another challenge is that the mutual information across pose is usually smaller
than the mutual information within pose, which makes it hard to compare them

directly.
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3.3 Constraint-Based Search for Bayesian Network

Structure

3.3.1 Overview

The goal of structure learning is to achieve a perfect map (P-map). A graph Gis a
P-map of a probabilistic distribution P if every independence relationship in G is

true in P and every dependence relationship in G is true in P.

There are several constraint-based approaches that find the P-map of a dis-
tribution. These include the SGS algorithm [40], PC algorithm [40], Cheng’s
TPDA and TPDA-II algorithms [8], RAI algorithm [47], etc. Computational
complexity vary among these. SGS algorithm does an exhaustive set of CI tests
which is exponential in the number of variables. PC algorithm has complexity
of O (%) , where N is the number of variables and & is the maximum
in-degree of the graph. Cheng’s TPDA algorithm has complexity of only O (N*)
when there is no prior knowledge of the node ordering, and TPDA-II algorithm
has complexity of only O (N?) when the ordering is given. The RAI algorithm
combines edge removal and edge orientation iteratively, with the graph being di-
vided into autonomous subgraphs. It assumes no prior knowledge of node order-
ing and experimental results show the number of CI tests required is less than PC

algorithm.

In terms of minimizing the number of CI tests and lowering computational
complexity, it seems that TPDA-II algorithm is the best choice, in that it only
requires O (N 2) CI tests. However, as we have mentioned, CI tests with large
condition sets are unreliable. Each CI test in TPDA-II algorithm uses all the
parents of a node as the condition set, which could be very large a set and give
unreliable results of conditional independence. On the other hand, PC algorithm
controls the size of condition set in each loop, to increase from zero to some value

until no more edges are eliminated. In this sense, we can modify the PC algorithm
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to set an upperbound of the size of condition set, in order to get reliable results
of CI tests. The modification also includes adding prior ordering information, to

eliminate the step of orienting the edges by some rules.

3.3.2 Prior Node Ordering

In our problem, the variables are grouped as “shapel, appearancel, shape2, ap-
pearance2”. “shapel” and “appearancel” are from pose 1, which are known vari-
ables. “shape2” and “appearance2” are from pose 2, which are unknown variables.
It is reasonable to assume variables from pose 1 appear earlier in the ordering than
variables from pose 2, because this is how the inference works. Moreover, it is
also reasonable to assume that in each pose, shape variables appear earlier than
appearance variables. Within each part, the natural ordering from the first variable
to the last variable can serve as an ordering. So we assume the ordering of nodes

is known as “shapel— appearancel — shape2 — appearance2”.

3.3.3 Modified PC Algorithm with Node Ordering

The original PC algorithm [40] assumes no prior knowledge of node ordering.
The algorithm starts from a fully-connected graph over the nodes. Then with the
degree n starting from O and increasing by 1 at a time, for each connected pair
of nodes (X,Y") such that Y has more than n parents, try all the subsets S of
cardinality n among its parents excluding X, and perform CI tests X, Y'|S. If the
CI test succeeds, remove the edge Y — X and record the witness set S. The degree
n is increased until there are no nodes with at least n + 1 parents. Then, in this

undirected graph, some rules are applied to orient the edges in the graph.

There are some heuristics in selecting the order of the tests in speeding up the
algorithm. One of them is that, for a given variable A, first test those variables

B that are least probabilistically dependent on A, conditioned on those subsets of
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variables that are most probabilistically dependent on A. We are interested in this

heuristic and will apply it in the following paragraph.

If the node ordering is given, it is straightforward to modify the PC algorithm

as follows.

1. The algorithm starts from a fully-connected graph over the nodes. The di-
rections of edges are defined as pointing from higher order to lower order.

2. With the degree n = 0, eliminate all the edges with mutual information less
than a threshold ;.

3. With the degree n = 1, for each node X, sort its parents with mutual in-
formation in descending order {Y}} such that /(X,Y}) > I(X, Yy.1). First
try the parent Y; with the largest mutual information 7(X, Y7), to perform
CI tests on the rest of parents Y}, i.e., X, Yy|Y;. If the CI test succeeds,
which means /(X Y;|Y1) > 2 where ¢, is a threshold, remove the edge
Y, — X. Then try the parent Y5 with the second largest mutual information

as condition set and perform CI tests on the rest of parents, and so forth.

