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Abstract

Face synthesis has achieved advanced development by

using generative adversarial networks (GANs). Existing

methods typically formulate GAN as a two-player game,

where a discriminator distinguishes face images from the

real and synthesized domains, while a generator reduces

its discriminativeness by synthesizing a face of photo-

realistic quality. Their competition converges when the

discriminator is unable to differentiate these two domains.

Unlike two-player GANs, this work generates identity-

preserving faces by proposing FaceID-GAN, which treats a

classifier of face identity as the third player, competing with

the generator by distinguishing the identities of the real and

synthesized faces (see Fig.1). A stationary point is reached

when the generator produces faces that have high quality

as well as preserve identity. Instead of simply modeling the

identity classifier as an additional discriminator, FaceID-

GAN is formulated by satisfying information symmetry,

which ensures that the real and synthesized images are

projected into the same feature space. In other words, the

identity classifier is used to extract identity features from

both input (real) and output (synthesized) face images of

the generator, substantially alleviating training difficulty

of GAN. Extensive experiments show that FaceID-GAN is

able to generate faces of arbitrary viewpoint while preserve

identity, outperforming recent advanced approaches.

1. Introduction

Image generation has received much attention in recent

years [7, 10]. Among them, synthesizing a face image of

a different viewpoint but preserving its identity becomes an

important task, owing to its wide applications in industry,

such as video surveillance and face analysis.

Recently, this task has been significantly advanced by

generative adversarial networks (GANs). For example,

(1) 2-player game (2) FaceID-GAN
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Figure 1. (a.1) shows that an original GAN (dashed box) is

extended by an identity classifier C to predict identity label ℓid.

It is formulated as a two-player game, where C does not compete

with the generator G. G uses a real image x
r as input and outputs

a synthesized image x
s. z represents random noise. D is a

discriminator to differentiate real and synthesized domains. (a.2)

shows FaceID-GAN, which is a three-player GAN by treating C

as the third player to distinguish identities of two domains, ℓrid
and ℓ

s

id. C collaborates together with D to compete with G,

making G produce identity-preserving and high-quality images

to confuse both C and D. FaceID-GAN is designed by using a

criterion of information symmetry, where C is employed to learn

idenity features for both domains. (b) visualizes some examples of

FaceID-GAN, showing its capacity to generate faces of arbitrary

viewpoint and expression, while preserving identity.

as shown in Fig.1 (a.1), previous methods [33, 28] are

typically built upon the original GAN [9], which is for-

mulated as a two-player game, including a discriminator

and a generator, denoted as D and G respectively. In the

conventional GAN, G employs a real image xr as input

and outputs a synthesized image xs, while D adopts these

two images as inputs and outputs whether they are real or
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synthesized (fake). In training, D and G compete with each

other, where the discriminator maximizes its classification

accuracy, whereas the generator reduces accuracy of the

discriminator by synthesizing images of high quality. Their

competition converges when D is unable to distinguish the

fake data from the real data, indicating that the qualities of

images in these two domains are sufficiently close.

In order to produce identity-preserving face images,

existing methods extend the original GAN by using an

additional classifier, denoted as C, which employs both

xr and xs as inputs, and predicts their identity labels,

denoted as ℓid ∈ R
N×1. This label represents a 1-of-

N vector of N subjects, where each entry indicates the

probability of an image belonging to a certain subject. In

other words, to preserve identity, G is expected to output

a face (synthesized) with the same identity label with its

cooresponding input (real) under the supervision of C, as

shown in Fig.1 (a.1).

In the above, although C is able to learn identity features,

it is unable to satisfy the requirement of preserving identity,

i.e. to push real and synthesized domains as close to each

other as possible. This is illustrated in Fig.2 (a). Given

two real images that have different identities, with identity

features frid1 and frid2, and a synthesized image, with identity

feature fsid1, which is expected to have the first identity. In

previous approaches, when the distance between fsid1 and

frid1 is smaller than the distances between fsid1 and all the

remaining identities, i.e. fsid1 locates next to the boundary

but slightly biases towards frid1, C is sufficient to assign

them the same label, but neglects how close they are in the

feature space, impeding the identity-preserving capacity.

