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Abstract

Face view synthesis involves using one view of a face to artificially render an-

other view. It is an interesting problem in computer vision and computer graphics,

and can be applied in the entertainment industry for animated movies and video

games. The fact that the input is only a single image, makes the problem very dif-

ficult. Previous approaches learn a linear model on pair of poses from 2D training

data and then predict the unknown pose in the test example. Such 2D approaches

are much more practical than approaches requiring 3D data and more computa-

tionally efficient. However they perform inadequately when dealing with large

angles between poses. In this thesis, we seek to improve performance through

better choices in probabilistic modeling. As a first step, we have implemented a

statistical model combining distance in feature space (DIFS) and distance from

feature space (DFFS) [28] for such pair of poses. Such a representation leads

to better performance. As a second step, we model the relationship between the

poses using a Bayesian network. This representation takes advantage of the sparse

statistical structure of faces. In particular, we have observed that a given pixel is

often statistically correlated with only a small number of other pixel variables. The

Bayesian network provides a concise representation for this behavior reducing the

susceptibility to over-fitting. Compared with the linear method, the Bayesian net-

work more accurately predicts small and localized features.
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Chapter 1

Introduction

1.1 The Problem

Face view synthesis is an interesting problem in computer vision and computer

graphics. It involves using a photo of a person’s face in one pose, to synthesize a

photo of the person’s face in a different pose. For example, if we know the frontal

view of a face, such as a driver’s license photo, we may wonder what its profile

will look like (figure 1.1).

Face view synthesis can be used in the entertainment industry, such as an-

imated movies or video games, for example, synthesizing a movie involving a

historical figure such as Abraham Lincoln for whom a limited set of realistic im-

ages exist. Also, face view synthesis is one of the ways to aid face recognition for

different poses. When the gallery images belong to a different pose other than the

pose in the probe image, one way is to use face view synthesis to synthesize the

desired pose in order to do the matching process.

Face view synthesis can be accomplished in a number of ways. If multiple

images are available, one approach would be to extract and use the 3D geometry

of the face. According to the stereopsis theory in computer vision, to recover the

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: A pair of frontal view and profile images of the same person, from

CMU PIE database

precise 3D geometry of an object, we need at least two images of this object. This

is why some approaches use multi-view images [13], or even video sequences

[46], to synthesize new views. But in real life applications, often only a single

image is available.

In this thesis, we are interested in the case where the input is only one single

photo, which makes the problem difficult, because the information contained in

one photo is insufficient to precisely recover the 3D geometry of the face. One

may think this task impossible. But human brain is very good at performing this

task. Suppose you are given a stranger’s driver’s license photo, by looking at the

photo, you will probably have an idea what this person looks like. The trick is

that you have seen many people’s faces of different poses and have learned some

relationship between poses. This prior knowledge helps you deal with strangers’

photos. That is why driver’s licenses only require one photo instead of multiple

photos.

Machine learning techniques provide a natural method for incorporating prior

knowledge into the synthesis problem. From a training set, we can learn the statis-

tics of the geometric and appearance relationships between different poses, and

apply these statistical relationships onto the single input image in order to synthe-
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size new views. In particular, Vetter and his colleagues have developed several

methods with this idea. Initially, they used only 2D images and applied linear

object class method to solve for a partial least square problem [43]. Then they

used one 3D face model to perform texture mapping between poses, with the oc-

cluded part synthesized by the linear object class method in separate regions of

faces [42]. Later on, they built a 3D morphable model learned from 3D training

examples, to synthesize novel views from a single image [5, 6, 7].

We aim to research face view synthesis with a single input image, building

upon the prior knowledge from machine learning. The main ideas of the thesis are

to find better representations of probability distributions relating facial appearance

across pose:

1. We have implemented a regularized holistic linear probability model using

distance in feature space (DIFS) and distance from feature space (DFFS).

This representation improves upon previous methods that only use DFFS

and leads to improved performance as described in Chapter 2 [30].

2. We have observed that statistical dependency varies among different group-

ings of pixel variables. In particular, a given pixel variable is often statis-

tically correlated with only a small number of other pixel variables. We

exploit this statistical structuring by modeling the synthesis problem using

graphical probability models such as Bayesian Networks. Such representa-

tions concisely describe the synthesis problem, providing a rich model with

reduced susceptibility to over-fitting. This idea is explained in Chapter 3.

1.2 Background and Related Work

Because of a face’s 3D geometry, a single 2D image does not directly provide

enough information to synthesize another view of the same face. In fact, Bel-

humeur et al. [1] showed that different 3D-shaped faces obtained via generalized
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bas-relief transformations can look the same in 2D, given different lighting condi-

tions. The extreme case is that from a single view it is not possible to differentiate

an image of an object from an image of a flat photograph of the object [48].

Only by making various assumptions in combination with prior information is

it possible to generate a prediction of what a face will look like from a different

viewpoint. Below we list various assumptions made in earlier work.

1.2.1 Linear Object Class

In 1992 Poggio and Vetter proposed the concept of linear object class [34, 43].

This method relates feature locations in two viewpoints of the same object through

a linear equation: 
 y1

y2


 =

N∑

j=1

αj


 φ1,j

φ2,j




where y1 and y2 are the feature locations in the two viewpoints. φ1,j and φ2,j are

training examples or vectors derived from the training examples (e.g., principal

components). This model involves two assumptions. The first assumption is that

given a basis set (φ1,1, · · ·, φ1,N ), there exists another basis set (φ2,1, · · ·, φ2,N )

such that for any instance represented by the combination y1 =
∑N

j=1 αjφ1,j in

the first view, the instance in the second view will be accurately represented by

y2 =
∑N

j=1 αjφ2,j. In order for this to hold, the object must be viewed under

orthographic projection. In practice, this assumption requires that the variation in

depth across a face is relatively small compared to the distance of the face to the

camera. The second assumption is that the space of linear combinations of the

training examples sufficiently describe the general class; that is, given a training

set of the faces, any other face can be generated through a particular choice of

α = (α1, · · · , αN)T
.

To use this model to synthesize y2 given y1, they solve for α in the standard
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view using least squares

α = (α1, · · · , αN)T = (Φ1)
+

y1,

where Φ1 = (φ1,1, · · · , φ1,N) and (Φ1)
+

is the pseudo-inverse of Φ1. They then

use the coefficients α to synthesize the virtual shape

y2 = (φ2,1, · · · , φ2,N)α = Φ2 (Φ1)
+

y1,

where Φ2 = (φ2,1, · · · , φ2,N). Note that this method does not require correspon-

dence between the two viewpoints, i.e., the feature points in y1 and y2 can be

different landmarks. With no need for correspondence, this method can be ap-

plied to large rotations.

Gross et al. [17] used the similar math in their implementation of appearance-

based face recognition and light-fields . This method has also been discussed in

some related problems [24, 3, 26]. Hwang and Lee [24] use exactly the same

method as above in predicting occluded parts of human faces. Black et al. [3]

and Leonardis et al.[26] slightly modify the approach, by either excluding [26] or

putting less weight [3] on some rows of Φ1 that they assume are outliers.

However, experiments show that when the number of training examples is

limited, the results are usually not good. The reason could be that a small number

of training examples do not span the space of the class, therefore there exists a

significant error term δ1 and δ2 in equations 1.1 and 1.2 below, in describing the

novel object as linear combination of the examples.

y1 =
N∑

j=1

αjφ1,j + δ1 (1.1)

y2 =
N∑

j=1

αjφ2,j + δ2 (1.2)

The original linear object class method ignores those error terms, which leads to
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the poor results.

Considering the error terms, Beymer and Poggio [2] assumed that δ1 and δ2 are

highly correlated between the known view and the novel view. So they proposed

that simply subtracting equation (1.2) from equation (1.1) can cancel out the error

terms and get y2.

y2 = y1 +
N∑

j=1

αj (φ2,j − φ1,j)

Furthermore, instead of assuming δ1 and δ2 are equal, Sali and Ullman [35] found

a way of computing how the error terms change from δ1 to δ2 in the rotation, in

order to predict the error term δ2 in the novel view. Assuming δ2 = Aδ1, they

have

y2 =
N∑

j=1

αjφ2,j + Aδ1

where matrix A can be learned from a given transformation from the prototype

examples. The cost in these two papers is the “cross correspondence”, i.e., cor-

responding elements in y1 and y2 must describe the same physical point on the

object. The correspondence between different views has to be computed in order

to cancel out the error terms or determine the new error term. The “cross corre-

spondence” may also restrict the method from dealing with large rotation angles,

since it requires a set of feature points visible in both views.

Blanz et al. [4] proposed a regularization framework to solve this math prob-

lem, and applied in 3D shape reconstruction when part of the landmarks are

known, with the requirement of lots of 3D training data obtained by a 3D laser

scanner. They use Bayes rule to derive the tradeoff between DIFS and DFFS,

leaving the weight factor η undetermined in the equation and having to try differ-

ent η in the experiments. We describe in Chapter 2 a different way of derivation

and reached the similar tradeoff between DIFS and DFFS, and in our derivation

the weight factor η can be determined in the equation.
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1.2.2 Lambertian Assumption and Texture Mapping

In 1998, Vetter introduced two variations [42] to the pure linear class method

[43]. First, the linear class approach was applied to the parts of a face separately.