4. The degree n can be increased to a certain upperbound.

In our experiments, we choose the upperbound to be 1, which means we always
try CI tests with condition set only containing one variable. The complexity of
this modified algorithm is O(N?), where N is the number of variables. So it has a
reasonable complexity and reliable results of CI tests. Although the upperbound
may make the final graph only an I-map instead of a P-map, an I-map is still
good for factorization and is a great reduction in dimensionality for a holistic

representation.
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3.3.4 Dependency Measures

The mutual information and conditional mutual information are used as the mea-
sure of dependency. As mentioned in Section 3.2.2, we use conditional mutual
information as a dependency measure. Conditional mutual information is a gen-

eralization of mutual information which is defined as

1Y) = 3 Y pl, y)log% , (3.2)

where /(X;Y) is the mutual information, and X, Y are two random variables.
Note that upper cases denote random variables and lower cases denote particular
instantiations of the random variables. Mutual information is a measure of how
much information can be obtained about one random variable by observing an-
other [11]. The larger the mutual information is, the stronger dependency exists
between X and Y.

Both the mutual information and the conditional mutual information need the
estimation of joint probabilities, such as p(z,y), p(x,y,c), p(x,c) and p(y, c).
Since z, y, ¢ each have many possible values, the combination of them would
be very large a table and the number of training set will be too small to estimate
such a large table. So we did scalar quantization for the variables. Each variable is
quantized to 4 levels so the maximum size of the probability table will be 43 = 64,

which makes the training set (3352 examples in our experiments) sufficient.

In order to make dynamic range of each /(X,Y’) comparable, we quantize
each variable to a uniform distribution because a uniform distribution has the
largest entropy. So the quantization of each variable is done such that each of
the 4 bins has the same amount of examples. This is because I(X,Y) = H(X) +
H(Y)—- H(X,Y), where I(X,Y) is the mutual information, H(X) and H(Y)
are the entropy, H(X,Y’) are the joint entropy. When X and Y are determinis-
tic to each other, I(X,Y) = H(X) = H(Y). When X and Y are independent,
I(X,Y) = 0. And note that the joint entropy H (X,Y") > H(X). So the dynamic



46 CHAPTER 3. BAYESIAN NETWORK APPROACH

range of I(X,Y) is from O to maz (H(X), H(Y)). A uniform distribution will
make the upperbound max (H(X), H(Y)) the same.

3.3.5 Thresholds

As we described in Section 3.3.3, there are two thresholds, €; and 5. ¢ is the
threshold for mutual information, and ¢, is the threshold for conditional mutual
information. In practice, we found the dynamic range of conditional mutual in-
formation is quite different from mutual information. That is why we choose ¢
and &, to be different. In mutual information, we choose 1 = 0.5 x maz(MI),
where max(M1I) is the maximum mutual information for each variable with all

its parents. In conditional mutual information, we choose €5 = 0.03.

3.4 Probability Representation

Suppose the Bayesian network has a total of m nodes [z1,x2, - - -, x,]. Our as-
sumption is that these m nodes have a joint Gaussian distribution, i.e., [z1, 2, - -, T;,] ~
N (p, ). As we know, if a vector is jointly Gaussian distributed, then the condi-
tional distribution within this vector is also Gaussian. More specifically, if x and

Y. are partitioned as follows

H1 o qgx1
W= with sizes
112 (N—q)x1

211 212
221 222

qxq qx (N —q)
(N=q)xq (N—-q)x(N-q)

then the distribution of x; conditional on x5 = a is multivariate normal X |
Xo=a~N (,a, 2) where

Y=

with sizes [

fi = pi1 4 S12X5 (@ — o)
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and covariance matrix
S -1
2 =21 — YiaXgy X1

For node y;, its parents are denoted as Pa(y) = [r;1, %2, -, 7). Under
Gaussian assumption, the conditional probability distributionis y; | 1, zjo, - - -, Tj5 ~
N (ﬁj, ij), where

Tj1 M1
_ 1 .
R = pj + 2y, (j17~~~7jk)2(j1,---,jk),(j1,---,jk) : -

Tk Mk

5 = 25 = X (L dk) B ), (L ) 2GR

So if we estimate the overall i and X from the training data, we will be able

to compute the parameters fi; and )y ; of the conditional distribution at each node
Yj-

