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Abstract 

In this work we study virtual social networks known as Facebook. It is used by 
millions of people worldwide, gathering a combination of virtual elements 
and real world components. We suggest a probabilistic model to describe the 
long-term behavior of Facebook. This model includes different friendship 
connection between profiles, directly or by suggestion. Due to web’s high in-
teractivity level, we simplify the model assuming Markovian dynamic. After 
the model is established we propose Complete Transversality (CT) communi-
cation concept. CT describes people interaction that reflects profile behaviour 
and leads to estimators that measure this interaction. Then we introduce a 
weakness version of CT named Segmental Transversality (ST). Within this 
framework we develop estimators that allow hypothesis testing of CT and ST. 
And then, in ST context we propose performance measures to address a priori 
segmentation’s quality. 
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1. Introduction 

Social networks have emerged as a communication tool of unexpected impact. 
Frequent contact between people through these networks gives rise to virtual re-
lationships developed according to their interests. This study’s approach follows 
[1] which poses emphasis not only in the individual behaviour but in social in-
teraction within the network. 

One of today’s challenges is to develop accurate tools to identify influential 
users by sectors and markets, and to understand information flow dynamics. In 
turn, it is difficult to fully observe a social network; therefore statistical problems 
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and probabilistic modelling are important issues (see [2] [3] and [4] for surveys 
on this subject). Besides this topic, social networks also provide examples of sit-
uations of unidentifiable or censored data models and this makes them particu-
larly interesting. 

The above concerns lead us to study virtual social networks phenomenon and 
we restricted our analysis to Facebook. For this we develop a model which, al-
though does not describe it in full reality, it is useful as an approach to network’s 
dynamics study. Naturally this model leads to graph theory which relates to 
work in [5] and [6]. 

We will use mathematical tools and statistics from stochastic processes field [7] 
[8] [9], trying to answer questions such as the existence of transversal commu-
nication or how to find if a network segmentation proposed is optimal within a 
certain communication behaviour between segments. 

This paper is structured as follows. In Section 2 we address Facebook model-
ling using tools of Markov chains, we introduce the concept of complete trans-
versality in the communication, and in this context, we try to find the distribu-
tion of random functions involved in the model. 

Section 3 proposes two statistical hypothesis tests, one to prove network’s CT 
and the other to prove CT between network segments using U-statistics theory 
and asymptotic convergence theorems presented in [10]. We end this section, 
defining useful performance index to measure segmentation’s quality. 

Section 4 is devoted to conclusions and acknowledgment. 
Section 5 is an appendix with proofs of the results obtained in the preceding 

sections. 
Further and related works on this subject can be read in one of author’s PhD 

theses [11]. 

2. Model Description 

In this section we propose a model for describe Facebook dynamics. 
Consider t∈ . Let t  denote the set of all internet users at instant t and 

t  the set of Facebook’s profiles at time t. Of course 1t t+⊆   and, we’ll also 
suppose that once a profile is created it cannot be eliminated. (Actually a profile 
can be eliminated, but this is tedious and difficult to do, so we disregard this be-
haviour.) Then 1t t+⊆  . 

We also denote ∞  and ∞  to the sets 
0

t
t

∞

∞
=

=


   and 
0

t
t

∞

∞
=

=


   respec-
tively. 

For each instant t, we will model the network with a random graph where the 
nodes represent profiles and the edges represent friendship links. 

Definition 1. Let , tf g∈ . We define the random “friendship” function at 
time t as the function { }: 0,1t t tα × →  , such that if f g≠ ,  

( )
1, if and  are friend satinstant ,

,
0, if and  are not friend satinstant ,t

f g t
f g

f g t
α


= 


 

and  
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( )
1, for all ,

,
0, if .

t
t

t

f
f f

f
α

∞

∈
=  ∈ −


 

 

Remark. The “friendship” relationship is symmetric, so function tα  is also 
symmetric. Then, the random graph determined by tα  is bi-directional and we 
can define the adjacency matrix as follows.  

Definition 2. Let M be the cardinal number of ∞  and let M M×  be the 
set of binary symmetric matrices of order M. We define the random “friendship” 
matrix at time t as the matrix t M M×∈   whose elements are the values taken 
by tα  for each pair of profiles ( ),f g ∞ ∞∈ ×  .  

Due to the high level of interactivity on social networks, is natural to suppose 
that { }t  is a Markov chain with states space in M M× . Then, given two 
states  and  of { }t , we denote ,

, 1t tp +
   to the one step transition probability 

from  to . 
Because of t  symmetry’s, ,

, 1t tp +
   is determined by the one step transition 

probability of the lower subdiagonal’s elements of t . Then, if we say that f 
precedes jf  if i j<  and we write i jf f

 and, given M M×∈  , we denote 
( ) { }, :i jSD i j= >   to the set of the lower subdiagonal’s entries of , we have 

that: 

( ) ( ) ( ) ( ),
, 1 1 / .t t t tp P SD SD SD SD+ + = = = 
    

          
(1) 

For (1) calculation’s, we describe through events the profile’s actions which 
have impact on the transition. These events will be linked to certain indices that 
we will construct to measure affinities between profiles. 

We will use the following notation. Let A be any set, we will denote:  

( ) ( ){ }, : , ,A A D A A a a a a A a a′ ′ ′× − × = ∈ ≠  

to the set of distinct pairs of A’s elements, and by  

( ) ( ){ }, , : , , , , ,A A A D A A A a a a a a a A a a a a a a′ ′′ ′ ′′ ′ ′′ ′ ′′× × − × × = ∈ ≠ ≠ ≠  

to the set of triples of A’s elements they are different by pairs. 
Definition 3. Let ,p p ∞′∈ , with p p′≠ . We define the p “image index” 

over p′  as the function ( ):X D∞ ∞ ∞ ∞× − × →      such that  

( )
( )
( )

, 0, if has positive image of ,
, 0, if is indiferent to ,
, 0, if has negative image of .