Second, they used a 3D laser scanner to record 3D data of human heads, and

averaged them to get a single 3D-model, which was used to establish pixelwise

correspondence between the two reference face images in the two different poses.

This correspondence field allows texture mapping across the view point change,

which leads to better quality of synthesized texture in the visible pixels, while the

occluded pixels are still synthesized using linear class method.

Wei [44] also used texture mapping techniques to synthesize novel views of

faces. He built the 3D model for each input image by finding the symmetric

landmarks and estimated depth. This method does not require 3D training data,

because all the 3D information is recovered by the symmetry. The symmetric

landmarks were labeled by hand. He also tried automatic detecting the symmetric

landmarks by neural networks trained from 2D images, but did not integrate this

automatic procedure into the whole framework.

1.2.3 3D Parametric Models

In 1999, Blanz and Vetter [5] proposed using a 3D morphable model in face view

synthesis. With a database of many 3D human heads recorded via a 3D laser

scanner, they performed principal component analysis (PCA) on these 3D data to

learn the statistics in the shape and texture, to build a 3D morphable face model.

When a new input face image is given, the coefficients of the 3D morphable model

are optimized along with a set of rendering parameters such that they produce an

image as close as possible to the input image. Once the optimization is done, the

3D model is rotated to give the 2D rendered face image in the desired view. Later

they applied this approach to face recognition [6, 7].

The above two methods [42, 5] gave better results than [43], but incorporating
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a 3D model requires hardwares such as 3D laser scanners, and the 3D model

makes them computationally expensive, especially the optimization process of

fitting the 3D model in [5] is very time-consuming.

Gu and Kanade [19] also proposed aligning a 3D deformable model to a single

face image. They adjust the 3D deformable model to fit the image by comparing

the view-based patches at the sparse points.

1.2.4 User-Specified Constraints

Li Zhang et al. [48] proposed a method that solves for single view shape re-

construction for free-form objects, such as portraits, sculptures, mountains, can-

dies, under the assumption of orthographic projection. Their method requires

user-specified constraints: point constraints, depth discontinuities, creases, pla-

nar region constraints, and fairing curve constraints. Point constraints specify the

position or the surface normal of any point on the surface. Surface discontinu-

ity constraints identify tears in the surface, and crease constraints specify curves

across which surface normals are not continuous. Planar region constraints deter-

mine surface patches that lie on the same plane. Fairing curve constraints allow

users to control the smoothness of the surface along any curve in the image. They

also define a surface objective function as a measure of surface smoothness penal-

izing for large derivatives,

Q0(g) = 1
2d2

∑
i,j

[
αi,j (gi+1,j − 2gi,j + gi−1,j)

2

+2βi,j (gi+1,j+1 − gi,j+1 − gi+1,j + gi,j)
2

+γi,j (gi,j+1 − 2gi,j + gi,j−1)
2
]

where αi,j , βi,j, γi,j are weights, gi,j is the depth value at grid (id, jd) on the depth

map and d is the distance between adjacent grid cells. With the constraints and the

objective function, they solve for a constrained optimization problem to find the

3D shape reconstruction that satisfies these constraints and optimizes the surface
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Figure 1.2: Results of Li Zhang et al.’s method[48]. The first image is a painting.

The second image is its 3D reconstruction. Courtesy of Li Zhang.

objective function. Figure 1.2 is an example of their results.

1.2.5 Bilateral Symmetry

Wei Hong et al. [22] uses the bilateral symmetry as an assumption on some sym-

metric objects under perspective projection. They pointed out that one image of

a symmetric object is equivalent to multiple images, and proved that symmetric

objects can be recovered given only a single view. Assuming the symmetry re-

lationship is fully known, e.g., let x be the 2D projection of a 3D point X , g(x)

denotes the symmetric pixel of x in 2D, where x, g(x), X are all homogeneous

coordinates. Matrix g represents the plane of symmetry in 3D. Then the projection
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Figure 1.3: Results of Wei Hong et al.’s method[22]. The left images show a

symmetric checker board and the corresponding points. The right image shows

the 3D reconstruction. Courtesy of Wei Hong.

functions are

λx = Π0g0X = [R0, T0] X

λ′g(x) = Π0g0gX

where Π0 = [I, 0] ∈ R3×4, and g0, R0 and T0 represent the camera parameters,

i.e., the 3D relationship between camera and the object. This is a set of 6 equations

with only 5 unknowns: 3 entries of X , λ and λ′, and can be solved. Figure 1.3 is

an example.
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1.2.6 View-Based Active Appearance Model

Cootes et al.’s view-based active appearance model (AAM) [9] assumes a formula

that describe the relationship between AAM parameters and the viewing angle.

c = c0 + cccos(θ) + cssin(θ) (1.3)

where c is a vector of the AAM parameters, and θ is the orientation angle. The

constants c0, cc and cs in the formula are learned from regression between {ci} and{
(1, cos(θi), sin(θi))

′

}
on the training data. When given a first example image

with parameters c, first they estimate θ in equation (1.3) as tan−1(ya/xa), where

(xa, ya)
′ = R−1

c (c− c0) and R−1
c is the left pseudo-inverse of the matrix (cc|cs). In

order to do view synthesis at a new angle α, they compute the residual vector not

explained by the rotation model at the first image as

cres = c − (c0 + cccos(θ) + cssin(θ))

and add this to the computed parameters at α:

c(α) = c0 + cccos(α) + cssin(α) + cres.

1.2.7 Shape from Shading

In many AAM-based methods, Lambertian surfaces are assumed, and also the

relative position between the light source and the object is supposed to be un-

changed during the rotation. Therefore after warping, the pixel intensities are

directly copied to the corresponding locations on the new pose. However, Zhao

et al. [49] discussed the case where the absolutely position of the light source re-

mains unchanged while the object is rotated. Under the shape-from-shading (SFS)

theory, the pixel intensity changes between the two poses. The new pixel intensity

can be computed given the rotation angle and the normals on both surfaces.
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Figure 1.4: Results in Zhao et al.’s paper[49]. Column 1 and 4 are original frontal

views. Column 2 and 5 are original rotated views. Column 3 and 6 are synthesized

frontal views. Courtesy of Zhao.

However, in their experiments they did not use this SFS theory. Instead they

directly copied the pixel intensities after warping, using a general 3D face model.

Figure 1.4 shows their results, in which the synthesized frontal views usually have

one side a little distorted because some pixels on that side are occluded in the

rotated view.

1.2.8 Scene Geometry in Perspective Projection

Instead of assuming orthographic projection as the methods described in section

1.2.4, there is another class of single view reconstruction methods that use per-
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spective projection cues to recover the 3D structures. These methods rely on

assumptions in scene geometry. Horry et al. [23] and Criminisi et al. [12] re-

constructed piecewise planar models based on user-specified vanishing points and

geometric invariants. For example, they compute the perspective distortion of the

parallel lines and other easy cues, in order to do the single view reconstruction.

Their results are very interesting, for example, showing a virtual museum where

you can walk into the 2D paintings such that the structures have 3D appearance.

Hoiem et al. [21] added automatic segmentation to separate objects in the scene.

However, these methods require that certain geometric easy cues exist, such as

lines, planar surfaces, squares and so on. It is not clear, however, how such meth-

ods could be generalized to general objects of free-form, such as faces.

1.3 Our Approaches: Probabilistic Modeling

We aim to research face view synthesis with a single input image, building upon

the prior knowledge from machine learning. The main ideas of the thesis are to

find better representations of probability distributions relating facial appearance

across pose:

1. We have implemented a regularized holistic linear probability model using

distance in feature space (DIFS) and distance from feature space (DFFS).

This representation improves upon previous methods that only use DFFS

and leads to improved performance as described in Chapter 2.

2. We have observed that statistical dependency varies among different group-

ings of pixel variables. In particular, a given pixel variable is often statis-

tically correlated with only a small number of other pixel variables. We

exploit this statistical structuring by modeling the synthesis problem using

graphical probability models such as Bayesian Networks. Such representa-

tions concisely describe the synthesis problem, providing a rich model with
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reduced susceptibility to over-fitting. This idea is explained in Chapter 3



Chapter 2

Regularized Holistic Linear Model

The performance of face view synthesis depends on the accuracy and appropri-

ateness of the probability model. In this thesis, we will explore several models

beginning with an improved version of Vetter and Poggio’s linear object class

method [43]. We show how simple representation improves its performance. We

then explore several observations that may lead to further improvements.

In the notations, we use uppercase bold fonts for matrices, lowercase bold

fonts for vectors, and regular fonts for scalars.

2.1 Introduction

Vetter and Poggio’s linear-object-class method [43] models images as linear sums

of other images, and solves a set of linear equations with missing data:


 Φ1

Φ2


y =


 b̃1

b̃2


 , (2.1)

15
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where b̃2 is the unknown pose and b̃1 is the known pose of the test example.

Φ =


 Φ1

Φ2


 is the training set (or vectors formed from a linear combination of

the training set, i.e., PCA of the training set) containing the two poses.


 b̃1

b̃2




is represented as a linear combination of the columns in


 Φ1

Φ2


. The vector

y contains the parameters describing the linear combination. The linear-object-

class method solves for y = arg min
∥∥∥Φ1 · y − b̃1

∥∥∥
2
, then uses it to predict b̃2 =

Φ2y. (In the view synthesis problem for faces, shape and appearance are usually

analyzed and predicted separately.)