The parameters can also be rewritten in another form y; ~ N (/ij + Wj/ - Pa(y), a}-) ,

where
Hj1
N -1 .
fj = pj — 2, (j17~~~7jk)2(j1,---,jk),(j1,---,jk)
Hjk
A ! _1
Wi = 25, (1,50 21, 1), (71,,70)
O'j = Z]
~ ~ . -~ ! . .
fi; and o; are scalars, while W; = [w;,ws, -+, wy]| is a vector, meaning the

weights for the k parents of node y.
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3.5 Parameter Estimation

Once we have learned the structure of the Bayesian network, we need to esti-
mate the parameters of the probability distributions in the Bayesian network. We
assume the variables are adequately described by a Gaussian distribution. Un-
der this assumption, given training data, a closed form solution to the probability
distribution’s parameters exists. Suppose the Bayesian network has a total of m
nodes. For node v, its parents are denoted as Pa(y) = [z1,2s,- - -, 7). Under
Gaussian assumption, the conditional probability distribution at this node is y ~
N (u+ W' - Pa(y), o), where i and o are scalars, while W = [wy, wa, - - -, wy]’
is a vector, meaning the weights for the k parents of node y.

The number of training examples is N. We need to first estimate the parame-
ters using the training examples, and then apply these parameters and the known
part of test example, to predict the unknown part of the test example, as a closed-

form solution.

We have N training examples for node y, where y ~ N (u + W' - Pa(y), o).
If we write the total probability as the product of each probability and maximize

it, we will have
N

P(y) = 1:[ (i | Pa(y;)) = 1-[1\/21706@(_(%—M—Z’Q-Pa(yi)))

_ (&U)Nexp(—§§<yi—u—Wf~Pa<yi>>2) (i=12.N)

So maximizing P (y) means minimizing SN, (y; — . — W' - Pa (y;))?, which

is exactly the least-square solution for this set of N equations,
pw+WPa(y)=vy (i=1,2,---,N)

Solving this set of overconstrained linear equations, we will get x and W in least-
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square solutions. Letting the partial derivative of o be zero, we have

2 XN i p =W Pa(y)’
N

3.6 Prediction

Given a test example, we know a subset of the nodes, and need to predict the
remaining unknown nodes. A closed form solution to this prediction problem
exists as follows. If we write the total probability as the product of conditional

probability at each node and maximize it, we will have

P (BayesNet) = H (y; | Pa(y)))

2
— ﬁ ! exp _(yj ,u]—VV;-Pa(yj))
j=1 V2o, 207
2
1 . _li(%—w W) Pa(y,)
T e —

where the total number of nodes is m.

(yj—uj—V‘/j'l”fl(yj))2

In order to maximize the total probability, we need to minimize Z;”Zl J
which is exactly the linear least-square solution for this set of N equations,
pi+ Wi Paly;) y,

=4 =1.2....
O_J O'J (j = 7m)

Some of the nodes are known while some are unknown. The number of un-
known nodes is also m/2. And the number of equations containing unknown
nodes is generally greater than m /2. So generally it is an overconstrained problem

and has a closed form least square solution. However, according to the ordering
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we choose where nodes of posel all appear earlier than nodes of pose2, the num-
ber of equations containing unknown nodes is exactly m/2. The coefficients in
the above equations will be in a lower triangle form. Solving this set of equations
will give the closed-form exact solution for the unknown nodes as the prediction
results. Each equation is exactly satisfied, with zero tolerance, and may be sen-
sitive to errors. This means if any two unknown nodes are involved in the same
equation, the prediction error may propagate and enlarge. Therefore, when using
such ordering, we should try to avoid connections within the same pose, so that
each unknown node has parents that are all known, and the prediction errors of all

unknown node are independent.

3.6.1 Across Pose Connections v.s. Within Pose Connections

As we will explain in Section 3.6, with the ordering as “shapel — appearancel
— shape2 — appearance2”, all the known variables come before all unknown
variables in the node ordering. So each known variable has all the parents being
known variables, and such within-pose connections will not help the prediction
at all. In the prediction, only the equations involving unknown variables will
count. So the number of such equations will be exactly the same as the number
of unknown variables, which leads to a square matrix equations, and has a unique
solution. This means the solution will make each equation exactly satisfied, with
zero error tolerance. If more than two unknown variables appear in one equation,
the prediction error may propagate among the unknown variables and the results
may be out of control. So we force all connections be across-pose connections,

such that the prediction of unknown variables will not interfere each other.
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3.7 Experimental Results

3.7.1 Datasets

We use data from two databases: Multi-PIE and Color-FERET, of frontal view
(0°) and half profile (30°). We chose 1842 pairs of faces from 337 subjects in
Multi-PIE database, and 1582 pairs of faces from 738 subjects in Color-FERET
database, to form a training set of 3352 pairs of faces from 1075 subjects. We
also chose 20 frontal images from 10 subjects Multi-PIE and 20 images from 15
subjects in Color-FERET, to form the test set. Our goal is to synthesize a half

profile face from its frontal view.