X p p p p
X p p p p
X p p p p

′ ′>
 ′ ′=
 ′ ′<

 

Remark. We will suppose that the network lies at steady state, this implies 
that image between profiles has also evolved to a steady state, so the function X 
does not depends on time t. Besides, function X is not symmetric, non observa-
ble and monotonic.  

Definition 4. Let ,f g ∞∈ , with f g≠ . We define f “image index” over g 
as the function ( ):tY D∞ ∞ ∞ ∞× − × →     , given by  

( ) ( )( ) ( )
1 1

1, , , ,
m l

t i j t
i j

Y f g X p p f g
m l

ε
= =

′= Φ +
∗ ∑∑

            
(2) 
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with { }1, , mp p  and { }1, , lp p′ ′
  the users sets that administrate f and g pro-

files respectively, :Φ →   a monotonic regression function, and ( ){ },t f gε  
independent and identically distributed random variables with ( ) 0tE ε =  and 
( )2 2 0tE ε σ= > , for all pair ( ),f g ∞ ∞∈ ×  , f g≠ .  
To triples ordered of users and triples ordered of profiles we define the fol-

lowing indices.  
Definition 5. Let , ,p p p ∞′ ′′∈ . For the triple ordered of users ( ), ,p p p′ ′′  

we define an “image index” as the function  

( ):U D∞ ∞ ∞ ∞ ∞ ∞× × − × × →       

that assigns to each triple, a real number that represents acceptance level for the 
action p suggests to p′  to be a friend of p′′ .  

Remark. As with X, U doesn’t depend on t, is non symmetric and non ob-
servable.  

Definition 6. Let , ,f g h ∞∈  distinct by pairs. For the triple ordered of pro-
files ( ), ,f g h  we define the “index image” as the function  

( ): ,tW D∞ ∞ ∞ ∞ ∞ ∞× × − × × →       

given by  

( ) ( )( ) ( )
1 1 1

1, , , , , , ,
m k l

t i j r t
i j r

W f g h U p p p f g h
m k l

η
= = =

′ ′′= Ψ +
∗ ∗ ∑∑∑

      
(3) 

with { }1, , mp p , { }1, , kp p′ ′
  and { }1, , lp p′′ ′′

  the users sets that admini-
strate f, g and h profiles respectively, :Ψ →   a monotonic regression func-
tion and ( ){ }, ,t f g hη  independent and identically distributed random variables 

with ( ) 0tE η =  and ( )2 2 0tE η τ= > , for every triple ( ), ,f g h ∞ ∞ ∞∈ × ×   , 

distinct by pairs.  
Then, given , ,f g h ∞∈ , we will suppose that there are 0Bδ > , 0Rδ >  and 

0Iδ > , such that:  
i) “f breaks friendship with g” ⇔ ( ){ },t BY f g δ< − . 
(The breakdown of friendship may be due to that f take decision to eliminate g 

or vice versa). 
ii) “f successfully requests friendship to g” ⇔ ( ){ },t RY f g δ> . 

(The request of successful friendship arises when f asks to g for friendship and 
g accepts to f as his friend). 

iii) “f successfully suggests to g, h’s friendship” ⇔ ( ){ }, ,t IW f g h δ> . 
(The suggestion of successful friendship is given when f suggests h to g, g re-

quests h’s friendship and h accepts). 
Then, if we denote with ( )tI f  to the interventions of f regardless its effects 

in the transitions from one instant to the next from   to  , these can be de-
scribed in a disjunct union of the following events: 

( ) ( ){ }
,
,

1

:
1,
0

s breaks , ,
f g
f g

t t B
g f

D f f Y f g δ
=
=

′= = < −







“ ”  
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( ) ( ){ }
,
,

2

:
=1,
=1

s nobreaks , ,
f g
f g

t t B
g f

D f f Y f g δ′= = ≥ −







“ ”  

( ) ( ){ } ( ){ }
, ,
, ,

3

: :
0, 0,
1 0

s requests , , ,
f g f g
f g f g

t t R t R
g f g f

D f f Y f g Y f gδ δ
= =
= =

′= = > ≤
 



 

 
 

“ ”  

( )

( ){ } ( ){ }
, , ,

, ,

4

: : :
1 1, 1,

1 0

s suggestions

, , , , ,
f g f h f h

g h g h

t

t I t I
g f h f h f

D f f

W f g h W f g hδ δ
= = =

= =

′=

 
 
 = > ≤
 
 
 

  



  

  
 

“ ”

 that is,  

( ) ( )
4

1

i
t t

i
I f D f

=

=


, and the transition probabilities in one step from   to   

can be expressed in the following formula:  

( ),
, 1 .t t t

f
p P I f

∞

+
∈

 
=   

 


 

                       
(4) 

Proposition 1. The one step transition probability from   to   of the 
Markov chain { }t  is given by:  

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

4 3 4
,

, 1
1 1 1

42 3 4

1 1 1 1
,

i i j
t t t t t

i i j if

i j k i
t t t t

i j i k j i

p P D f P D f P D f

P D f P D f P D f P D f

∞

+
= = = +∈

= = + = + =


= −




+ − 


∑ ∑ ∑∏

∑∑ ∑ ∏

 


 

with 

( )( ) ( )( )
,
,

1

:
1,
0

,
f g
f g

t t B
g f

P D f P Y f g δ
=
=

= < −∏





, 

( )( ) ( )( )
,
,

2

:
1,
1

,
f g
f g

t t B
g f

P D f P Y f g δ
=
=

= ≥ −∏





, 

( )( ) ( )( ) ( )( )
, ,
, ,

3

: :
0, 0,
1 0

1 , ,
f g f g
f g f g

t t R t R
g f g f

P D f P Y f g P Y f gδ δ
= =
= =

= − ≤ >∏ ∏
 

 
 

 

and 

( )( ) ( )( ) ( )( )
, , ,

, ,

4

: : :
1 1, 1,

1 0

1 , , , , .
f g f h f h

g h g h

t t I t I
g f h f h f

P D f P W f g h P W f g hδ δ
= = =

= =

 
 
 = − ≤ >
 
 
 

∏ ∏ ∏
  

  
 

 

Complete Transversality 

Complete Transversality (CT) in a social network is associated to a certain 
communication behavior. This behavior implies that relationship probability 
between two profiles is always the same. No matter who the profiles are. 
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CT arises from social scientific theories [12] that poses that massification of 
social networks would bring an horizontality in communication and transversal-
ity in connection between people, overpassing social, economic, ethnographic 
and other differences. Virtual social networks would bring balance and democ-
racy to all people connection. 