We believe that the problems with the linear-object-class method lie with

an incorrect assumption: there are no errors inherent in the solution for y in

y = arg min
∥∥∥Φ1 · y − b̃1

∥∥∥
2
. However, as it is well known, there are measure-

ment errors in the training data due to many factors. These errors will prop-

agate into the solution for b̃2, using the linear-object-class method. We can

improve upon this solution with a probabilistic formulation. This formulation

combines “distance-from-feature-space” (DFFS) and “distance-in-feature-space”

(DIFS) [28], whereas the linear-object-class solution is purely based on DFFS. By

considering DIFS, our method penalizes for points within the subspace,


 Φ1

Φ2


,

that have low probability (figure 2.1). Our representation leads to solutions that

have higher probability and, as we will show, significantly better empirical per-

formance.

Blanz et al. [4] also proposed a regularization framework to solve this math

problem. The way they derive the probabilistic formulation was through Bayes

rule, which is different from our derivation, although both lead to similar results.

We will illustrate the difference in the chapter. Also we will analyze how to deter-

mine the weight factor which was undetermined in Blanz et al.’s approach.

This chapter is organized as follows. In Section 2.2, a probabilistic model
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Figure 2.1: Linear object class will choose xb, whereas our method chooses xa

combining DFFS and DIFS is introduced, and the solution for equation (2.1) is

derived. In Section 2.3, we explain the necessary steps of separating the shapes

from the appearance of faces, and apply the solution in Section 2.2 to predict a new

view of faces. Section 2.4 shows experimental results of synthetic face images at

new views. In Section 2.5, we discuss this approach.

2.2 Probabilistic Modeling

The problem of linear equations with missing data described in equation (2.1) is

restated in the following way:

We have NT training vectors {xi}NT

i=1, each of which is an N-by-1 vector.

Usually N ≫ NT . A test example b =


 b1

b2


 belongs to the same class defined
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by the training set. b is N-by-1. We only know b1, which contains the first N1

elements of b. The task is to predict b2, given b1 and {xi}NT

i=1.

2.2.1 Probabilistic Modeling

Let’s first discuss the ideal case that we have enough independent training exam-

ples to span the whole N-dimensional space, i.e., NT ≥ N .

Here we apply several assumptions:

1. The class defined by the training set is an M-dimensional linear subspace,

denoted as Φ. M < N and determined by PCA from the training set. PCA

is computed from the training set {xi}NT

i=1, and the M largest eigenvalues of

the principal components λ1 ≥ λ2 ≥ · · · ≥ λM are the variances along the

M dimensions of Φ.

2. In this subspace Φ, samples are drawn from an M-dimensional Gaussian

distribution with zero mean.

3. If the complete space has N dimensions, there is another (N − M) dimen-

sional linear subspace Φ̄, which is orthogonal and complementary to the

eigenspace Φ (Fig. 2.2). We assume Φ and Φ̄ are statistically independent.

4. The samples also contain random noise distributed over all the (N − M)

dimensions of Φ̄. Each of the (N −M) dimensions of Φ̄ has approximately

equal non-zero variance, i.e., λM+1 ≈ λM+2 ≈ · · · ≈ λN > 0.

Under these assumptions, the probability of x is

P (x|Ω) =




exp

(
−1

2

N∑

i=1

y2

i

λi

)

(2π)N/2
N∏

i=1

λ
1/2
i
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Figure 2.2: Decomposition into the eigenspace Φ and its orthogonal subspace Φ̄.

The DFFS and DIFS are also shown.

=




exp

(
−1

2

M∑

i=1

y2

i

λi

)

(2π)M/2
M∏

i=1

λ
1/2
i



·




exp


−1

2

N∑

i=M+1

y2

i

λi




(2π)(N−M)/2
N∏

i=M+1

λ
1/2
i




= PΦ(x|Ω) · PΦ̄(x|Ω),

where Ω denotes the class described by the training set. x is a random point from

this class, and its projection onto each dimension is denoted as {yi}N
i=1. PΦ(x|Ω)

and PΦ̄(x|Ω) are two marginal Gaussian distributions, in Φ and Φ̄ respectively.

In Blanz et al.[4]’s paper, they modeled the posterior probability P (c | x) = ν ·
P (x | c) · p(c) by Bayes rule where ci = yi

λi
, i = 1, · · · , M .

In practice, since N is very large and N ≫ NT , we lack sufficient data to

compute each {λi}N
i=M+1 in PΦ̄(x|Ω). Recall the assumption that {λi}N

i=M+1 are

about the same magnitude. Then it is reasonable to use the arithmetic average

ρ = 1
N−M

N∑

i=M+1

λi [28] to get an estimation of P (x|Ω), which is

P̂ (x|Ω) = PΦ(x|Ω) · P̂Φ̄(x|Ω)
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=




exp

(
−1

2

M∑

i=1

y2

i

λi

)

(2π)M/2
M∏

i=1

λ
1/2
i



·




exp


− 1

2ρ
·

N∑

i=M+1

y2
i




(2πρ)(N−M)/2




.

The distance characterizing the P̂ (x|Ω) is

d̂(x) =

[
M∑

i=1

y2
i

λi

]
+

1

ρ
·



N∑

i=M+1

y2
i


 . (2.2)

In Blanz et al.[4]’s derivation, they maximized the posterior probability P (c | x)

and reached similar characteristic distance E = ‖c‖2 + η · ‖Qc − x‖2
. In fact

‖c‖2 =

[
M∑

i=1

y2

i

λi

]
, ‖Qc − x‖2 =




N∑

i=M+1

y2
i


. In their derivation, the weight factor

η is left undetermined, while we determine this weight factor in Section 2.2.4.

In our problem, we only know the upper part of b =


 b1

b2


, and know it is

from class Ω. In order to solve for the unknown part b2, we want to maximize the

likelihood of P̂ (b|Ω) by choosing {yi}N
i=1, where {yi}N

i=1 are the measurements of

projecting b− x̄ onto each of the N dimensions and x̄ is the mean of the training

set. We then generate b2 = x̄2 + Φ2 · y. This optimization depends upon three

quantities:

[
M∑

i=1

y2

i

λi

]
,




N∑

i=M+1

y2
i


 and the weight ρ. Let’s look at them one by one.

2.2.2 Distance in Feature Space

This is the Mahalanobis distance, also called the “distance-in-feature-space” (DIFS)

[28]. It describes how far the projection of x onto Φ is from the origin. Let
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Λ−1
M =




1
λ1

0
1
λ2

. . .

0 1
λM




, and y = (y1, y2, · · · , yM)T
, then

[
M∑

i=1

y2
i

λi

]
= yTΛ−1

M y. (2.3)

2.2.3 Distance from Feature Space

The residual reconstruction error, also called DFFS [28] is
N∑

i=M+1

y2
i = ǫ2(x) =

‖x′ − x‖2
, where x′ is the projection of x on Φ.

The linear-object-class method [43] minimizes the DFFS to find y in order to

predict b2. Split the eigenvector matrix Φ containing the first M eigenvectors into

Φ =


 Φ1

Φ2


 and split the mean x̄ of training data into x̄ =


 x̄1

x̄2


, where Φ1

and x̄1 have the same number of rows as b1. No matter what method we use to

solve for y, since b2 is defined as x̄2 + Φ2 · y, the residual reconstruction error of

resulting b =


 b1

b2


 is

N∑

i=M+1

y2
i = ǫ2(b) = ‖b− (x̄ + Φ · y)‖2 =

∥∥∥∥∥∥


 b1

b2


−


 x̄1 + Φ1 · y

x̄2 + Φ2 · y



∥∥∥∥∥∥

2

= ‖b1 − (x̄1 + Φ1 · y)‖2

=
∥∥∥b̃1 − Φ1 · y

∥∥∥
2

,

(2.4)

where b̃1 = b1 − x̄1. Thus the linear-object-class method [43] solves a least

square problem to solve for y :

y = arg min
∥∥∥Φ1 · y − b̃1

∥∥∥
2
.
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2.2.4 Determining the Weight

Moghaddam and Pentland [28] define ρ = 1
N−M

N∑

i=M+1

λi, under the assumption

that the number of training examples NT ≥ N , and that {λi}N
i=M+1 are about the

same magnitude. However, in practice, N is very large and we have NT ≪ N .

These NT training examples can only span an (NT − 1) dimensional subspace,

resulting in that λNT
= λNT +1 = · · · = λN = 0.

We use the non-zero eigenvalues, {λi}NT −1
i=M+1, to guess what {λi}N

i=NT
would

be like had we been given sufficient training data. Here we add another assump-

tion:

• We assume that the actual values of {λi}N
i=NT

will be about the same mag-

nitude as the average of the known eigenvalues {λi}NT −1
i=M+1.

Under this assumption, ρ = 1
NT−M−1

NT −1∑

i=M+1

λi.