We labeled 54 landmarks for each frontal view face and 47 landmarks for each
half profile face. So the number of shape variables is 108+94=202. We chose
the reference faces to be 100x100 size, so the number of appearance variables is
2x10000 = 20000. We also adjusted the pixel intensities of each warped image to

be zero mean and unit variance.

3.7.2 Bayes Net Structure Results

In the Bayesian network structure that we obtained, each node has on average

15.5123 parents. The maximum number of parents is 152.

Figure 3.2 shows various learned parent-child relationships in the network.
The corresponding examples of mutual information are shown in Figure 3.1. We

see some interesting behavior.

e We see that the appearance of an eye in one pose is directly dependent on

both eyes in the other pose.

e We see similar spatial and symmetric correspondence for the area just below

the eye, for the cheek-bone and for the mustache area. However, in each of



52 CHAPTER 3. BAYESIAN NETWORK APPROACH

Figure 3.2: These examples show various parent-child relationships in the
Bayesian network, in the areas of eyes, eyeglasses, cheekbones, mustache respec-
tively. In each figure, the green dot is the variable that we are analyzing. The red
dots are its parents.

these, the area of dependency is of larger spatial extent than for the eye.
e This Bayesian network models certain symmetry.
We also see that the shape variables often depend upon other shape variables

and appearance variables. Figure 3.3 shows an example of the mutual information

and Bayesian network connection between between shape and appearance. The
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Figure 3.3: This example shows the dependency between shape and appearance.
The four pictures in each row are shape 1, appearance 1, shape 2, appearance 2,
respectively. The first row shows the mutual information between shape and ap-
pearance. The red rectangle denotes the shape variable we are analyzing, and the
brightness of other pixels show the relative magnitude of mutual information with
that shape variable visually. The second row shows the parent-child relationships
in the Bayesian network between shape and appearance. The green dot is the
shape variable that we are analyzing. The red dots are its parents.

shape variable we are analyzing in this example is a point on the nose in shape 2.
Since it is in the half profile of the face, the location of this nose variable shows
how protruding the nose is. That is why it has dependency with the intensity of
the pixels beside the nose in appearance 1. The darker those pixels are, the more

protruding the nose is.

For the occluded pixels, such as the side of the nose, there is no direct cor-
respondence in the frontal view. Figure 3.4 shows an example of the mutual in-
formation and Bayesian network connection of this case. Since there is no direct
correspondence, the overall mutual information is very low. The Bayesian net-

work chooses a pixel that has relatively higher mutual information as the parent.

One interesting thought is whether we can use the mutual information to do
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Figure 3.4: This example shows which pixel to predict the occluded nose pixel.
The four pictures in each row are shape 1, appearance 1, shape 2, appearance 2,
respectively. The side of the nose in the half profile is actually occluded in the
frontal view. The first row shows this row shows the mutual information. The
red rectangle denotes the nose pixel we are analyzing, and the brightness of other
pixels show the relative magnitude of mutual information with that nose pixel
visually. We can see the overall mutual information is very low in appearance 1,
since there is no direct correspondence with the occluded nose pixel. The second
row shows the parent-child relationships in the Bayesian network for the occluded
nose pixel. The green dot is the nose pixel that we are analyzing. The red dot is its
parent, which is not a direct correspondence, but a pixel that has relatively higher
mutual information.

segmentation. We performed normalized cuts algorithm [38] with mutual infor-
mation as the similarity matrix on each pose. Figure 3.5 and 3.6 show the seg-

mentation results, with the number of segments varying from 2 through 10.

3.7.3 Prediction Results

Here are some results comparing the appearance prediction of the Bayesian net-

work method with the linear method visually (figure 3.7, 3.8, 3.9). All results are
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nbSegments =2 nbSegments =3 nbSegments =4
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Figure 3.5: Segmentation using normalized cuts algorithm with mutual informa-
tion as the similarity matrix, on frontal view of the face. nbSegments is the number
of segments, which varies from 2 through 10. Different gray areas denote different
segments.

warped to groundtruth shape so that the results of appearance prediction are easier

to compare.