In terms of the model, this could be reflected in the “image index” X of one 
user p over another p′  and in the “image index” U of the triple ordered of us-
ers ( ), ,p p p′ ′′  distinct by pairs. So, averages of regression functions ( )XΦ  
and ( )UΨ  takes the same value in (2) and (3). Let’s say they are equal to 

1C ∈  for all distinct user pairs and 2C ∈  for all triples ordered of users 
distinct by pairs. Under this conditions, “image indices” given by (2) and (3) are 
reduced to ( )1 ,tC f gε+  and ( )2 , ,tC f g hη+ . 

When network follows this behaviour, the following results can be established. 
Theorem 1. (Homogeneity) 
Under the CT context, { }t  is a time-homogeneous Markov chain.  

Theorem 2. (Ergodicity) 
Under the CT context, the Markov chain { }t  is ergodic, and when initial 

distribution is ergodic, the friendship indicator between a pair of profiles 
( ),f g ∞ ∞∈ ×  , with f g , denoted by ( ),f gα∞ , is a random variable with 
Bernoulli distribution and parameter p, 0 1p< < , with the same distribution 
and independent of the friendship indicator of any pair of distinct profiles.  

From the results exposed in former Theorem we can conclude that, for 
∈  , ergodic distribution under CT is  

( ) ( ) ,, 11 , 0 1.f gf g

g ff
g

p p pπ
∞

∞

−

∈
∈

∞ ≅ ⋅ − < <∏ ∏








 

3. Test and Estimation 

We are aimed to discuss the CT’s validity in social network Facebook. For this, 
we will propose two statistics based on samples of N profiles and will study their 
asymptotic distribution under CT when N increases. Besides, we will present the 
CT tests. 

Further, in this section we will introduce a lighter version of CT called Seg-
ment Transversality (ST) related to a given segmentation, that allow us to elabo-
rate segmentation quality index. 

3.1. Average Communication between Profiles  

Let  

( )
1

2
1 1

1 , ,
N N

N i j
i j iN

E f f
C

α
−

∞
= = +

= ∑ ∑
                    

(5) 

this statistic averages proportion of friends who have profiles on the sample and 
therefore measures “sample’s communication average”. 

Focusing on long term dynamics, we have seen that under CT, the random 

https://doi.org/10.4236/apm.2018.84021


J. Bavio et al. 
 

 

DOI: 10.4236/apm.2018.84021 386 Advances in Pure Mathematics 

 

variables ( ),i jf fα∞ , i j≠  are independent Bernoulli with parameter p. Then,  

we can verify that ( )NE E p=  and ( ) ( )
( )

2 1
1N

p p
Var E

N N
−

=
−

. 

We want to find EN’s asymptotic distribution, so we study asymptotic beha-
viour of  

( )( )
1

2
1 1

1 ,

N

N N

i j
i j iN

E p

f f p
C

α
−

∞
= = +

−

= −∑ ∑                    
(6) 

when sample size N grows towards infinity. 

If we denote ( )( )2
1

1 ,
N

i
N i j

j iN

Y f f p
C

α∞
= +

= −∑ , we have that 
1

1

N
i

N N
i

E p Y
−

=

− = ∑ , 

where { }: 1, 2, , 1i
NY i N= −  forms a triangular array.  

Theorem 3. If the triangular array { }: 1, 2, , 1i
NY i N= −  verifies the fol-

lowing conditions:  
i) For each N ∈ , { }: 1, 2, , 1i

NY i N= −  are independents;  

ii) ( ) 0i
NE Y → , when N →∞ ;  

iii) ( )
1

2

1

N
i

N N
i

s Var Y
−

=

= < ∞∑ ;  

iv) Exists 0δ >  such that  

( )2i
NE Y

δ+  < ∞  
, for all N and for all i, 

and Lyapunov conditions is met, that is,  

( ) ( )
1 2

2
1

1, 0, when ,
N

i
N

iN

L N E Y N
s

δ

δδ
− +

+
=

 = → →∞  ∑
          

(7) 

then  

( )
1

1

1 0,1 , when .
N wi

N
iN

Y N
s

−

=

⇒ →∞∑ 
                

(8) 

Proof 1. Hypothesis i) is trivial because for i i′≠  and N fixed,  

( )( )
1

,
N

i j
j i

f f pα∞
= +

−∑  is independent of ( )( )
1

,
N

i j
j i

f f pα ′∞
′= +

−∑ . 

