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Justus Thies1 Michael Zollhöfer2 Marc Stamminger1 Christian Theobalt2 Matthias Nießner3

1University of Erlangen-Nuremberg 2Max-Planck-Institute for Informatics 3Stanford University

Proposed online reenactment setup: a monocular target video sequence (e.g., from Youtube) is reenacted based on the ex-

pressions of a source actor who is recorded live with a commodity webcam.

Abstract

We present a novel approach for real-time facial reenact-

ment of a monocular target video sequence (e.g., Youtube

video). The source sequence is also a monocular video

stream, captured live with a commodity webcam. Our goal

is to animate the facial expressions of the target video by a

source actor and re-render the manipulated output video in

a photo-realistic fashion. To this end, we first address the

under-constrained problem of facial identity recovery from

monocular video by non-rigid model-based bundling. At

run time, we track facial expressions of both source and tar-

get video using a dense photometric consistency measure.

Reenactment is then achieved by fast and efficient defor-

mation transfer between source and target. The mouth inte-

rior that best matches the re-targeted expression is retrieved

from the target sequence and warped to produce an accu-

rate fit. Finally, we convincingly re-render the synthesized

target face on top of the corresponding video stream such

that it seamlessly blends with the real-world illumination.

We demonstrate our method in a live setup, where Youtube

videos are reenacted in real time.

1. Introduction

In recent years, real-time markerless facial performance

capture based on commodity sensors has been demon-

strated. Impressive results have been achieved, both based

on RGB [8, 6] as well as RGB-D data [31, 10, 21, 4, 16].

These techniques have become increasingly popular for the

animation of virtual CG avatars in video games and movies.

It is now feasible to run these face capture and tracking al-

gorithms from home, which is the foundation for many VR

and AR applications, such as teleconferencing.

In this paper, we employ a new dense markerless fa-

cial performance capture method based on monocular RGB

data, similar to state-of-the-art methods. However, instead

of transferring facial expressions to virtual CG characters,

our main contribution is monocular facial reenactment in

real-time. In contrast to previous reenactment approaches

that run offline [5, 11, 13], our goal is the online transfer

of facial expressions of a source actor captured by an RGB

sensor to a target actor. The target sequence can be any

monocular video; e.g., legacy video footage downloaded

from Youtube with a facial performance. We aim to mod-

ify the target video in a photo-realistic fashion, such that it

is virtually impossible to notice the manipulations. Faith-

ful photo-realistic facial reenactment is the foundation for a

variety of applications; for instance, in video conferencing,

the video feed can be adapted to match the face motion of

a translator, or face videos can be convincingly dubbed to a

foreign language.

In our method, we first reconstruct the shape identity

of the target actor using a new global non-rigid model-

based bundling approach based on a prerecorded training

sequence. As this preprocess is performed globally on a set

of training frames, we can resolve geometric ambiguities
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common to monocular reconstruction. At runtime, we track

both the expressions of the source and target actor’s video

by a dense analysis-by-synthesis approach based on a sta-

tistical facial prior. We demonstrate that our RGB tracking

accuracy is on par with the state of the art, even with online

tracking methods relying on depth data. In order to trans-

fer expressions from the source to the target actor in real-

time, we propose a novel transfer functions that efficiently

applies deformation transfer [27] directly in the used low-

dimensional expression space. For final image synthesis,

we re-render the target’s face with transferred expression

coefficients and composite it with the target video’s back-

ground under consideration of the estimated environment

lighting. Finally, we introduce a new image-based mouth

synthesis approach that generates a realistic mouth interior

by retrieving and warping best matching mouth shapes from

the offline sample sequence. It is important to note that we

maintain the appearance of the target mouth shape; in con-

trast, existing methods either copy the source mouth region

onto the target [30, 11] or a generic teeth proxy is rendered

[14, 29], both of which leads to inconsistent results. Fig. 1

shows an overview of our method.