2.2.5 Solving the Optimization Problem

Given b1, we want to find b2 that minimizes d̂(b). Substituting equations (2.3)

and (2.4) into (2.2),

d̂(b) =
M∑

i=1

y2

i

λi
+ ǫ2(b)

ρ

= yTΛ−1
M y + 1

ρ

∥∥∥b̃1 − Φ1 · y
∥∥∥
2

= yTΛ−1
M y + 1

ρ

(
b̃1 −Φ1 · y

)T (
b̃1 − Φ1 · y

)

= 1
ρ

(
yT ρΛ−1

M y + yTΦT
1 Φ1y − 2

(
ΦT

1 b̃1

)T · y + b̃T
1 b̃1

)
.
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Letting the partial derivative to be zero,

0 = ∂d̂(b)
∂y

= 2ρΛ−1
M y + 2ΦT

1 Φ1y − 2ΦT
1 b̃1

= 2
[(

ρΛ−1
M + ΦT

1 Φ1

)
y − ΦT

1 b̃1

]
.

The solution of y is

y =
(
ρΛ−1

M + ΦT
1 Φ1

)
−1 · ΦT

1 b̃1. (2.5)

And the unknown b2 can be predicted as b2 = x̄2 + Φ2 · y.

2.3 Separating Shape and Appearance

Let’s use the above technique to solve the problem of synthesizing new views of

human faces. The problem is described as follows. Given a probe face image I un-

der pose 1, we need to synthesize a new image J of this person’s face under pose 2.

The training set consists of NT pairs of face images, {[I1,J1] , [I2,J2] , · · · , [INT
,JNT

]}.

Ii and Ji are faces of the ith subject in the training set. {Ii}NT

i=1 are under pose 1,

and {Ji}NT

i=1 are under pose 2.

In our approach, we make the common assumption [10, 43, 17] that the char-

acteristics of shape can be separated from appearance.

2.3.1 Shape

On each face image, a set of landmarks are labeled by hand. For the ith training

image under pose 1, denote the coordinates of each landmark as (xj , yj) , j =

1, · · · , L1, where L1 is the number of landmarks on the faces under pose 1. Define

the shape vector of this ith face image under pose 1 as

si,1 = (x1, x2, · · · , xL1
, y1, y2, · · · , yL1

)T .
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A similar vector si,2 can also be defined in the same way for pose 2. Concatenating

these two vectors, we get a vector

si =


 si,1

si,2




as a combined shape vector for the ith subject in the training set.

Thus, for the NT subjects in the training set, we get a training set of shape

vectors {si}NT

i=1.

2.3.2 Appearance

For each pose, a reference face is chosen by averaging over the training set, so

that every face under this pose is warped to the shape of the reference face, giving

a normalized image (Figure 2.3). The warping is done by first connecting the

landmarks into a set of triangles via Delaunay triangulation algorithm1 and then

doing an affine transform to each triangle [10] (Figure 2.4), assuming that the faces

have Lambertian surfaces. On each normalized image, only the pixels within the

convex hull of the landmarks are kept and all other pixels are discarded. This is

done to remove the unnecessary variations of the hair or the background scenery.

Let’s call the resultant normalized images under pose 1 as Ĩ1, Ĩ2, · · · , ĨNT
, and

those under pose 2 as J̃1, J̃2, · · · , J̃NT
. Reshape them into vectors as {ti,1}NT

i=1 and

{ti,2}NT

i=1 for pose 1 and pose 2 respectively.

For the ith subject in the training set, define

ti =


 ti,1

ti,2




1Given a set of data points, the Delaunay triangulation algorithm connects them as a set

of triangles such that no data points are contained in any triangle’s circumscribed circle. See

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/delaunay.html
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Figure 2.3: An example showing the separation of shape and appearance. In each

of the two poses, the image is labeled with some landmarks and then warped to

the normalized shape of the reference face in that pose. The reference faces are

obtained by averaging the shapes and appearances of the training images.

as a combined appearance vector. Thus, for the NT subjects in the training set, we

get a training set of appearance vectors {ti}NT

i=1.

2.3.3 Probe Image and Prediction

Given a probe face image I under pose 1, we need to synthesize a new image J

of this person’s face under pose 2. With a set of landmarks on I and the reference

face under pose 1, we can again decompose I into its shape vector ŝ1 and appear-

ance vector t̂1. The landmarks can be obtained using AAM fitting [10]. In our
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Figure 2.4: The Delaunay triangulation and affine warping. In the input image and

the reference image, the landmarks are connected as triangular meshes via Delau-

nay triangulation algorithm, and each triangle is warped via affine transformation

to its corresponding part in the reference face. The gray area shows an example

of such corresponding pair of triangles.

experiments, we hand labeled these landmarks on the probe image I.

If we can predict the shape vector ŝ2 and the appearance vector t̂2 of the un-

known image J, by warping t̂2 from the reference face under pose 2 back to the

shape defined by ŝ2, we will be able to get the synthesized new image J.

So the problem turns into: How to predict ŝ2, given ŝ1 and the training set

{si}NT

i=1? And how to predict t̂2, given t̂1 and the training set {ti}NT

i=1? They are the

same mathematical problem. Using exactly the equation (2.5) that we described

in Section 2.2 will predict the unknown shape ŝ2 and the unknown appearance t̂2.



2.4. EXPERIMENTAL RESULTS 27

Figure 2.5: The 13 poses in CMU PIE database.

Then we can combine them to get the synthesized new image J, which is the new

view of the probe face under pose 2 .

2.4 Experimental Results

2.4.1 Experiments on PIE database

We tested the performance of this method on the CMU PIE database [39]. The

database contains 68 subjects. We chose 64 subjects as the training set, and 4

subjects (04016, 04022, 04026 and 04029) as the test set. Our experiments were

performed on the “expression” subset including those images with neutral expres-

sions, and those images containing glasses if the subject normally wears glasses.

All images were converted to gray-scale images. The database contains 13 poses,

illustrated in Fig. 2.5. We used combinations of ‘c27’ (frontal view), ‘c37’ (45◦

view) and ‘c22’ (profile) to test our algorithm. The landmarks were provided

courtesy of Ralph Gross [17]. The number of landmarks vary depending on the

pose, from 39 landmarks to 54 landmarks. So the number of shape variables, in-

cluding both x and y coordinates and a pair of poses, is around 200. The sizes of

the reference faces in each pose are around 180x180, so the number of appearance

variables is around 60,000.

We performed 3 sets of experiments, including predicting frontal view from
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profile (Fig. 2.6), predicting profile from frontal view (Fig. 2.7), predicting 45◦

view from frontal view (Fig. 2.8). These experiments all involve large out-of-

plane rotations, such as 90◦ or 45◦. In each experiment, the result of our approach

is compared with that of linear-object-class method. We also computed the PCA

reconstruction of the ground truth, by projecting the true b =


 b1

b2


 onto the

eigenspace, to show the best possible reconstruction under the linear eigenspace

assumption. In each experiment, for either the shape or the appearance, we al-

ways choose the number of principal eigenvectors that occupies 98% of energy.

Although the number of shape variables is around 200 and the number of appear-

ance variables is around 60,000, we only have 64 pairs of training images, so the

maximum number of dimensions is 63. With 98% energy, the dimensions for

shape and appearance are reduced to around 40 and 54 respectively.

Each synthesis takes an average of 4 - 5 seconds on a PC with a 3GHz Pentium

4 processor, including predicting shape and appearance and also warping the ap-

pearance to the shape. More specifically, the prediction of shape and appearance

takes about 0.3 second, and the warping takes about 4 seconds.

Fig. 2.6 - 2.8 show how our approach improves upon the results of the linear-

object-class method, especially in predicting the shapes and handling large out-

of-plane rotations. Although our synthetic images are not perfect replicas of the

ground truth, they are similar to the PCA reconstructions of the ground truth,

which are the best possible synthetic images under the linear eigenspace assump-

tion. We performed these experiments using a training set of only 64 subjects.

With more training data, the eigenspace would be more accurately described and

better results could be expected.

We have also included the numerical comparison of errors for shape prediction

in each set of experiments (Table 2.1, 2.2, 2.3). In each table, we compare the

square roots of the mean-squared-errors in the coordinates of the predicted shape,

using the linear-object-class method, our approach, and the PCA reconstructions

of ground truth, respectively. From the numerical errors, we can see our approach
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Figure 2.6: Synthesizing a frontal view from a given profile. Column 1 to 5:

(1) input image under pose 1 (2) synthetic image using linear-object-class. (3)

synthetic image using our approach. (4) PCA reconstruction of ground truth of

pose 2. (5) ground truth of pose 2.

is efficient in reducing the errors by at least 30%.

2.4.2 Experiments on Multi-PIE and FERET databases

The above experiments have a training set of only 64 subjects. Such a small

training set has limited capability to span a feature space to represent a number of

possible human faces. So we did the experiments again with a much larger training

set. We use data from two databases: Multi-PIE [18] and Color-FERET [32, 33],
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Figure 2.7: Synthesizing a profile from a given frontal view. Column 1 to 5:

(1) input image under pose 1 (2) synthetic image using linear-object-class. (3)

synthetic image using our approach. (4) PCA reconstruction of ground truth of

pose 2. (5) ground truth of pose 2.