Besides, ( ) ( ) ( )( )2

1 , 0i
N i j

N

E Y N i E f f p
C

α∞= − − = , and  

( )

( )
( )( )

( )

1
2

1

1

22 1 1

2

1 ,

1 1

N
i

N N
i

N N

i j
i j i

N

N

s Var Y

Var f f
C

p p
C

α

−

=

−

∞
= = +

=

=

= − < ∞

∑

∑ ∑
                

(9) 

Then, the hypothesis ii) and iii) are met. 

https://doi.org/10.4236/apm.2018.84021


J. Bavio et al. 
 

 

DOI: 10.4236/apm.2018.84021 387 Advances in Pure Mathematics 

 

Let 2δ = . We will see that iv) holds. For this, we will calculate  

( )( ) ( )
( )( )

( )
( )( )

( )( ) ( )( )

( )
( ) ( )

4
4

42 1

4

42 1

1 2 22
4

1 1

42

1 ,

1 ,

, ,

1 1 ,

N
i

N i j
j i

N

N

i j
j i

N

N N

i j i k
j i k j

p p

N

E Y E f f p
C

E E f f p
C

C E f f p E f f p

N i N i
C

α

α

α α

∞
= +

∞
= +

−

∞ ∞
= + = +

  
 = − 
   


= −




+ − − 



 = − + − − 

∑

∑

∑ ∑



 

 

with 4 3 2 33 3 4 3p pp p p p p p ′= − + − + < + =  , ( )223 1p p p= −

 ,  
1N i N− ≤ −  and 1 2N i N− − ≤ − . 

Then,  

( )( ) ( )
( ) ( )( )

( )
( ) ( ){ }

( )

4

42

2
42

2
42

1 1 1 2

1 3 2 1

1 , for all and for all ,

i
N p p

N

p p p

N

p

N

E Y N N N
C

N N N
C

N N i
C

 ′≤ − + − − 

 ′= − − − − 

≤ < ∞



 

 

  





 

and Lyapunov condition given by (7) can be verified for 2δ = :  

( ) ( )( )

( )
( )

( )
( ) ( )

( )

1 4

4
1

2
4 42

2

2 222

22

1, 2

1 1 1

1

1

41 0 , when .
1

N
i

N
iN

p
N N

p

N

p

L N E Y
s

N N
s C

N N

p pC

N
N p p

−

=

+

=

≤ −

−
=

−

≅ ↓ →∞
−

∑













 

Consequently the hypothesis i)-iv) holds and we conclude that 

( )
1

=1

1 0,1 , when .
N wi

N
iN

Y N
s

−

⇒ →∞∑   

Returning to the centered statistic expression 
1

N
i

N N
i

E p Y
=

− =∑  and to the ex-

pression of Ns  given by (9) results the following:  

( )
( ) ( )

1

1 0,1 , when ,
2 1

N wi
N N

iN

NY E p N
s p p=

≅ − ⇒ →∞
−

∑   

that is,  
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( ) ( )( )0,2 1 , when .
w

NN E p p p N− ⇒ − →∞
           

(10) 

As EN is a communication estimation between profiles, if we select different 
profile samples under CT, we shouldn’t detect differences among p’s estima-
tions. 

To study this, we propose the following hypothesis test to compare commu-
nication average. 

Given 1, , Nf f  and 1, , Ng g , independent profile samples of ∞ , that ve-
rifies { } { }1 1, , , ,N Nf f g g =∅   , we build the statistics: 

( ) ( )
1 1

*
2 2

1 1 1 1

1 1, and ,
N N N N

N i j N i j
i j i i j iN N

E f f E g g
C C

α α
− −

∞ ∞
= = + = = +

= =∑ ∑ ∑ ∑  

and we have that  

( ) ( ) ( )* 0,1 ,N NE E E E pµ = = = ∈  

and  

( ) ( ) ( )2 * 2 1 ,N NVar E Var E p pσ = = = −  

with ( )σ σ µ= , this is, mean and variance are linked and ( )σ µ  is derivable. 
So, if we take,  

( ) ( )2 ,g arcsenµ µ=  

( ) ( )
1g µ

σ µ
′ =  and, 

( ) ( )( ) ( ) ( )( ) ( )220, 0,1 , when ,
w

NN g E g p p g p Nσ ′− ⇒ = →∞ 
 

(11) 

and  

( ) ( )( ) ( ) ( )( ) ( )2* 20, 0,1 , when .
w

NN g E g p p g p Nσ ′− ⇒ = →∞ 
 

(12) 

Consequently, to test average communication, we can substract (11) and (12). 
This statistic, under CT assumption, results  

( ) ( )( ) ( )* 0, 2 , when .
w

N NN g E g E N− ⇒ →∞
          

(13) 

and, given a signification level α, we obtain the following critic region  

( ) ( )*
2 .

2 N N
NR g E g E zα α

 = − ≥ 
 

 

Real Data Testing 
We perform such an experiment in a real profile network that gives permission 
to the authors for sampling. For confidential reasons we cannot release any of 
the data used to make calculations. We can state that we take two independent 
and disjunct samples of size 75N = . The statistic value was  

( ) ( )* 2.1
2 N N

N g E g E− = . Therefore, with a 0.05α =  significance level, we 
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reject CT hypothesis. 
This results indicates the social network Facebook is a platform in which 

communication between people or groups of people is it NOT TRANSVERSAL. 

3.2. Mean Square Deviation of the Communication between  
Profiles  

Let 

( ) ( )

( ) ( )

( )
( ) ( )( )

2
1 1

2 2
1 1 1 1

21 12

2 2
1 1 1 1

2
1 1

22 1 1 1 1

1 1, ,

1 1, ,

, ,1 ,
2

N N N N

N i j k l
i j i k l kN N

N N N N

i j k l
i j i k l kN N

N N N N i j k l

i j i k l k
N

T f f f f
C C

f f f f
C C

f f f f

C

α α

α α

α α

− −

∞ ∞
= = + = = +

− −

∞ ∞
= = + = = +

− − ∞ ∞

= = + = = +

 
= − 

 
  = −  

   

−
=

∑∑ ∑∑

∑∑ ∑∑

∑∑∑∑
        

(14) 

be an statistic that estimates the mean square deviation of the communication 
between profiles respect to its mean. 

In order to find the asymptotic distribution of TN we use properties of 
U-statistics introduced in [13]. 