We demonstrate highly-convincing transfer of facial ex-

pressions from a source to a target video in real time. We

show results with a live setup where a source video stream,

which is captured by a webcam, is used to manipulate a tar-

get Youtube video. In addition, we compare against state-

of-the-art reenactment methods, which we outperform both

in terms of resulting video quality and runtime (we are the

first real-time RGB reenactment method). In summary, our

key contributions are:

• dense, global non-rigid model-based bundling,

• accurate tracking, appearance, and lighting estimation

in unconstrained live RGB video,

• person-dependent expression transfer using subspace

deformations,

• and a novel mouth synthesis approach.

2. Related Work

Offline RGB Performance Capture Recent offline per-

formance capture techniques approach the hard monocular

reconstruction problem by fitting a blendshape [15] or a

multi-linear face [26] model to the input video sequence.

Even geometric fine-scale surface detail is extracted via in-

verse shading-based surface refinement. Ichim et al. [17]

build a personalized face rig from just monocular input.

They perform a structure-from-motion reconstruction of the

static head from a specifically captured video, to which

they fit an identity and expression model. Person-specific

expressions are learned from a training sequence. Suwa-

janakorn et al. [28] learn an identity model from a collec-

tion of images and track the facial animation based on a

model-to-image flow field. Shi et al. [26] achieve impres-

sive results based on global energy optimization of a set of

selected keyframes. Our model-based bundling formulation

to recover actor identities is similar to their approach; how-

ever, we use robust and dense global photometric alignment,

which we enforce with an efficient data-parallel optimiza-

tion strategy on the GPU.

Online RGB-D Performance Capture Weise et al. [32]

capture facial performances in real-time by fitting a para-

metric blendshape model to RGB-D data, but they require

a professional, custom capture setup. The first real-time

facial performance capture system based on a commodity

depth sensor has been demonstrated by Weise et al. [31].

Follow up work [21, 4, 10, 16] focused on corrective shapes

[4], dynamically adapting the blendshape basis [21], non-

rigid mesh deformation [10], and robustness against occlu-

sions [16]. These works achieve impressive results, but rely

on depth data which is typically unavailable in most video

footage.

Online RGB Performance Capture While many sparse

real-time face trackers exist, e.g., [25], real-time dense

monocular tracking is the basis of realistic online facial

reenactment. Cao et al. [8] propose a real-time regression-

based approach to infer 3D positions of facial landmarks

which constrain a user-specific blendshape model. Follow-

up work [6] also regresses fine-scale face wrinkles. These

methods achieve impressive results, but are not directly ap-

plicable as a component in facial reenactment, since they do

not facilitate dense, pixel-accurate tracking.

Offline Reenactment Vlasic et al. [30] perform facial

reenactment by tracking a face template, which is re-

rendered under different expression parameters on top of

the target; the mouth interior is directly copied from the

source video. Dale et al. [11] achieve impressive results

using a parametric model, but they target face replacement

and compose the source face over the target. Image-based

offline mouth re-animation was shown in [5]. Garrido et

al. [13] propose an automatic purely image-based approach

to replace the entire face. These approaches merely en-

able self-reenactment; i.e., when source and target are the

same person; in contrast, we perform reenactment of a dif-

ferent target actor. Recent work presents virtual dubbing

[14], a problem similar to ours; however, the method runs at

slow offline rates and relies on a generic teeth proxy for the

mouth interior. Kemelmacher et al. [20] generate face ani-

mations from large image collections, but the obtained re-

sults lack temporal coherence. Li et al. [22] retrieve frames

from a database based on a similarity metric. They use op-

tical flow as appearance and velocity measure and search

for the k-nearest neighbors based on time stamps and flow
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Figure 1: Method overview.

distance. Saragih et al. [25] present a real-time avatar ani-

mation system from a single image. Their approach is based

on sparse landmark tracking, and the mouth of the source is

copied to the target using texture warping. Berthouzoz et

al. [2] find a flexible number of in-between frames for a

video sequence using shortest path search on a graph that

encodes frame similarity. Kawai et al. [18] re-synthesize

the inner mouth for a given frontal 2D animation using a

tooth and tongue image database; they are limited to frontal

poses, and do not produce as realistic renderings as ours

under general head motion.