3.7.4 Numerical Results

The Bayesian network also gives better overall quantitative performance than the
linear method (table 3.1). In comparing mean-squared error, the Bayesian net-

work’s average error in appearance prediction for the 40 test images is 167.8496,
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nbSegments =2 nbSegments =3 nbSegments =4

nbSegments =5

nbSegments =10

Figure 3.6: Segmentation using normalized cuts algorithm with mutual informa-
tion as the similarity matrix, on half profile view of the face. nbSegments is the
number of segments, which varies from 2 through 10. Different gray areas denote
different segments.

while in the linear method this average error is 178.5642. So the average improve-
ment in appearance error among the 40 test images is 10.7147£9.6887, with a

margin of error for 90% confidence level.

3.7.5 Experiments of Predicting Frontal from Half Profile

We also performed the experiments of reverse predicting, i.e., predicting frontal

from half profile. In figure 3.10, the first three rows show the linear method some-
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input groundtruth linear prediction BN prediction

Figure 3.7: Results comparing the linear method and the Bayesian network
method. The four examples show the linear method predicts a partially hallu-
cinated pair of glasses around the subject’s eyes while the Bayesian network ap-
proach does not have such artifacts.

| | MSE in Appearance, predicting half profile |

Linear Method 178.5642
BN method 167.8496
Table 3.1:

Comparison of mean-squared error over an independent test set, in predicting half
profile from frontal.



58 CHAPTER 3. BAYESIAN NETWORK APPROACH

groundtruth

linear prediction BN prediction

Figure 3.8: Results comparing the linear method and the Bayesian network
method. The four examples show the linear method sometimes removes the mus-
tache or loses the texture of the mustache while the Bayesian network approach
predicts the mustache better.
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groundtruth

linear prediction BN prediction

Figure 3.9: Results comparing the linear method and the Bayesian network
method. The four examples show the Bayesian network approach predicts the
skin textures better than the linear method does. In the fourth row, the mole on the
subject’s face is totally lost in the synthesis of the linear method, but it is shown
as a slightly darker area in the Bayesian network prediction.
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| | MSE in Appearance, predicting frontal |

Linear Method 165.8925
BN method 151.3254
Table 3.2:

Comparison of mean-squared error over an independent test set, in predicting
frontal from half profile.

times has artifacts around the eye area, while Bayesian network approach does not
have this problem. In the fourth row, the mole on the subject’s face is totally lost
in the synthesis of the linear method, but it is shown as a slightly darker area in

the Bayesian network prediction.

In terms of numerical results, the Bayesian network also gives better overall
quantitative performance than the linear method (table 3.2). In comparing mean-
squared error, the Bayesian network’s average error in appearance prediction for
the 40 test images is 151.3254, while in the linear method this average error is
165.8925. So the average improvement in appearance error among the 40 test

images is 14.5672+7.4785, with a margin of error for 90% confidence level.

3.8 Conclusions

In this chapter, we explore the Bayesian network approach that models the sparse
statistical structure among the variables of the two poses. A Bayesian network
uses a collection of lower dimensional models, with a conditional probability dis-
tribution at each node, so it leads to less overfitting. Such an approach can preserve
localized features visually and numerically, in improving the performance of the

appearance prediction.
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linear prediction BN prediction

Figure 3.10: Results comparing the linear method and the Bayesian network
method, in predicting frontal from half profile. The first three rows show the
linear method sometimes has artifacts around the eye area, while Bayesian net-
work approach does not have this problem. In the fourth row, the mole on the
subject’s face is totally lost in the synthesis of the linear method, but it is shown
as a slightly darker area in the Bayesian network prediction.
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Chapter 4
Discussion

In this chapter we will compare three methods: the linear method, the Bayesian

network method and an established texture mapping method [42].

4.1 Texture Mapping

First we will describe our implementation of texture mapping. We use 100 images
of 3D faces from the USF Human-ID 3D Face Database [41]. Each 3D face has
8955 vertices. We average these 100 3D faces with correspondence of vertices
to get one 3D face model, then use this model to render 2D reference faces for
frontal view and 30 degree view. The 3D face model provides the correspondence
between the two 2D reference faces. Then we can directly copy the pixels of
small meshes defined by the 8955 vertices from one view to the other. When a
test image is given, we warp it to one reference face, copy the small patches to the
other reference face, then unwarp it. The warping and unwarping procedures use
positions of known landmarks on the face. The warping algorithm uses Delaunay
triangulation which uses the Vonoroi diagram to find the triangles and then warp

each triangle according to affine transform.