Table 2.1: Square roots of mean squared errors in pixel location for shape predic-

tion from profile to frontal view

Linear-object-class method Our approach PCA reconstruction of ground truth

4.7714 3.5099 1.2343

3.0689 2.6584 1.1250

4.9929 3.2950 1.1216

7.2097 4.7792 1.2631
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Figure 2.8: Synthesizing a 45◦ view from a given frontal view. Column 1 to 5:

(1) input image under pose 1 (2) synthetic image using linear-object-class. (3)

synthetic image using our approach. (4) PCA reconstruction of ground truth of

pose 2. (5) ground truth of pose 2.

Table 2.2: Square roots of mean squared errors in pixel location for shape predic-

tion from frontal view to profile

Linear-object-class method Our approach PCA reconstruction of ground truth

7.4199 4.2115 1.7578

4.7118 3.5389 1.3191

5.2369 3.4810 1.4949

5.5709 3.1199 1.7967
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Table 2.3: Square roots of mean squared errors in pixel location for shape predic-

tion from frontal view to 45◦ view
Linear-object-class method Our approach PCA reconstruction of ground truth

4.4719 3.3408 1.5467

4.1070 3.0246 1.1708

5.4397 3.3834 1.7336

6.2868 3.9477 1.4638

of frontal view (0◦) and half profile (30◦). We chose 1842 pairs of faces from

337 subjects in Multi-PIE database, and 1582 pairs of faces from 738 subjects in

Color-FERET database, to form a training set of 3352 pairs of faces from 1075

subjects. We also chose 20 frontal images from 10 subjects Multi-PIE and 20

images from 15 subjects in Color-FERET, to form the test set. Our goal is to

synthesize a half profile face from its frontal view.

We labeled 54 landmarks for each frontal view face and 47 landmarks for each

half profile face. So the number of shape variables is 108+94=202. We chose

the reference faces to be 100x100 size, so the number of appearance variables is

2x10000 = 20000. With 3352 pairs of training images, the maximum possible

dimension of appearance is 3351. We also adjusted the pixel intensities of each

warped image to be zero mean and unit variance. With eigen decompositions and

keeping 98% energy, the dimensionality of shape variables reduces from 202 to

113, and the dimensionality of appearance variables reduces from 3351 to 1485.

In linear-object-class method, in order to make the set of equations as an over-

constrained problem in shape prediction, we limit the number of eigenvectors to

1/3 of the number of known shape variables, i.e., 1/3 x 108 = 36. Without such

limitation, had we kept 98% energy which are 113 dimensions, the equations

would have been an underconstrained problem and the result would have been

unreliable. For appearance prediction, we still keep 98% energy because 1485

dimensions will still make the equations as an over-constrained problem.

Below (figure 2.9) we list some results of the two approaches for comparison,
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input groundtruth linear prediction linear-object-class

Figure 2.9: Comparison of prediction results of linear method and linear-object-

class method on Multi-PIE and FERET database.

where it shows the linear method outperforms the linear-object-class method. Es-

pecially the linear-object-class method has severe distortion in shape prediction.

The average square roots of mean-squared-error in shape prediction for the 40 test

images is 1.4536, which is pretty small compared to the results of PIE databases.

This shows with a large training set, the shape prediction can be quite accurate and

satisfactory. And the average square roots of mean-squared-error in appearance

prediction for the 40 test images is 13.1247, which means approximately the error

in predicting the intensity of each pixel.

Although the linear method outperformed the linear-object-class method, it

still has some failure examples (figure 2.10). It seems the linear method has some
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input groundtruth linear prediction

(a)

(b)

(c)

Figure 2.10: Examples of failure in the linear method. In each example, the left

image is the ground truth and the right image is the synthetic image of this pose.

(a) The subject’s mustache is removed in the synthetic image. (b) The subject’s

mole is removed in the synthetic image. (c) The subject’s eyes are surrounded by

a partially hallucinated pair of glasses in the synthetic image.

problems in predicting small and localized features, such as mustache or moles,

or determining whether the subject wear glasses.
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2.5 Conclusions

In this chapter, we proposed an approach that can efficiently synthesize accurate

new views of faces across large out-of-plane rotation, given only a single image.

In our approach, we formulate a probabilistic model combining the “distance-

from-feature-space” and the “distance-in-feature-space”, and minimize the weighted

sum of the two distances, in order to maximize the likelihood of the test example

with missing data. Experimental results show that our approach produces more

accurate results than the commonly used linear-object-class approach which is

the basis of many 2D approaches. However, this approach is not always reliable

at predicting localized features as shown in Figure 2.10. In the next chapter, we

explore a method designed to improve localized prediction.
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Chapter 3

Bayesian Network Approach

3.1 Motivation

One of the challenges of image synthesis is high dimensionality; that is, it is a pre-

diction problem over many variables. In the last chapter, we manually separated

shape and appearance, and analyzed the variables in the appearance holistically,

as well as the variables in the shape; that is, that method does not decompose

the variables any further. However, such a representation may be ill-suited to this

problem. Examples of failure are shown in figure 2.10, where the subject’s dis-

tinctive characteristics such as mustache or moles are removed in the synthetic

image, or the subject’s eyes are surrounded by artifacts of glasses in the synthetic

image while the subject actually does not wear glasses.

The holistic approach is ill-suited to this problem because sparse statistical

structure usually exists among the random variables [36, 37, 20]. Each random

variable usually has strong statistical dependency with a few variables, and has

weak dependency with the others (Figure 3.1). If we ignore such statistical struc-

ture and group all the variables together, the high dimensionality of the model

will be susceptible to over-fitting. Such a holistic representation also models

37
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relationships among variables that have no statistical dependency and is, there-

fore, wasteful. Instead, we propose to take advantage of the statistical structure

which will allow us to formulate our solution as a combination of smaller models

and thereby be less susceptible to over-fitting and to devote more representational

power to true dependencies among the variables.

We aim to build models that exploit this sparse statistical structure among

the random variables. Graphical models, such as Bayesian networks, are well

matched to this task. In such models, each node represents a single variable.

Connections between nodes exist only if there are direct statistical dependencies.

Variables are unconnected if they are statistical independent or conditionally in-

dependent. Such a graphical structure concisely captures sparseness. In doing

so, it greatly reduces the dimensionality of the problem. Instead of a single high-

dimensional model, a graph consists of a collections of lower-dimensional models

at each node. The dimensionality of each such model is given by the number of

edges flowing into the node. Such a representation makes good use of the training

data we have and reduces over-fitting.

In particular, a Bayesian network represents a probability distribution over a

group of variables X1, . . . , Xn as:

p (Ω) =
n∏

i=1

p (xi | Paxi
) (3.1)

The probability representation in each lower dimensional model is p (xi | Paxi
),

representing the probability of variable Xi conditioned on all the variables flowing

into it on the graph, PaXi
.
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Figure 3.1: Mutual information between pixels on pairs of human faces. Each red

rectangle denotes the pixel we are analyzing, and the brightness of other pixels

show the relative magnitude of mutual information with that pixel visually. The

five pictures show areas of eyebrows, eyes, eye glasses, cheekbones and mustache

respectively.
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3.2 Overview

3.2.1 Three Steps

The Bayesian network approach for prediction contains three steps.

• The first step is to learn the structure of the Bayesian network, which means

the connectivity among the nodes in the graph. With the network structure

learned, it can represent the joint probability distribution using factorization

(Eq. 3.1).

• The second step estimates the parameters in the representation of the prob-

ability distribution functions, for example, the mean and covariance if the

distribution were represented as a Gaussian. With the structure and param-

eters learned, the Bayesian network is fully known.

• Then in the third step, given the known variables, we predict the unknown

variables by maximizing the joint probability. That means, we can predict

the random variables in pose 2, denoted as b2, from the random variables

in pose 1, denoted as b1, by maximizing the probability p (b2 | b1), using

standard inference techniques in the graphical models.

3.2.2 Approaches

Learning the structure of the Bayesian network is difficult when the number of

variables is large, because the number of all possible structures is exponential

to the number of variables. There are two general approaches: score-based ap-

proaches and constraint-based approaches. The score-based approach uses a score

function to evaluate many possible structures selecting the structure with the largest

score, and is efficient when the score function is decomposable. Since searching

for the optimal structure is NP-hard, it applies heuristics in the search, and is sus-

ceptible to local optima. The constraint-based approach is very intuitive in that it
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does conditional independence test (CI test) to every pair of nodes to determine

whether the pair should be connected with an edge. However, a CI test with a

large size condition set may not be reliable because it may cause overfitting in

the data when the size of training set is not large enough to estimate the proba-

bility distribution. In this research, we decided to use a constraint-based method

because it is intuitive and easy to implement.

In the constraint-based approaches, we need to choose some measurement for

the conditional dependency between nodes. χ2 and conditional mutual informa-

tion are both good measurements. We choose conditional mutual information.

The conditional mutual information of X and Y given U is defined as:

I (X; Y | C) =
∑

c

P (c)
∑

x

∑

y

P (x, y | c) log
P (x, y | c)

P (x | c) P (y | c)

3.2.3 Challenges

There are many challenges of using constraint-based approach of Bayesian net-

work structure inference for face view synthesis problem.

First of all, the number of variables is huge. With 108 and 94 shape variables

in the two poses, and 100x100 pixels in the appearance variables in each pose, we

have a total of 20,202 variables. Many constraint-based approaches require the

number of CI test being exponential to the number of variables, which makes the

computation very expensive.