Online Reenactment Recently, first online facial reenact-

ment approaches based on RGB-(D) data have been pro-

posed. Kemelmacher-Shlizerman et al. [19] enable image-

based puppetry by querying similar images from a database.

They employ an appearance cost metric and consider ro-

tation angular distance, which is similar to Kemelmacher

et al. [20]. While they achieve impressive results, the re-

trieved stream of faces is not temporally coherent. Thies et

al. [29] show the first online reenactment system; however,

they rely on depth data and use a generic teeth proxy for the

mouth region. In this paper, we address both shortcomings:

1) our method is the first real-time RGB-only reenactment

technique; 2) we synthesize the mouth regions exclusively

from the target sequence (no need for a teeth proxy or direct

source-to-target copy).

3. Synthesis of Facial Imagery

We use a multi-linear PCA model based on [3, 1, 9]. The

first two dimensions represent facial identity – i.e., geomet-

ric shape and skin reflectance – and the third dimension con-

trols the facial expression. Hence, we parametrize a face as:

Mgeo(α, δ) = aid + Eid ·α+ Eexp · δ , (1)

Malb (β) = aalb + Ealb · β . (2)

This prior assumes a multivariate normal probability distri-

bution of shape and reflectance around the average shape

aid ∈ R
3n and reflectance aalb ∈ R

3n. The shape

Eid ∈ R
3n×80, reflectance Ealb ∈ R

3n×80, and expres-

sion Eexp ∈ R
3n×76 basis and the corresponding standard

deviations σid ∈ R
80, σalb ∈ R

80, and σexp ∈ R
76 are

given. The model has 53K vertices and 106K faces. A

synthesized image CS is generated through rasterization of

the model under a rigid model transformation Φ(v) and the

full perspective transformation Π(v). Illumination is ap-

proximated by the first three bands of Spherical Harmonics

(SH) [23] basis functions, assuming Labertian surfaces and

smooth distant illumination, neglecting self-shadowing.

Synthesis is dependent on the face model parameters α,

β, δ, the illumination parameters γ, the rigid transformation

R, t, and the camera parameters κ defining Π. The vector

of unknowns P is the union of these parameters.

4. Energy Formulation

Given a monocular input sequence, we reconstruct all

unknown parameters P jointly with a robust variational op-

timization. The proposed objective is highly non-linear in

the unknowns and has the following components:

E(P)=wcolEcol(P) + wlanElan(P)
︸ ︷︷ ︸

data

+wregEreg(P)
︸ ︷︷ ︸

prior

.

(3)

The data term measures the similarity between the syn-

thesized imagery and the input data in terms of photo-

consistency Ecol and facial feature alignment Elan. The

likelihood of a given parameter vector P is taken into ac-

count by the statistical regularizer Ereg . The weights wcol,

wlan, and wreg balance the three different sub-objectives.

In all of our experiments, we set wcol = 1, wlan = 10,

and wreg = 2.5 · 10−5. In the following, we introduce the

different sub-objectives.

Photo-Consistency In order to quantify how well the in-

put data is explained by a synthesized image, we measure

the photo-metric alignment error on pixel level:

Ecol(P) =
1

|V|

∑

p∈V

‖CS(p)− CI(p)‖2 , (4)

where CS is the synthesized image, CI is the input RGB

image, and p ∈ V denote all visible pixel positions in CS .

We use the ℓ2,1-norm [12] instead of a least-squares formu-

lation to be robust against outliers. In our scenario, distance

in color space is based on ℓ2, while in the summation over

all pixels an ℓ1-norm is used to enforce sparsity.