This work argues that building on the conventional two-

player GAN as existing methods have done, is not sufficient

to preserve face identity. To this end, we present FaceID-

GAN, a novel deep generative adversarial network that is

able to synthesize face images of arbitrary viewpoint, while

well preserving identity as shown in Fig.1 (b). It has two

appealing properties.

First, FaceID-GAN provides a novel perspective by

extending the original two-player GAN to a GAN with three

players. Unlike previous methods that treat C as a spectator,

which does not compete with G, FaceID-GAN treats C as

the third player, which not only learns identity features, but

also differentiates two domains by assigning them different

identity labels ℓrid and ℓsid, as shown in Fig.1 (a.2). Intu-

itively, in FaceID-GAN, C competes with G and cooperates

with D. In particular, C and D distinguish two domains

with respect to face identity and image quality respectively,

whereas G tries to improve image generation to reduce their

classification accuracies. Training is converged when C and

D are unable to differentiate the two domains, implying

that G is capable of producing face images that are photo-

realistic as well as identity-preserving.

(a) w/o competition (b) w/ competition
Figure 2. The merit of treating C as a competitor in FaceID-GAN.

Fig.2 (b) illustrates the merit of the above procedure,

where the notations are similar as Fig.2 (a). In FaceID-

GAN, C not only classifies between “id1” and “id2”, but

also between real “id1” and fake “id1”, by using 2N labels.

In this case, in order to confuse C, G has to synthesize

an image, whose identity feature, fsid1, is not only located

inside the boundary of frid1, but also moved towards frid1 as

much as possible, reducing the distance between them so as

to decrease classification accuracy of C. After competition,

G is able to substantially preserve face identity.

Second, this work designs FaceID-GAN by following

information symmetry, which is a general principle to

design the architectures of GANs. As shown in Fig.1

(a.2), C in FaceID-GAN extracts features from both xr

and xs, leading to symmetry of information, unlike (a.1)

where identity feature of xs is extracted by using C, but

that of xr is extracted by using G implicitly. Recall that

the network has to move fsid1 towards frid1 in attempt to

preserve identity, as shown in Fig.2. If these features are

extracted by using G and C separately, the distance between

them is probably large, bringing training difficulty, because

these two modules represent two different feature spaces.

In contrast, since features of both domains are extracted by

using C in FaceID-GAN, their distance could be close, even

at the beginning when the network is trained from scratch,

significantly reducing the training difficulty.

To summary, this work has three main contributions.

(1) The conventional two-player GAN is extended to three

players in FaceID-GAN, where the identity classifier col-

laborates together with the discriminator to compete with

the generator, producing face images that have high quality

and well preserved identity. (2) To design FaceID-GAN,

we present information symmetry to alleviate training dif-

ficulty. It can be treated as a general principle to design

the architectures of GANs. (3) Besides high visual quality,

FaceID-GAN is able to generate face images with high

diversity in viewpoints and expressions, surpassing the

recent advanced methods, which are carefully devised to

deal with pose variations.

2. Relations to Previous Work

This section summarizes previous works that synthesize

face images by using deep generative models, and compares

them to FaceID-GAN. In the literature, there are many

methods of image generation that do not employ GANs.

We would also like to acknowledge their contributions

[12, 39, 40, 32].
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In general, existing deep models can be categorized into

three groups, based on their learned input-output image

mappings, including one-to-one, many-to-one, and many-

to-many as shown in Fig.3, where different networks have

different components. Besides those mentioned before, E

denotes an encoder that projects a real image into a hidden

feature space, and P is a facial shape feature extractor. In

this part, we just take viewpoints (poses) as an example.