Suppose that 1, , NX X  are independent and identically distributed random 
variables and that : rh →  , 1 r N≤ ≤  is some symmetric function respect 
to permutations.  

Definition 7. A U-statistic of order r with kernel h is defined as  

( )1
1 21

1 , , .
r

r
N i ir

i i i NN

U U h X X
C ≤ < < < ≤

= = ∑


  

We state the following theorem whose proof can be seen in [10].  
Theorem 4. Let UN be a U-statistic of order r with kernel h. Suppose that 

( )( )2
1, , rE h X X < ∞  and that  

i) 1 2 2, , , , , ,r rX X X Y Y   are independent and identically distributed ran-
dom variables,  

ii) ( )( )1, , rE h X Xθ =   and,  

iii) ( ) ( )( )1 1 2 1 2, , , , , , , .r rCov h X X X h X Y Yζ =     
Then, if 10 ζ< < ∞ ,  

( ) ( )2
10, , when .

w
NN U r Nθ ζ− ⇒ →∞

            
(15) 

Then we have that TN is a U-statistic of order 2 with kernel  

( ) ( )( )
( ) ( )( )2

, ,
, ,

2
i j k l

i k

f f f f
h v f v f

α α∞ ∞

∞ ∞

−
=  

where ( ) ( )( ),i i h h
v f f fα

∞
∞ ∞ ∈

=


 and ( ) ( )( ),k k h h
v f f fα

∞
∞ ∞ ∈

=


. Thus, under 

CT, ( )1p pθ = −  and ( ) ( )22
1

1 1 1
4

p p p pζ = − − − .  

Remark. For the proposed model for Facebook, p is the friendship probability 
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of any pair of profiles in long term and, because of the large size of the network, 
p is probably less than 0.5. Thus, 0p ≠ , 1p ≠  and 0.5p ≠ , therefore 1 0ζ ≠ .  

As 10 ζ< < ∞ , by the Theorem 4 is  

( )( ) ( ) ( )( )221 0, 1 4 1 , when .
w

NN T p p p p p p N− − ⇒ − − − →∞
  

(16) 

As ( )1p pµ = −  and ( ) ( )221 4 1p p p pσ = − − − , we see that ( )σ σ µ=  

and ( )σ µ  is derivable. Taking  

( ) ( )2 ,g arcsenµ µ=  

( )g µ  verifies that ( ) ( )
1g µ

σ µ
′ =  and the limit expression on (16) is  

( ) ( )( )( ) ( )( ) ( )( )( ) ( )221 0, 1 1 0,1 ,
w

NN g T g p p p p g p pσ ′− − ⇒ − − =  (17) 

when N →∞ . 
We can make a test to prove CT by comparing the mean square deviation of 

two independent populations of profiles. For this we take two independent sam-
ples of N profiles of ∞ , 1, , Nf f  and 1, , Ng g  such that  
{ } { }1 1, , , ,N Nf f g g =∅   , we construct the statistics  

( ) ( )
2

1 1

2 2
1 1 1 1

1 1, ,
N N N N

N i j k l
i j i k l kN N

T f f f f
C C

α α
− −

∞ ∞
= = + = = +

 
= − 

 
∑∑ ∑∑  

and  

( ) ( )
2

1 1
*

2 2
1 1 1 1

1 1, , ,
N N N N

N i j k l
i j i k l kN N

T g g g g
C C

α α
− −

∞ ∞
= = + = = +

 
= − 

 
∑∑ ∑∑  

then, by (17), we obtain the asymptotic distribution of the statistic for the com-
parison of mean square deviations under the context of CT, that is,  

( ) ( )( ) ( )* 0, 2 , ,
w

N NN g T g T N− ⇒ →∞  

being the critical region at the level of significance α  

( ) ( )*
2 .

2 N N
NR g T g T zα α

  = − ≥ 
  

 

Similarly as for the test comparing the average proportion of communication 
between profiles, we use the same real profile and, on his network of friends, we 
take two independent and disjoint samples and calculate the statistic and the 
critical region, concluding that the hypothesis of CT is rejected again. 

3.3. Segmented Transversality 

A context of CT in a social network like Facebook is far from reality as evi-
denced by the findings of the two tests that we made. Is reasonable to think that 
profiles tend to cluster in different segments according to social criteria such as 
political ideologies, economic interests, musical tastes, ages, etc., and that these 
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segments are also related to each other. 
We introduce the concept of Segmented Transversality (ST), that is, CT be-

tween segments. Then, making a priori segmentation on the network, we will 
introduce a statistic representing the communication between pairs of segments 
and we will prove CT between the profiles of the segments. 

Let 1, , kS S  be a partition in segments of ∞ . We notice with 

{ }
{ }

i
i

card S
a

card ∞

=


 to the proportion of profiles of iS , 1, 2, ,i k=  , 0ia > , 

1
1

k

i
i

a
=

=∑ , and we make a random stratified sampling by segments as follows: 

[ ]11, , a Nf f  are chosen randomly inside of 1S , [ ] ( )1 1 21, ,a N a a Nf f+ +  
  are chosen 

randomly inside of 2S , and so on until 1

11
1
, , kk

ii
ii

a Na N
f f−

==

    
+            

∑∑
  are chosen ran-

domly inside of kS , being [x] the integer part of x, that is, 

[ ] { }max :x k k x= ∈ ≤ , for 0x > . 

Given the  set s  [ ]{ }1 11, ,I a N=  ,  [ ] ( ){ }2 1 1 21, ,I a N a a N= + +   ,   , 

1

1 1
1, ,

k k

k i i
i i

I a N a N
−

= =

      = +     
      
∑ ∑  and, given rS  and tS  two segments of  

the partition on k segments of ∞ , for i rf S∈  and j tf S∈ , with ri I∈  and 

tj I∈ , we notice with ijq  to the probability of friendship between if  and jf , 
that is, ( )( ): , 1ij i j jiq P f f qα∞= = = . 