63
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4.2 Comparison of the Three Methods in Theory

The linear method, the Bayesian network method, and the texture mapping method

differ in the following assumptions:
e Dimensionality

The linear method and the Bayesian network method use different ways to group
variables. The linear method considers all variables holistically, in a single high
dimensional model. The graphical representation of a Bayesian network consists
of a collection of models at each node in the graph. Each node models a condi-
tional probability distribution over the variables flowing into the node. Each of
these models is typically of much lower dimension than the total number of vari-
ables. On the other hand, the texture mapping does not group variables at all. It

directly copies pixels to the corresponding locations.
e Learning

The linear method and the Bayesian network method both use information from
the training data and the input test image, because both are statistical models with
Gaussian representation. The texture mapping copies pixels from input test image
deterministically, and does not use a prediction model based on training data. With

the correspondence known, all it needs is the input image.
e Independence of Shape and Appearance

The linear method assumes the shape and the appearance are independent, and
analyzes them separately. The Bayesian network method allows dependency be-
tween the shape and the appearance. The texture mapping can only predict ap-
pearance on normalized shapes. The predicted appearance by texture mapping
has to be warped using the shape predicted by another method, such as the linear
method.
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e Lambertian Assumption

The texture mapping method assumes Lambertian surfaces. So the texture map-
ping method can not handle shadow or highlights, and partial or full specularities.
The linear method and the Bayesian network methods do not have such an as-

sumption.
e Occlusion Modeling

Also, the texture mapping method requires pixel-to-pixel correspondence between
the two views. So it cannot handle occlusion. The linear method and the Bayesian

network method can handle occlusion.

4.3 Comparison of the Three Methods in Performance

The linear method is prone to make localized errors. For example, it creates arti-
facts over the eye areas. For people with no glasses, the prediction results show the
eyes are surrounded by partially hallucinated pairs of glasses. The linear method
often fails to predict distinctive local features such as mustaches or moles (Fig-
ure 2.10). One hypothesis is that, because of the holistic representation and high
dimension, global control dominates over local control, compromising local fea-
ture appearance. The Bayesian network method and the texture mapping method

preserve these distinctive local features.

The texture mapping method fails under occlusion or near occlusion. The
nosewings disappear in the prediction results, because they are near occlusion in
the frontal view. Also the side of the faces are not predicted because it is also
near occlusion in the frontal view. The linear method and the Bayesian network
method do not have this problem, because they can learn these occluded areas

from the training data. (figure 4.1)
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Figure 4.1: Texture mapping fails to predict nose appearance near occlusion. The
nosewing disappears in the prediction.
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Figure 4.2: Results showing specularities or near specularities. With oily skin, the
shines on the face are directly copied to the predicted face in the texture mapping
result, which is not correct.

Texture mapping also fails to predict specularities or near specularities. Shiny
areas on the face are re-mapped in a way that looks artificial and wrong. The linear
method and the Bayesian network method do not create spurious or unnatural
looking specularities. (figure 4.2 and 4.3) Also, in figure 4.3, the shape of the
glasses is also predicted incorrectly due to the difference in the 3D structures

between this subject and the general face model.

input groundtruth  linear prediction BN prediction texture mapping

Figure 4.3: Results showing specularities on glasses. The texture mapping predic-
tion gives fake reflections on glasses. And the shape of the glasses is also predicted
incorrectly due to the difference in the 3D structures between this subject and the
general face model.



Chapter 5
Conclusions and Contribution

In this thesis, we have addressed the problem of face view synthesis using a sin-
gle image, and we focus on 2D approaches instead of building 3D models. Al-
though a single 2D image does not contain depth information, our research show
machine learning technique can learn a lot of prior information between poses,
and can predict novel views with good performance. In particular, we formu-
late a regularized holistic linear model, to model the variables holistically and
combine the “distance-in-feature-space” and “distance-from-feature-space” using
a properly determined weight for regularization in order to get reliable prediction
results. Such approach performs well in shape prediction and outperforms the lin-
ear model with no regularization, however, it is not always reliable in predicting
localized features in appearance. To better capture localized relationship we use
a Bayesian network. The de-centralized structure of a Bayesian network forms a
collection of localized models, where each such model represents a group of sta-
tistically dependent variables. By having such a collection of lower dimensional
models, with a conditional probability distribution at each node, a Bayesian net-
work leads to less overfitting. Such an approach can preserve localized features
visually and numerically, in improving the performance of the appearance predic-

tion.
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