Also in each CI test, the size of the condition set might be very large if the vari-

able has many possible parents. CI tests over large condition sets are unreliable

because of overfitting.

Another challenge is that the mutual information across pose is usually smaller

than the mutual information within pose, which makes it hard to compare them

directly.
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3.3 Constraint-Based Search for Bayesian Network

Structure

3.3.1 Overview

The goal of structure learning is to achieve a perfect map (P-map). A graph G is a

P-map of a probabilistic distribution P if every independence relationship in G is

true in P and every dependence relationship in G is true in P.

There are several constraint-based approaches that find the P-map of a dis-

tribution. These include the SGS algorithm [40], PC algorithm [40], Cheng’s

TPDA and TPDA-Π algorithms [8], RAI algorithm [47], etc. Computational

complexity vary among these. SGS algorithm does an exhaustive set of CI tests

which is exponential in the number of variables. PC algorithm has complexity

of O
(

N2(N−1)k−1

(k−1)!

)
, where N is the number of variables and k is the maximum

in-degree of the graph. Cheng’s TPDA algorithm has complexity of only O (N4)

when there is no prior knowledge of the node ordering, and TPDA-Π algorithm

has complexity of only O (N2) when the ordering is given. The RAI algorithm

combines edge removal and edge orientation iteratively, with the graph being di-

vided into autonomous subgraphs. It assumes no prior knowledge of node order-

ing and experimental results show the number of CI tests required is less than PC

algorithm.

In terms of minimizing the number of CI tests and lowering computational

complexity, it seems that TPDA-Π algorithm is the best choice, in that it only

requires O (N2) CI tests. However, as we have mentioned, CI tests with large

condition sets are unreliable. Each CI test in TPDA-Π algorithm uses all the

parents of a node as the condition set, which could be very large a set and give

unreliable results of conditional independence. On the other hand, PC algorithm

controls the size of condition set in each loop, to increase from zero to some value

until no more edges are eliminated. In this sense, we can modify the PC algorithm
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to set an upperbound of the size of condition set, in order to get reliable results

of CI tests. The modification also includes adding prior ordering information, to

eliminate the step of orienting the edges by some rules.

3.3.2 Prior Node Ordering

In our problem, the variables are grouped as “shape1, appearance1, shape2, ap-

pearance2”. “shape1” and “appearance1” are from pose 1, which are known vari-

ables. “shape2” and “appearance2” are from pose 2, which are unknown variables.

It is reasonable to assume variables from pose 1 appear earlier in the ordering than

variables from pose 2, because this is how the inference works. Moreover, it is

also reasonable to assume that in each pose, shape variables appear earlier than

appearance variables. Within each part, the natural ordering from the first variable

to the last variable can serve as an ordering. So we assume the ordering of nodes

is known as “shape1→ appearance1 → shape2 → appearance2”.

3.3.3 Modified PC Algorithm with Node Ordering

The original PC algorithm [40] assumes no prior knowledge of node ordering.

The algorithm starts from a fully-connected graph over the nodes. Then with the

degree n starting from 0 and increasing by 1 at a time, for each connected pair

of nodes (X, Y ) such that Y has more than n parents, try all the subsets S of

cardinality n among its parents excluding X , and perform CI tests X, Y |S. If the

CI test succeeds, remove the edge Y −X and record the witness set S. The degree

n is increased until there are no nodes with at least n + 1 parents. Then, in this

undirected graph, some rules are applied to orient the edges in the graph.

There are some heuristics in selecting the order of the tests in speeding up the

algorithm. One of them is that, for a given variable A, first test those variables

B that are least probabilistically dependent on A, conditioned on those subsets of
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variables that are most probabilistically dependent on A. We are interested in this

heuristic and will apply it in the following paragraph.

If the node ordering is given, it is straightforward to modify the PC algorithm

as follows.

1. The algorithm starts from a fully-connected graph over the nodes. The di-

rections of edges are defined as pointing from higher order to lower order.

2. With the degree n = 0, eliminate all the edges with mutual information less

than a threshold ε1.

3. With the degree n = 1, for each node X , sort its parents with mutual in-

formation in descending order {Yk} such that I(X, Yk) > I(X, Yk+1). First

try the parent Y1 with the largest mutual information I(X, Y1), to perform

CI tests on the rest of parents Yk, i.e., X, Yk|Y1. If the CI test succeeds,

which means I(X, Yk|Y1) > ε2 where ε2 is a threshold, remove the edge

Yk → X . Then try the parent Y2 with the second largest mutual information

as condition set and perform CI tests on the rest of parents, and so forth.

4. The degree n can be increased to a certain upperbound.

In our experiments, we choose the upperbound to be 1, which means we always

try CI tests with condition set only containing one variable. The complexity of

this modified algorithm is O(N3), where N is the number of variables. So it has a

reasonable complexity and reliable results of CI tests. Although the upperbound

may make the final graph only an I-map instead of a P-map, an I-map is still

good for factorization and is a great reduction in dimensionality for a holistic

representation.
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3.3.4 Dependency Measures

The mutual information and conditional mutual information are used as the mea-

sure of dependency. As mentioned in Section 3.2.2, we use conditional mutual

information as a dependency measure. Conditional mutual information is a gen-

eralization of mutual information which is defined as

I(X; Y ) =
∑

x

∑

y

p(x, y)log
p(x, y)

p(x)p(y)
, (3.2)

where I(X; Y ) is the mutual information, and X , Y are two random variables.

Note that upper cases denote random variables and lower cases denote particular

instantiations of the random variables. Mutual information is a measure of how

much information can be obtained about one random variable by observing an-

other [11]. The larger the mutual information is, the stronger dependency exists

between X and Y .

Both the mutual information and the conditional mutual information need the

estimation of joint probabilities, such as p(x, y), p(x, y, c), p(x, c) and p(y, c).

Since x, y, c each have many possible values, the combination of them would

be very large a table and the number of training set will be too small to estimate

such a large table. So we did scalar quantization for the variables. Each variable is

quantized to 4 levels so the maximum size of the probability table will be 43 = 64,

which makes the training set (3352 examples in our experiments) sufficient.

In order to make dynamic range of each I(X, Y ) comparable, we quantize

each variable to a uniform distribution because a uniform distribution has the

largest entropy. So the quantization of each variable is done such that each of

the 4 bins has the same amount of examples. This is because I(X, Y ) = H(X) +

H(Y ) − H(X, Y ), where I(X, Y ) is the mutual information, H(X) and H(Y )

are the entropy, H(X, Y ) are the joint entropy. When X and Y are determinis-

tic to each other, I(X, Y ) = H(X) = H(Y ). When X and Y are independent,

I(X, Y ) = 0. And note that the joint entropy H(X, Y ) ≥ H(X). So the dynamic
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range of I(X, Y ) is from 0 to max (H(X), H(Y )). A uniform distribution will

make the upperbound max (H(X), H(Y )) the same.

3.3.5 Thresholds

As we described in Section 3.3.3, there are two thresholds, ε1 and ε2. ε1 is the

threshold for mutual information, and ε2 is the threshold for conditional mutual

information. In practice, we found the dynamic range of conditional mutual in-

formation is quite different from mutual information. That is why we choose ε1

and ε2 to be different. In mutual information, we choose ε1 = 0.5 × max(MI),

where max(MI) is the maximum mutual information for each variable with all

its parents. In conditional mutual information, we choose ε2 = 0.03.

3.4 Probability Representation

Suppose the Bayesian network has a total of m nodes [x1, x2, · · · , xm]. Our as-

sumption is that these m nodes have a joint Gaussian distribution, i.e., [x1, x2, · · · , xm] ∼
N (µ, Σ). As we know, if a vector is jointly Gaussian distributed, then the condi-

tional distribution within this vector is also Gaussian. More specifically, if µ and

Σ are partitioned as follows

µ =


 µ1

µ2


 with sizes


 q × 1

(N − q) × 1




Σ =


 Σ11 Σ12

Σ21 Σ22


 with sizes


 q × q q × (N − q)

(N − q) × q (N − q) × (N − q)




then the distribution of x1 conditional on x2 = a is multivariate normal X1 |
X2 = a ∼ N

(
µ̄, Σ̄

)
where

µ̄ = µ1 + Σ12Σ
−1
22 (a − µ2)



3.4. PROBABILITY REPRESENTATION 47

and covariance matrix

Σ̄ = Σ11 − Σ12Σ
−1
22 Σ21

For node yj, its parents are denoted as Pa(y) = [xj1, xj2, · · · , xjk]
′

. Under

Gaussian assumption, the conditional probability distribution is yj | xj1, xj2, · · · , xjk ∼
N
(
µ̄j, Σ̄j

)
, where

µ̄j = µj + Σj, (j1,···,jk)Σ
−1
(j1,···,jk), (j1,···,jk)







xj1

...

xjk


−




µj1

...

µjk







Σ̄j = Σj, j − Σj, (j1,···,jk)Σ
−1
(j1,···,jk), (j1,···,jk)Σ(j1,···,jk), j

So if we estimate the overall µ and Σ from the training data, we will be able

to compute the parameters µ̄j and Σ̄j of the conditional distribution at each node

yj.

The parameters can also be rewritten in another form yj ∼ N
(
µ̂j + Ŵj

′ · Pa(y), σ̂j

)
,

where

µ̂j = µj − Σj, (j1,···,jk)Σ
−1
(j1,···,jk), (j1,···,jk)




µj1

...