Remark. Friendship’s random functions ( )( ),i j i j
f fα∞ <

 still are independent 
random variables with Bernoulli distribution, but now the parameter distribu-
tion depends on the intensity of the relationship between the pair of profiles 
considered.  

Definition 8. Given two segments of profiles rS  and tS , we say that there is 
CT between them if given i rf S∈  and j tf S∈ , with ri I∈  and tj I∈ , 

( ),i jf fα∞  has Bernoulli distribution with parameter rtq , for all i rf S∈  and 
for all j tf S∈ .  

That is, CT between segments means a distinctive homogeneous behavior in 
the communication between them. 

So, let  

( ) { } { } ( )1 1, , ,
r t

i j
i I j Ir t

E r t f f
card I card I

α∞
∈ ∈

= ∑ ∑
           

(18) 

be the average proportion of friends of the profiles of rS  in the segment tS . 
Then, under CT between rS  and tS , we have that ( )( ), rtE E r t q=  and  

( )( ) ( )
{ } { }

1
, rt rt

r t

q q
Var E r t

card I card I
−

= . 

Of the same way as we obtain the asymptotic distribution of the centered es-
timator NE p−  of the expression (6), we can obtain the asymptotic distribu-
tion of  
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( ) { }
( )

{ }
,1, ,

r t

i j rt
rt

i I j Ir t

f f q
E r t q

card I card I

α∞

∈ ∈

−
− = ∑ ∑

           
(19) 

resulting  

{ } { } ( )( ) ( )( ), 0, 1 , when .
w

r t rt rt rtcard I card I E r t q q q N− ⇒ − →∞
  

(20) 

If we want to test CT between a pair of segments rS  and tS  we make a stra-
tified random sampling independent from the previous one in which 

[ ]11, , a Ng g  are chosen randomly inside of 1S , [ ] ( )1 1 21, ,a N a a Ng g+ +  
  are cho-

sen randomly inside of 2S , and so on until 1

11
1
, , kk

ii
ii

a Na N
g g−

==

    
+            

∑∑
  are chosen 

randomly inside of kS , with  

[ ]{ } [ ]{ }1 11 1, , , ,a N a Nf f g g =∅   , 

[ ] ( ){ } [ ] ( ){ }1 11 2 1 21 1, , , , ,a N a Na a N a a Nf f g g+ ++ +      
= ∅    

1 1

1 11 1
1 1
, , , ,k kk k

i ii i
i ii i

a N a Na N a N
f f g g− −

= == =

          
+ +                           

∑ ∑∑ ∑

   
    =∅   
      

  
, 

and we construct the statistic  

( ) { } { } ( )* 1 1, , .
r t

i j
i I j Ir t

E r t g g
card I card I

α∞
∈ ∈

= ∑ ∑
           

(21) 

Then, under CT between rS  and tS , are ( )( )* , rtE E r t q= ,  

( )( ) ( )
{ } { }

* 1
, rt rt

r t

q q
Var E r t

card I card I
−

=  and  

{ } { } ( )( ) ( )( )* , 0, 1 , when .
w

r t rt rt rtcard I card I E r t q q q N− ⇒ − →∞
 

(22) 

For ( ),E r t  and ( )* ,E r t  we have that the variance σ is a function of the 
expected value µ, that is, ( ) ( )1σ µ µ µ= − , where rtqµ =  and ( )σ µ  is de-
rivable. Then, taking  

( ) ( )2g arcsenµ µ=  

we have that ( ) ( )
1g µ

σ µ
′ =  and, similarly as in the previous section, we can 

conclude that  

{ } { } ( )( ) ( )( )( ) ( )*, , 0, 2 , when ,
w

r tcard I card I g E r t g E r t N− ⇒ →∞  

being the critical region at the level of significance α, 

{ } { } ( )( ) ( )( )*

2

, , .
2

r tcard I card I
R g E r t g E r t zα α

  = − ≥ 
  

 

Therefore, if the test leads to the rejection of the hypothesis of CT between the 
segments rS  and tS , with an error probability of α we say that such segments 
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do not have a distinctive homogeneous behavior in the communication. 

3.4. Quality on Segmentation 

If we divide the network into k disjoint segments, we can take all possible pairs 
of those k segments, 2

kC , and make a total of 2
kC  test, one of each pair and test 

whether the segment of this pair have a distinctive homogeneous behavior in the 
communication. We can represent these 2

kC  test by a binary symmetric matrix 
of order k,  , in which each element ij  is one if the segments iS  and jS  
were not homogeneous in terms of communication, that is, if the corresponding 
test rejects the hypothesis of CT and, ij  equals zero, otherwise. 

Then, noticing the cardinal of the set of “ones” in the subdiagonal of   as  

( ) ( ){ }1 in ,g d card s SD′=   

we can define the following useful performance index to measure the quality on 
segmentation:  

( )
2 100%.p
k

g d
C

C
=

                       
(23) 

If we keep the segmentation and make a stratified random sampling segment 
m times, with m sufficiently large, and calculate m times the index defined in 
(23), i

pC , with 1, ,i m=  , we can observe the histogram representing the dis-
tribution of quality on segmentation. If the most of the times this measure re-
sults, for example, greater than the mean of the observations, we continue seg-
menting according to the criteria which has been used, otherwise it is desirable 
to modify the segmentation criteria. 

Let’s illustrate this with an example. Suppose we segment people by age (>15, 
<20, >20 and <30, >30) and gender (M, F). 