Feature Alignment In addition, we enforce feature simi-

larity between a set of salient facial feature point pairs de-
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tected in the RGB stream:

Elan(P) =
1

|F|

∑

fj∈F

wconf,j ‖f j −Π(Φ(vj)‖
2
2 . (5)

To this end, we employ a state-of-the-art facial landmark

tracking algorithm by [24]. Each feature point f j ∈ F ⊂
R

2 comes with a detection confidence wconf,j and corre-

sponds to a unique vertex vj = Mgeo(α, δ) ∈ R
3 of our

face prior. This helps avoiding local minima in the highly-

complex energy landscape of Ecol(P).

Statistical Regularization We enforce plausibility of the

synthesized faces based on the assumption of a normal dis-

tributed population. To this end, we enforce the parameters

to stay statistically close to the mean:

Ereg(P) =

80
∑

i=1

[(

αi

σid,i

)2

+

(

βi

σalb,i

)2]

+

76
∑

i=1

(

δi

σexp,i

)2

. (6)

This commonly-used regularization strategy prevents de-

generations of the facial geometry and reflectance, and

guides the optimization strategy out of local minima [3].

5. Data-parallel Optimization Strategy

The proposed robust tracking objective is a general un-

constrained non-linear optimization problem. We minimize

this objective in real-time using a novel data-parallel GPU-

based Iteratively Reweighted Least Squares (IRLS) solver.

The key idea of IRLS is to transform the problem, in each

iteration, to a non-linear least-squares problem by splitting

the norm in two components:

||r(P)||2 = (||r(Pold)||2)
−1

︸ ︷︷ ︸

constant

· ||r(P)||22 .

Here, r(·) is a general residual and Pold is the solution com-

puted in the last iteration. Thus, the first part is kept constant

during one iteration and updated afterwards. Close in spirit

to [29], each single iteration step is implemented using the

Gauss-Newton approach. We take a single GN step in every

IRLS iteration and solve the corresponding system of nor-

mal equations JT
Jδ∗ = −J

T
F based on PCG to obtain an

optimal linear parameter update δ∗. The Jacobian J and the

systems’ right hand side −J
T
F are precomputed and stored

in device memory for later processing as proposed by Thies

et al. [29]. As suggested by [33, 29], we split up the mul-

tiplication of the old descent direction d with the system

matrix J
T
J in the PCG solver into two successive matrix-

vector products. Additional details regarding the optimiza-

tion framework are provided in the supplemental material.

6. Non-Rigid Model-Based Bundling

To estimate the identity of the actors in the heavily under-

constrained scenario of monocular reconstruction, we intro-

duce a non-rigid model-based bundling approach. Based

on the proposed objective, we jointly estimate all param-

eters over k key-frames of the input video sequence. The

estimated unknowns are the global identity {α, β} and

intrinsics κ as well as the unknown per-frame pose {δk,

R
k, tk}k and illumination parameters {γk}k. We use a

similar data-parallel optimization strategy as proposed for

model-to-frame tracking, but jointly solve the normal equa-

tions for the entire keyframe set. For our non-rigid model-

based bundling problem, the non-zero structure of the corre-

sponding Jacobian is block dense. Our PCG solver exploits

the non-zero structure for increased performance (see ad-

ditional document). Since all keyframes observe the same

face identity under potentially varying illumination, expres-

sion, and viewing angle, we can robustly separate identity

from all other problem dimensions. Note that we also solve

for the intrinsic camera parameters of Π, thus being able to

process uncalibrated video footage.

7. Expression Transfer

To transfer the expression changes from the source to

the target actor while preserving person-specificness in each

actor’s expressions, we propose a sub-space deformation

transfer technique. We are inspired by the deformation

transfer energy of Sumner et al. [27], but operate directly in

the space spanned by the expression blendshapes. This not

only allows for the precomputation of the pseudo-inverse

of the system matrix, but also drastically reduces the di-

mensionality of the optimization problem allowing for fast

real-time transfer rates. Assuming source identity αS and

target identity αT fixed, transfer takes as input the neutral

δSN , deformed source δS , and the neutral target δTN expres-

sion. Output is the transferred facial expression δT directly

in the reduced sub-space of the parametric prior.