µjk




Ŵj
′

= Σj, (j1,···,jk)Σ
−1
(j1,···,jk), (j1,···,jk)

σ̂j = Σ̄j

µ̂j and σ̂j are scalars, while Ŵj = [w1, w2, · · · , wk]
′

is a vector, meaning the

weights for the k parents of node y.
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3.5 Parameter Estimation

Once we have learned the structure of the Bayesian network, we need to esti-

mate the parameters of the probability distributions in the Bayesian network. We

assume the variables are adequately described by a Gaussian distribution. Un-

der this assumption, given training data, a closed form solution to the probability

distribution’s parameters exists. Suppose the Bayesian network has a total of m

nodes. For node y, its parents are denoted as Pa(y) = [x1, x2, · · · , xk]
′

. Under

Gaussian assumption, the conditional probability distribution at this node is y ∼
N (µ + W ′ · Pa(y), σ), where µ and σ are scalars, while W = [w1, w2, · · · , wk]

′

is a vector, meaning the weights for the k parents of node y.

The number of training examples is N . We need to first estimate the parame-

ters using the training examples, and then apply these parameters and the known

part of test example, to predict the unknown part of the test example, as a closed-

form solution.

We have N training examples for node y, where y ∼ N (µ + W ′ · Pa(y), σ).

If we write the total probability as the product of each probability and maximize

it, we will have

P (y) =
N∏

i=1

P (yi | Pa (yj)) =
N∏

i=1

1√
2πσ

exp

(
−(yi − µ − W ′ · Pa (yi))

2

2σ2

)

=

(
1√
2πσ

)N

exp

(
− 1

2σ2

N∑

i=1

(yi − µ − W ′ · Pa (yi))
2

)
(i = 1, 2, · · · , N)

So maximizing P (y) means minimizing
∑N

i=1 (yi − µ − W ′ · Pa (yi))
2
, which

is exactly the least-square solution for this set of N equations,

µ + W ′ · Pa (yi) = yi (i = 1, 2, · · · , N)

Solving this set of overconstrained linear equations, we will get µ and W in least-
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square solutions. Letting the partial derivative of σ be zero, we have

σ2 =

∑N
i=1 (yi − µ − W ′ · Pa (yi))

2

N

3.6 Prediction

Given a test example, we know a subset of the nodes, and need to predict the

remaining unknown nodes. A closed form solution to this prediction problem

exists as follows. If we write the total probability as the product of conditional

probability at each node and maximize it, we will have

P (BayesNet) =
m∏

j=1

P (yj | Pa (yj))

=
m∏

j=1

1√
2πσj

exp


−

(
yj − µj − W ′

j · Pa (yj)
)2

2σ2
j




=
1(√

2π
)m∏m

j=1 σj

exp


−1

2

m∑

j=1

(
yj − µj − W ′

j · Pa (yj)
)2

σ2
j




where the total number of nodes is m.

In order to maximize the total probability, we need to minimize
∑m

j=1
(yj−µj−W ′

j
·Pa(yj))

2

σ2

j

,

which is exactly the linear least-square solution for this set of N equations,

µj + W ′

j · Pa (yj)

σj
=

yj

σj
(j = 1, 2, · · · , m)

Some of the nodes are known while some are unknown. The number of un-

known nodes is also m/2. And the number of equations containing unknown

nodes is generally greater than m/2. So generally it is an overconstrained problem

and has a closed form least square solution. However, according to the ordering
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we choose where nodes of pose1 all appear earlier than nodes of pose2, the num-

ber of equations containing unknown nodes is exactly m/2. The coefficients in

the above equations will be in a lower triangle form. Solving this set of equations

will give the closed-form exact solution for the unknown nodes as the prediction

results. Each equation is exactly satisfied, with zero tolerance, and may be sen-

sitive to errors. This means if any two unknown nodes are involved in the same

equation, the prediction error may propagate and enlarge. Therefore, when using

such ordering, we should try to avoid connections within the same pose, so that

each unknown node has parents that are all known, and the prediction errors of all

unknown node are independent.

3.6.1 Across Pose Connections v.s. Within Pose Connections

As we will explain in Section 3.6, with the ordering as “shape1 → appearance1

→ shape2 → appearance2”, all the known variables come before all unknown

variables in the node ordering. So each known variable has all the parents being

known variables, and such within-pose connections will not help the prediction

at all. In the prediction, only the equations involving unknown variables will

count. So the number of such equations will be exactly the same as the number

of unknown variables, which leads to a square matrix equations, and has a unique

solution. This means the solution will make each equation exactly satisfied, with

zero error tolerance. If more than two unknown variables appear in one equation,

the prediction error may propagate among the unknown variables and the results

may be out of control. So we force all connections be across-pose connections,

such that the prediction of unknown variables will not interfere each other.
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3.7 Experimental Results

3.7.1 Datasets

We use data from two databases: Multi-PIE and Color-FERET, of frontal view

(0◦) and half profile (30◦). We chose 1842 pairs of faces from 337 subjects in

Multi-PIE database, and 1582 pairs of faces from 738 subjects in Color-FERET

database, to form a training set of 3352 pairs of faces from 1075 subjects. We

also chose 20 frontal images from 10 subjects Multi-PIE and 20 images from 15

subjects in Color-FERET, to form the test set. Our goal is to synthesize a half

profile face from its frontal view.

We labeled 54 landmarks for each frontal view face and 47 landmarks for each

half profile face. So the number of shape variables is 108+94=202. We chose

the reference faces to be 100x100 size, so the number of appearance variables is

2x10000 = 20000. We also adjusted the pixel intensities of each warped image to

be zero mean and unit variance.

3.7.2 Bayes Net Structure Results

In the Bayesian network structure that we obtained, each node has on average

15.5123 parents. The maximum number of parents is 152.

Figure 3.2 shows various learned parent-child relationships in the network.

The corresponding examples of mutual information are shown in Figure 3.1. We

see some interesting behavior.

• We see that the appearance of an eye in one pose is directly dependent on

both eyes in the other pose.

• We see similar spatial and symmetric correspondence for the area just below

the eye, for the cheek-bone and for the mustache area. However, in each of
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Figure 3.2: These examples show various parent-child relationships in the

Bayesian network, in the areas of eyes, eyeglasses, cheekbones, mustache respec-

tively. In each figure, the green dot is the variable that we are analyzing. The red

dots are its parents.

these, the area of dependency is of larger spatial extent than for the eye.

• This Bayesian network models certain symmetry.

We also see that the shape variables often depend upon other shape variables

and appearance variables. Figure 3.3 shows an example of the mutual information

and Bayesian network connection between between shape and appearance. The
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Figure 3.3: This example shows the dependency between shape and appearance.

The four pictures in each row are shape 1, appearance 1, shape 2, appearance 2,

respectively. The first row shows the mutual information between shape and ap-

pearance. The red rectangle denotes the shape variable we are analyzing, and the

brightness of other pixels show the relative magnitude of mutual information with

that shape variable visually. The second row shows the parent-child relationships

in the Bayesian network between shape and appearance. The green dot is the

shape variable that we are analyzing. The red dots are its parents.

shape variable we are analyzing in this example is a point on the nose in shape 2.

Since it is in the half profile of the face, the location of this nose variable shows

how protruding the nose is. That is why it has dependency with the intensity of

the pixels beside the nose in appearance 1. The darker those pixels are, the more

protruding the nose is.

For the occluded pixels, such as the side of the nose, there is no direct cor-

respondence in the frontal view. Figure 3.4 shows an example of the mutual in-

formation and Bayesian network connection of this case. Since there is no direct

correspondence, the overall mutual information is very low. The Bayesian net-

work chooses a pixel that has relatively higher mutual information as the parent.

One interesting thought is whether we can use the mutual information to do
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Figure 3.4: This example shows which pixel to predict the occluded nose pixel.

The four pictures in each row are shape 1, appearance 1, shape 2, appearance 2,

respectively. The side of the nose in the half profile is actually occluded in the

frontal view. The first row shows this row shows the mutual information. The

red rectangle denotes the nose pixel we are analyzing, and the brightness of other

pixels show the relative magnitude of mutual information with that nose pixel

visually. We can see the overall mutual information is very low in appearance 1,

since there is no direct correspondence with the occluded nose pixel. The second

row shows the parent-child relationships in the Bayesian network for the occluded

nose pixel. The green dot is the nose pixel that we are analyzing. The red dot is its

parent, which is not a direct correspondence, but a pixel that has relatively higher

mutual information.

segmentation. We performed normalized cuts algorithm [38] with mutual infor-

mation as the similarity matrix on each pose. Figure 3.5 and 3.6 show the seg-

mentation results, with the number of segments varying from 2 through 10.

3.7.3 Prediction Results

Here are some results comparing the appearance prediction of the Bayesian net-

work method with the linear method visually (figure 3.7, 3.8, 3.9). All results are



3.7. EXPERIMENTAL RESULTS 55

nbSegments =2 nbSegments =3 nbSegments =4

nbSegments =5 nbSegments =6 nbSegments =7

nbSegments =8 nbSegments =9 nbSegments =10

Figure 3.5: Segmentation using normalized cuts algorithm with mutual informa-

tion as the similarity matrix, on frontal view of the face. nbSegments is the number

of segments, which varies from 2 through 10. Different gray areas denote different

segments.

warped to groundtruth shape so that the results of appearance prediction are easier

to compare.