 
Age\Gender M F 

>15, <20 S1 S2 

>20, <30 S3 S4 

>30 S5 S6 

 
Given this segmentation, suppose we conduct the 15 hypothesis test for seg-

ment transversality and obtain the following segment adjacency matrix  
 

Segments S1 S2 S3 S4 S5 S6 

S1 0      

S2 0 0     

S3 1 0 0    

S4 1 1 0 0   

S5 0 0 1 0 0  

S6 1 0 1 0 0 1 
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A one in this matrix means that segment iS  with segment jS  behaves dis-
tinctly in the sense of transversality communication. Zeros in the upper triangle 
matrix doesn’t mean anything. Each segment compare to each self is homegen-
ous (zero in the diagonals) except in segment 6. This could mean that further 
segmentation within it might improve audience segmentation. Nevertheless, 
segment 6 distinguish from other segments anyway. 

If we sum the ones under the diagonal and divided by the number of segment 
combinations (see (23)), we calculate the performance of this segmentation 
which is 40%. The more the zeros the lower the performance index. 

Following this framework we can improvement this segmentation by:  
1) fusion homogenous segments  
2) explore intra-segmentation in the cases were there was one in the diagonal  
For actions in the first group, we look that in this toy example S1 and S2 

doesn’t differ in communication behaviour, so we could consider to group them 
as one segment. We could summaries this saying that gender doesn’t segment 
among young people (under 20 years). We calculate again the matrix with this 
augmented segment and calculate the performance. Then occam’s razor lead us 
to select the least segmented partition when we have two or more with same 
performance. 

For segment 6, this is female over thirty years, we calculate that it is inhomo-
genous with itself, so we could try a sub-segmentation by education degree or by 
motherhood. Then repeat the five tests between the new segment with the pre-
vious ones and calculate performance of this new matrix with one or more rows. 

Of course this iterative method implies significant work with estimation, data 
recompilation, amount of data, independent sampling, etc. that although might 
be of extreme relevance it’s beyond the scope of pure mathematics and poses a 
great source of scientific challenge and interdisciplinary work. 

4. Conclusions 

In this work we analyze Facebook social network, modelling it with a Markov 
Chain and several random variables representing profiles friendships. We fur-
ther propose communication behaviour between all profiles called complete 
transversality that assumes no bias between profiles willingness to connect as 
friends. This CT behaviour leads to estimations that allow us a hypothesis test by 
means of mean square deviation to reject the CT assumption. This might be an 
obvious conclusion (because people behaves within Facebook as they behave in 
real context), but it has all the hypothesis testing machinery behind which gives 
it strong rigorosity. 

Next step in our work was to weaken CT and, for this, we introduce ST (seg-
ment Transversality). This is given a determined network segmentation, and 
each segment profile connects to any other segment profile with the same prob-
ability. (Of course this probability can change with different pair of segments.) 

In this ST scenario we were able to compare between two entire segments and 
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determine whether they behave in the same way or differently. If we don’t find 
differences we can safely group the two segments in order to improve the origi-
nal segmentation. For a given segmentation we test intra segment and every pair 
of different segments and define a performance index that reflects a percentage 
of the segments that behaves differently from all the possible comparisons. With 
this result, we join similar segment (don’t reject null hypothesis) and recalculate 
tests and performance index to the new segmentation. 

This iterative process of grouping homogenous segments or leaving different 
leads to a hierarchy in segmentations according to segmentation’s quality. This 
information could be interpreted and used to determine if segmentation’s rules 
are adequate to distinguish segments; of course the comparison falls in this 
communication behavior sense. 
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Appendix 

1.1. Proof of Proposition 1 

Let f ∞′∈ , f f′ ≠  and ( ) ( )
4

1

i
t t

i
I f D f

=

=


. We will see that ( )tI f ′  is in-
dependent of ( )tI f . For this, it is enough prove that ( )i

tD f ′  is independent 
from ( )i

tD f , when 1,2,3,4i = . In fact, if we look at ( )i
tD f ′ , the first coordi-

nate of both involved indices ( ),tY f g′  for 1,2,3i =  and ( ), ,tW f g h′  for 
4i = , is fixed and is the first coordinate of the random variables ( ),t f gε ′  and 
( ), ,t f g hη ′  of the mentioned indices respectively. Then, ( ),tY f g′  is inde-

pendent from ( ),tY f g  and ( ), ,tW f g h′  is independent from ( ), ,tW f g h , 
hence, ( )i

tD f ′  is independent from ( )i
tD f , when 1,2,3,4i = . Thus, 

( )

( )( )

,
, 1

.

t t t
f

t
f

p P I f

P I f
∞

∞

+
∈

∈

 
=   

 
= ∏







 

 

Applying inclusion-exclusion principle for the events ( )i
tD f , 1,2,3,4i = , we 

have  

( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

4 3 4
,

, 1
1 1 1

42 3 4

1 1 1 1

i i j
t t t t t

i i j if

i j k i
t t t t

i j i k j i

p P D f P D f D f

P D f D f D f P D f

∞

+
= = = +∈

= = + = + =


= − ∩


 

+ ∩ ∩ −  
 

∑ ∑ ∑∏

∑∑ ∑ 

 



   

(24) 

We have to check that the events ( )i
tD f , 1,2,3,4i = , are independent be-

tween them for a same profile f. ( )4
tD f  is independent from ( )1

tD f , from 
( )2

tD f  and ( )3
tD f , because ( ), ,t f g hη , which corresponds to image index 

( ), ,tW f g h  involved in ( )4
tD f  is independent from ( ),t f gε  which cor-

responds to index ( ),tY f g  that appears in ( )1
tD f , ( )2

tD f  and ( )3
tD f . 

( )1
tD f  is independent from ( )2

tD f  and from ( )3
tD f , because if a profile 

f ∞∈  appears in the intersections of ( )1
tD f , it doesn’t figure either in the 

intersections of ( )2
tD f  nor in the unions of ( )3

tD f . The same argument al-
lows us to affirm that ( )2

tD f  is independent from ( )3
tD f . 