As proposed by [27], we first compute the source de-

formation gradients Ai ∈ R
3×3 that transform the source

triangles from neutral to deformed. The deformed tar-

get v̂i = M i(α
T , δT ) is then found based on the un-

deformed state vi = M i(α
T , δTN ) by solving a linear

least-squares problem. Let (i0, i1, i2) be the vertex in-

dices of the i-th triangle, V = [vi1 − vi0 ,vi2 − vi0 ] and

V̂ = [vi1 − v̂i0 , v̂i2 − v̂i0 ], then the optimal unknown tar-

get deformation δT is the minimizer of:

E(δT ) =

|F |
∑

i=1

∣

∣

∣

∣

∣

∣
AiV − V̂

∣

∣

∣

∣

∣

∣

2

F
. (7)

This problem can be rewritten in the canonical least-squares

form by substitution:

E(δT ) =
∣
∣
∣
∣AδT − b

∣
∣
∣
∣
2

2
. (8)

The matrix A ∈ R
6|F |×76 is constant and contains the edge

information of the template mesh projected to the expres-

sion sub-space. Edge information of the target in neutral
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Figure 2: Mouth Retrieval: we use an appearance graph to

retrieve new mouth frames. In order to select a frame, we

enforce similarity to the previously-retrieved frame while

minimizing the distance to the target expression.

expression is included in the right-hand side b ∈ R
6|F |. b

varies with δS and is computed on the GPU for each new

input frame. The minimizer of the quadratic energy can be

computed by solving the corresponding normal equations.

Since the system matrix is constant, we can precompute

its Pseudo Inverse using a Singular Value Decomposition

(SVD). Later, the small 76 × 76 linear system is solved in

real-time. No additional smoothness term as in [27, 4] is

needed, since the blendshape model implicitly restricts the

result to plausible shapes and guarantees smoothness.

8. Mouth Retrieval

For a given transferred facial expression, we need to syn-

thesize a realistic target mouth region. To this end, we re-

trieve and warp the best matching mouth image from the

target actor sequence. We assume that sufficient mouth vari-

ation is available in the target video. It is also important to

note that we maintain the appearance of the target mouth.

This leads to much more realistic results than either copy-

ing the source mouth region [30, 11] or using a generic 3D

teeth proxy [14, 29].

Our approach first finds the best fitting target mouth

frame based on a frame-to-cluster matching strategy with a

novel feature similarity metric. To enforce temporal coher-

ence, we use a dense appearance graph to find a compromise

between the last retrieved mouth frame and the target mouth

frame (cf. Fig. 2). We detail all steps in the following.

Similarity Metric Our similarity metric is based on ge-
ometric and photometric features. The used descriptor
K = {R, δ,F ,L} of a frame is composed of the rotation
R, expression parameters δ, landmarks F , and a Local Bi-
nary Pattern (LBP) L. We compute these descriptors KS for
every frame in the training sequence. The target descriptor
KT consists of the result of the expression transfer and the
LBP of the frame of the driving actor. We measure the dis-
tance between a source and a target descriptor as follows:

D(KT
,K

S
t , t) = Dp(K

T
,K

S
t )+Dm(KT

,K
S
t )+Da(K

T
,K

S
t , t) .

The first term Dp measures the distance in parameter space:

Dp(K
T ,KS

t ) = ‖δT − δSt ‖
2
2 + ‖RT −R

S
t ‖

2
F .

The second term Dm measures the differential compatibil-

ity of the sparse facial landmarks:

Dm(KT ,KS
t ) =

∑

(i,j)∈Ω

(
‖FT

i −FT
j ‖2 − ‖FS

t,i −FS
t,j‖2

)2
.

Here, Ω is a set of predefined landmark pairs, defining dis-

tances such as between the upper and lower lip or between

the left and right corner of the mouth. The last term Da is

an appearance measurement term composed of two parts:

Da(K
T ,KS

t , t) = Dl(K
T ,KS

t ) + wc(K
T ,KS

t )Dc(τ, t) .