3.7.4 Numerical Results

The Bayesian network also gives better overall quantitative performance than the

linear method (table 3.1). In comparing mean-squared error, the Bayesian net-

work’s average error in appearance prediction for the 40 test images is 167.8496,
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nbSegments =2 nbSegments =3 nbSegments =4

nbSegments =5 nbSegments =6 nbSegments =7

nbSegments =8 nbSegments =9 nbSegments =10

Figure 3.6: Segmentation using normalized cuts algorithm with mutual informa-

tion as the similarity matrix, on half profile view of the face. nbSegments is the

number of segments, which varies from 2 through 10. Different gray areas denote

different segments.

while in the linear method this average error is 178.5642. So the average improve-

ment in appearance error among the 40 test images is 10.7147±9.6887, with a

margin of error for 90% confidence level.

3.7.5 Experiments of Predicting Frontal from Half Profile

We also performed the experiments of reverse predicting, i.e., predicting frontal

from half profile. In figure 3.10, the first three rows show the linear method some-
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input groundtruth linear prediction BN prediction

Figure 3.7: Results comparing the linear method and the Bayesian network

method. The four examples show the linear method predicts a partially hallu-

cinated pair of glasses around the subject’s eyes while the Bayesian network ap-

proach does not have such artifacts.

MSE in Appearance, predicting half profile

Linear Method 178.5642

BN method 167.8496

Table 3.1:

Comparison of mean-squared error over an independent test set, in predicting half

profile from frontal.
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input groundtruth linear prediction BN prediction

Figure 3.8: Results comparing the linear method and the Bayesian network

method. The four examples show the linear method sometimes removes the mus-

tache or loses the texture of the mustache while the Bayesian network approach

predicts the mustache better.
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input groundtruth linear prediction BN prediction

Figure 3.9: Results comparing the linear method and the Bayesian network

method. The four examples show the Bayesian network approach predicts the

skin textures better than the linear method does. In the fourth row, the mole on the

subject’s face is totally lost in the synthesis of the linear method, but it is shown

as a slightly darker area in the Bayesian network prediction.
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MSE in Appearance, predicting frontal

Linear Method 165.8925

BN method 151.3254

Table 3.2:

Comparison of mean-squared error over an independent test set, in predicting

frontal from half profile.

times has artifacts around the eye area, while Bayesian network approach does not

have this problem. In the fourth row, the mole on the subject’s face is totally lost

in the synthesis of the linear method, but it is shown as a slightly darker area in

the Bayesian network prediction.

In terms of numerical results, the Bayesian network also gives better overall

quantitative performance than the linear method (table 3.2). In comparing mean-

squared error, the Bayesian network’s average error in appearance prediction for

the 40 test images is 151.3254, while in the linear method this average error is

165.8925. So the average improvement in appearance error among the 40 test

images is 14.5672±7.4785, with a margin of error for 90% confidence level.

3.8 Conclusions

In this chapter, we explore the Bayesian network approach that models the sparse

statistical structure among the variables of the two poses. A Bayesian network

uses a collection of lower dimensional models, with a conditional probability dis-

tribution at each node, so it leads to less overfitting. Such an approach can preserve

localized features visually and numerically, in improving the performance of the

appearance prediction.
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input groundtruth linear prediction BN prediction

Figure 3.10: Results comparing the linear method and the Bayesian network

method, in predicting frontal from half profile. The first three rows show the

linear method sometimes has artifacts around the eye area, while Bayesian net-

work approach does not have this problem. In the fourth row, the mole on the

subject’s face is totally lost in the synthesis of the linear method, but it is shown

as a slightly darker area in the Bayesian network prediction.
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Chapter 4

Discussion

In this chapter we will compare three methods: the linear method, the Bayesian

network method and an established texture mapping method [42].

4.1 Texture Mapping

First we will describe our implementation of texture mapping. We use 100 images

of 3D faces from the USF Human-ID 3D Face Database [41]. Each 3D face has

8955 vertices. We average these 100 3D faces with correspondence of vertices

to get one 3D face model, then use this model to render 2D reference faces for

frontal view and 30 degree view. The 3D face model provides the correspondence

between the two 2D reference faces. Then we can directly copy the pixels of

small meshes defined by the 8955 vertices from one view to the other. When a

test image is given, we warp it to one reference face, copy the small patches to the

other reference face, then unwarp it. The warping and unwarping procedures use

positions of known landmarks on the face. The warping algorithm uses Delaunay

triangulation which uses the Vonoroi diagram to find the triangles and then warp

each triangle according to affine transform.
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4.2 Comparison of the Three Methods in Theory

The linear method, the Bayesian network method, and the texture mapping method

differ in the following assumptions:

• Dimensionality

The linear method and the Bayesian network method use different ways to group

variables. The linear method considers all variables holistically, in a single high

dimensional model. The graphical representation of a Bayesian network consists

of a collection of models at each node in the graph. Each node models a condi-

tional probability distribution over the variables flowing into the node. Each of

these models is typically of much lower dimension than the total number of vari-

ables. On the other hand, the texture mapping does not group variables at all. It

directly copies pixels to the corresponding locations.

• Learning

The linear method and the Bayesian network method both use information from

the training data and the input test image, because both are statistical models with

Gaussian representation. The texture mapping copies pixels from input test image

deterministically, and does not use a prediction model based on training data. With

the correspondence known, all it needs is the input image.

• Independence of Shape and Appearance

The linear method assumes the shape and the appearance are independent, and

analyzes them separately. The Bayesian network method allows dependency be-

tween the shape and the appearance. The texture mapping can only predict ap-

pearance on normalized shapes. The predicted appearance by texture mapping

has to be warped using the shape predicted by another method, such as the linear

method.
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• Lambertian Assumption

The texture mapping method assumes Lambertian surfaces. So the texture map-

ping method can not handle shadow or highlights, and partial or full specularities.

The linear method and the Bayesian network methods do not have such an as-

sumption.

• Occlusion Modeling

Also, the texture mapping method requires pixel-to-pixel correspondence between

the two views. So it cannot handle occlusion. The linear method and the Bayesian

network method can handle occlusion.

4.3 Comparison of the Three Methods in Performance

The linear method is prone to make localized errors. For example, it creates arti-

facts over the eye areas. For people with no glasses, the prediction results show the

eyes are surrounded by partially hallucinated pairs of glasses. The linear method

often fails to predict distinctive local features such as mustaches or moles (Fig-

ure 2.10). One hypothesis is that, because of the holistic representation and high

dimension, global control dominates over local control, compromising local fea-

ture appearance. The Bayesian network method and the texture mapping method

preserve these distinctive local features.

The texture mapping method fails under occlusion or near occlusion. The

nosewings disappear in the prediction results, because they are near occlusion in

the frontal view. Also the side of the faces are not predicted because it is also

near occlusion in the frontal view. The linear method and the Bayesian network

method do not have this problem, because they can learn these occluded areas

from the training data. (figure 4.1)



66 CHAPTER 4. DISCUSSION

input groundtruth linear prediction BN prediction texture mapping

Figure 4.1: Texture mapping fails to predict nose appearance near occlusion. The

nosewing disappears in the prediction.

input groundtruth linear prediction BN prediction texture mapping

Figure 4.2: Results showing specularities or near specularities. With oily skin, the

shines on the face are directly copied to the predicted face in the texture mapping

result, which is not correct.

Texture mapping also fails to predict specularities or near specularities. Shiny

areas on the face are re-mapped in a way that looks artificial and wrong. The linear

method and the Bayesian network method do not create spurious or unnatural

looking specularities. (figure 4.2 and 4.3) Also, in figure 4.3, the shape of the

glasses is also predicted incorrectly due to the difference in the 3D structures

between this subject and the general face model.

input groundtruth linear prediction BN prediction texture mapping

Figure 4.3: Results showing specularities on glasses. The texture mapping predic-

tion gives fake reflections on glasses. And the shape of the glasses is also predicted

incorrectly due to the difference in the 3D structures between this subject and the

general face model.



Chapter 5

Conclusions and Contribution

In this thesis, we have addressed the problem of face view synthesis using a sin-

gle image, and we focus on 2D approaches instead of building 3D models. Al-

though a single 2D image does not contain depth information, our research show

machine learning technique can learn a lot of prior information between poses,

and can predict novel views with good performance. In particular, we formu-

late a regularized holistic linear model, to model the variables holistically and

combine the “distance-in-feature-space” and “distance-from-feature-space” using

a properly determined weight for regularization in order to get reliable prediction

results. Such approach performs well in shape prediction and outperforms the lin-

ear model with no regularization, however, it is not always reliable in predicting

localized features in appearance. To better capture localized relationship we use

a Bayesian network. The de-centralized structure of a Bayesian network forms a

collection of localized models, where each such model represents a group of sta-

tistically dependent variables. By having such a collection of lower dimensional

models, with a conditional probability distribution at each node, a Bayesian net-

work leads to less overfitting. Such an approach can preserve localized features

visually and numerically, in improving the performance of the appearance predic-

tion.
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