Therefore, transition probability (24) is given by  

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

4 4 4
,

, 1
1 1 1

44 4 4

1 1 1 1
.

i i j
t t t t t

i i j if

i j k i
t t t t

i j i k j i

p P D f P D f P D f

P D f P D f P D f P D f

∞

+
= = = +∈

= = + = + =


= −


+ − 


∑ ∑ ∑∏

∑∑ ∑ ∏


 

 

We will see how ( )( )i
tP D f , 1,2,3,4i =  is finally written. 

If ,g g ∞′∈ , with g f , g f′
 , g g′≠ , ( ),t f gε  is independent from 

( ),t f gε ′ . Then, are independents: ( ){ },t BY f g δ< −  from ( ){ },t BY f g δ′ < − , 

( ){ },t BY f g δ≥ −  from ( ){ },t BY f g δ′ ≥ − , ( ){ },t RY f g δ≤  from  

( ){ },t RY f g δ′ ≤  and ( ){ },t RY f g δ>  from ( ){ },t RY f g δ′ > . Thus,  
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and, applying set properties we have that  
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as if { }, ,: 0, 1f g f gg g f′∈ = =    then { }, ,: 0, 0f g f gg g f′∉ = =    

and accordingly we have that ( ){ }
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Finally,  
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and, for fixed ,f g ∞∈ , ,h h ∞′∈ , h h′≠ , h f , h f′
 , ( ), ,t f g hη  is 

independent from ( ), ,t f g hη ′ . So, are independents ( ){ }, ,t IW f g h δ≤  from 

( ){ }, ,t IW f g h δ′ ≤  and ( ){ }, ,t IW f g h δ>  from ( ){ }, ,t IW f g h δ′ > . Besides, 
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 are independents, as if 

{ }, ,: 1, 1f h g hh h f′∈ = =    then { }, ,: 1, 0f h g hh h f′∉ = =   . Therefore,  
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1.2. Proof of Theorem 1 

Suppose we are in a CT context. To prove time homogeneity in Markov chain 
{ }t  we will see that probabilities involved in ,

, 1t tp +
  , ( )( )i

tP D f , 1,2,3,4i = , 
don’t depend on time. To do this we introduce some useful notations. 

Let F and G be the distribution function for random variables ( ),t f gε  and 
( ), ,t f g hη  related with image indices ( ),tY f g  and ( ), ,tW f g h  respectively. 
The CT hypothesis implies that F and G neither depend on time nor on pro-

files. This is, ( )( ) ( ),tP f g x F xε ≤ =  and ( )( ) ( ), ,tP f g h x G xη ≤ = , for all 
0,1,t =  , for all ,f g ∞∈  and every ordered triple , ,f g h ∞∈ , with F and 

G continuous functions. 
We also denote with ( ),

,
i jc f   and ( )1,

, ,jd f g   the following cardinals 
numbers of sets: 

( ) { }{ },
, , ,: , ; , 0,1i j

f g f gc f card g f i j i j= = = ∈     

and 

( ) { }{ }1,
, , ,, : 1, ; 0,1 .j

f h h gd f g card h f j j= = = ∈     

Consequently, under CT hypothesis we have,  
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Then, ( )( )i
tP D f , 1,2,3,4i = , and therefore ,

, 1t tp +
   doesn’t depend on t. 
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Consequently, { }t  is homogeneous in time. 

1.3. Proof of Theorem 2 

Let M MS ×=  be the space states of { }t  and suppose that we are in a CT 
context. 

We denote { },: 1, for all , 1, ,i iS i i M= ∈ = =    to the set of states with 
all ones on the diagonal. 

Lemma 1.  is a closed, irreducible and aperiodic communication class.  
Proof 1. Let S′∈  such that ′∉  . Then, for some 1, ,i M=  , 

, 0i i′ = , that is, at time t, the friendship state ′  indicates that for some 
1, ,i M=  , the profile if  doesn’t exists on Facebook. As we have supposed 

that once a profile is created it can’t be deleted, then if ∈  , ,
, 1 0t tp ′
+ =  , that is, 

an state outside of  is not accessible from a state inside of . Then,  is closed. 
Also, given , ∈   , outside the diagonal, an entry equal to one can turn in-

to in zero, or an entry with zero can turn into one in one step, that is,  and  
are communicated and aperiodic, so  is irreducible and aperiodic.  

As we are studying chain’s behaviour at steady state of the network, we sup-
pose that all profiles had been created. Then, if ′∉   at time t, in a finite 
amount of steps the state ′  will be attracted by . Therefore, on the long term, 
every states of S will be attracted in a finite amount of states by the closed, irre-
ducible and aperiodic class . As  is a finite set, all of its states are positive re-
current. Then, restricting the chain { }t  to , it is closed, irreducible, aperiod-
ic and every state is positive recurrent, hence it is ergodic. 

The ergodic property, ensures limit distribution existence. In this case, if 
∈  ,  

( ) ( )

( ){ } ( ){ },

lim

lim , 1 , .

tt

t t f gt g ff
g
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P f f f g

π

α α
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→∞ ∈
∈

∞ = =

  
  = = =      





 

 








 

Moreover, friendship functions between profiles f and g of t , tα , were de-
fined as dicotomic variables taking zero or one according to whether they were 
Facebook friends or not at time t. Then, under the ergodic distribution, as time 
tends to infinity, random variable ( ),f gα∞ , with f g , has Bernoulli distri-
bution. 

Under CT hypothesis, each profile of ∞  engages friendship with any other 
profile with the same probability, let’s say p, so that random variables ( ),f gα∞ , 
with f g , ,f g ∞∈  are identically distributed. 

Also, this variables keeps direct relation with “image index” between profile 
pairs tY . Under CT this index is reduced to a constant plus a random variable. 
This variables are independent for all ,f g ∞∈ , with f g , so image index 
between distinct profile pairs are also independent. Consequently, ( ),f gα∞ , 
with f g , ,f g ∞∈  are independent. 
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