τ is the last retrieved frame index used for the reenactment

in the previous frame. Dl(K
T ,KS

t ) measures the similarity

based on LBPs that are compared via a Chi Squared Dis-

tance (for details see [13]). Dc(τ, t) measures the similar-

ity between the last retrieved frame τ and the video frame

t based on RGB cross-correlation of the normalized mouth

frames. Note that the mouth frames are normalized based

on the models texture parameterization (cf. Fig. 2). To fa-

cilitate fast frame jumps for expression changes, we incor-

porate the weight wc(K
T ,KS

t ) = e−(Dm(KT ,KS
t ))2 . We

apply this frame-to-frame distance measure in a frame-to-

cluster matching strategy, which enables real-time rates and

mitigates high-frequency jumps between mouth frames.

Frame-to-Cluster Matching Utilizing the proposed sim-

ilarity metric, we cluster the target actor sequence into

k = 10 clusters using a modified k-means algorithm that

is based on the pairwise distance function D. For every

cluster, we select the frame with the minimal distance to all

other frames within that cluster as a representative. During

runtime, we measure the distances between the target de-

scriptor KT and the descriptors of cluster representatives,

and choose the cluster whose representative frame has the

minimal distance as the new target frame.

Appearance Graph We improve temporal coherence by

building a fully-connected appearance graph of all video

frames. The edge weights are based on the RGB cross-

correlation between the normalized mouth frames, the dis-

tance in parameter space Dp, and the distance of the land-

marks Dm. The graph enables us to find an inbetween

frame that is both similar to the last retrieved frame and the

retrieved target frame (see Fig. 2). We compute this perfect

match by finding the frame of the training sequence that

minimizes the sum of the edge weights to the last retrieved

and current target frame. We blend between the previously-

retrieved frame and the newly-retrieved frame in texture
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CPU GPU FPS

SparseFT MouthRT DenseFT DeformTF Synth

5.97ms 1.90ms 22.06ms 3.98ms 10.19ms 27.6Hz

4.85ms 1.50ms 21.27ms 4.01ms 10.31ms 28.1Hz

5.57ms 1.78ms 20.97ms 3.95ms 10.32ms 28.4Hz

Table 1: Avg. run times for the three sequences of Fig. 8,

from top to bottom. Standard deviations w.r.t. the final

frame rate are 0.51, 0.56, and 0.59 fps, respectively. Note

that CPU and GPU stages run in parallel.

space on a pixel level after optic flow alignment. Before

blending, we apply an illumination correction that considers

the estimated Spherical Harmonic illumination parameters

of the retrieved frames and the current video frame. Finally,

we composite the new output frame by alpha blending be-

tween the original video frame, the illumination-corrected,

projected mouth frame, and the rendered face model.

9. Results

Live Reenactment Setup Our live reenactment setup

consists of standard consumer-level hardware. We capture a

live video with a commodity webcam (source), and down-

load monocular video clips from Youtube (target). In our

experiments, we use a Logitech HD Pro C920 camera run-

ning at 30Hz in a resolution of 640× 480; although our ap-

proach is applicable to any consumer RGB camera. Overall,

we show highly-realistic reenactment examples of our algo-

rithm on a variety of target Youtube videos at a resolution

of 1280×720. The videos show different subjects in differ-

ent scenes filmed from varying camera angles; each video

is reenacted by several volunteers as source actors. Reen-

actment results are generated at a resolution of 1280× 720.

We show real-time reenactment results in Fig. 8 and in the

accompanying video.

Runtime For all experiments, we use three hierarchy lev-

els for tracking (source and target). In pose optimization,

we only consider the second and third level, where we run

one and seven Gauss-Newton steps, respectively. Within a

Gauss-Newton step, we always run four PCG steps. In ad-

dition to tracking, our reenactment pipeline has additional

stages whose timings are listed in Table 1. Our method

runs in real-time on a commodity desktop computer with

an NVIDIA Titan X and an Intel Core i7-4770.

Tracking Comparison to Previous Work Face tracking

alone is not the main focus of our work, but the following

comparisons show that our tracking is on par with or ex-

ceeds the state of the art.

Shi et al. 2014 [26]: They capture face performances of-

fline from monocular unconstrained RGB video. The close-

ups in Fig. 4 show that our online approach yields a closer

Figure 3: Comparison of our RGB tracking to Cao et al. [7],

and to RGB-D tracking by Thies et al. [29].

Figure 4: Comparison of our tracking to Shi et al. [26].

From left to right: RGB input, reconstructed model, overlay

with input, close-ups on eye and cheek. Note that Shi et al.

perform shape-from-shading in a post process.

face fit, particularly visible at the silhouette of the input

face. We believe that our new dense non-rigid bundle ad-

justment leads to a better shape identity estimate than their

sparse approach.

Cao et al. 2014 [7]: They capture face performance from

monocular RGB in real-time. In most cases, our and their

method produce similar high-quality results (see Fig. 3); our

identity and expression estimates are slightly more accurate

though.

Thies et al. 2015 [29]: Their approach captures face per-

formance in real-time from RGB-D, Fig. 3. Results of both

approaches are similarly accurate; but our approach does

not require depth data.

2392



Figure 5: Comparison against FaceShift RGB-D tracking.

Figure 6: Dubbing: Comparison to Garrido et al. [14].

FaceShift 2014: We compare our tracker to the com-

mercial real-time RGB-D tracker from FaceShift, which is

based on the work of Weise et al. [31]. Fig. 5 shows that we

obtain similar results from RGB only.

Reenactment Evaluation In Fig. 6, we compare our ap-

proach against state-of-the art reenactment by Garrido et al.

[14]. Both methods provide highly-realistic reenactment re-

sults; however, their method is fundamentally offline, as

they require all frames of a sequence to be present at any

time. In addition, they rely on a generic geometric teeth

proxy which in some frames makes reenactment less con-

vincing. In Fig. 7, we compare against the work by Thies et

al. [29]. Runtime and visual quality are similar for both ap-

proaches; however, their geometric teeth proxy leads to un-

desired appearance changes in the reenacted mouth. More-

over, Thies et al. use an RGB-D camera, which limits the

application range; they cannot reenact Youtube videos. We

show additional comparisons in the supplemental material

against Dale et al. [11] and Garrido et al. [13].

10. Limitations

The assumption of Lambertian surfaces and smooth illu-

mination is limiting, and may lead to artifacts in the pres-

ence of hard shadows or specular highlights; a limitation

Figure 7: Comparison of the proposed RGB reenactment to

the RGB-D reenactment of Thies et al. [29].

shared by most state-of-the-art methods. Scenes with face

occlusions by long hair and a beard are challenging. Fur-

thermore, we only reconstruct and track a low-dimensional

blendshape model (76 expression coefficients), which omits

fine-scale static and transient surface details. Our retrieval-

based mouth synthesis assumes sufficient visible expression

variation in the target sequence. On a too short sequence, or

when the target remains static, we cannot learn the person-

specific mouth behavior. In this case, temporal aliasing can

be observed, as the target space of the retrieved mouth sam-

ples is too sparse. Another limitation is caused by our hard-

ware setup (webcam, USB, and PCI), which introduces a

small delay of ≈ 3 frames. Specialized hardware could re-

solve this, but our aim is a setup with commodity hardware.

11. Conclusion

The presented approach is the first real-time facial reen-

actment system that requires just monocular RGB input.

Our live setup enables the animation of legacy video footage

– e.g., from Youtube – in real time. Overall, we believe our

system will pave the way for many new and exciting appli-

cations in the fields of VR/AR, teleconferencing, or on-the-

fly dubbing of videos with translated audio.
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Figure 8: Results of our reenactment system. Corresponding run times are listed in Table 1. The length of the source and

resulting output sequences is 965, 1436, and 1791 frames, respectively; the length of the input target sequences is 431, 286,

and 392 frames, respectively.
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