One-to-one. Some works learn one-to-one mapping as

shown in Fig.3 (a), where a face of one style is transformed

to the other, such as from image to sketch [34], from low

to high resolution [8], and from visible to infrared spectrum

[20]. In the early stage, these tasks were often solved by

using encoder-decoder structures, where E encodes xr to

hidden feature h, G transforms this feature to xs, and C

predicts identity. In this setting, as shown by the red arrows

in (a), G is trained by minimizing the per-pixel difference

between xs and its ground truth image ℓsI .

Many-to-one. With GANs [9, 1, 36], the network in

(a) is extended to learn many-to-one mapping as shown in

(b), such as face frontalization [6, 15, 33], which transforms

multiview to frontal view. With the conventional GANs, G

and D are two competitors, while C is a spectator that learns

facial identity. However, in this setting, since the input data

distribution has larger variations (multiview) than that of the

output (single view), the pose label of the real image, ℓrp, is

employed as conditional input to reduce training difficulty.

The above methods require the ground truth image ℓsI
as supervision, and the label ℓrp as input, impeding their

applications in a more challenging setting as shown in (c).

Given an image of arbitrary pose as input, the network in (c)

produces faces of different poses, while preserving identity

[16, 28, 29]. This problem is extremely challenging,

because both the input and output data distributions have

multiple modes.

Many-to-many. There are three major improvements

when comparing (c) to (b). First, a module of pose P

is used as a constraint, ensuring xs had the desired pose

ℓsp. Second, G has three inputs rather than two, where

h is the same but the other two are different, including a

vector of random noise, z, and the desired pose, ℓsp. In

fact, the network cannot be trained without them. For

example, if (xr, ℓrp) are fed into G just like what (b) does,

the network fails to produce xs of different poses, because

transforming the same input to multiple outputs has large

ambiguity. Instead, (xr, ℓsp, z) are used to reduce ambiguity

and improve diversity of the generated images. Third,

the ground truth image, ℓsI , is removed and the per-pixel

loss between xs and ℓsI is also removed, enabling training

with unpaired data. In other words, the network learns

to generate xs of different poses, no matter whether the

corresponding ground truth image exists or not.

Although these methods eliminate the paired data as-
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Figure 3. FaceID-GAN is compared to existing works, including

learning (a) one-to-one, (b) many-to-one, and (c) many-to-many

mappings for face generation. In all these four figures, the arrows

in dark represent forward computations, whilst the dashed arrows

in red represent backward supervisions. Better viewed in color and

zoom in 150%.

sumption, they still rely on label of pose, limiting their

generalization capacity. For example, since the label is

defined as a discrete 1-of-K vector, it is difficult to gener-

alize to a full spectrum of viewpoints, which is smooth and

continuous. Furthermore, as aforementioned, the methods

in (a-c) break the symmetry of information. For example,

in (c), xr is represented by h extracted by E, while xs

is represented by fsid extracted by C. Obviously, their

identity information are represented by features of different

spaces. In other words, before learning to produce xs

with preserved identity, G is required to learn a transition

between feature spaces, e.g. from h to fsid, bringing non-

negligible training difficulty.

FaceID-GAN. In (d), FaceID-GAN addresses these

weaknesses in two folds. First, all above methods are

based on two-player GANs, which have flat performances

in preserving identity. In contrast, FaceID-GAN introduces

a third player, making G to compete with C and D simul-

taneously, and hence synthesize faces with both preserved

identity and high quality. Second, FaceID-GAN follows

information symmetry criterion by replacing E with P and

C, where parameters of the two modules of P (or C) are

shared. In this case, xr and xs are represented by using

the same feature space, alleviating the training difficulty.

Moreover, G is directly supervised by features from two

domains instead of by certain labels, leading to a better

generation.

In this work, we use the well-known 3D Morph Model

(3DMM) [3] to help represent the facial shape feature fp,

including not only pose, but expression and general shape

information as well.
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Figure 4. The overall framework of FaceID-GAN. G is the generator that collects all information and synthesizes faces under certain

constraints. P is the facial shape estimator to provide shape information. C provides identity information and also competes with G with

respect to facial identity. D is the discriminator that competes with G from quality aspect. Better viewed in color.

3. Proposed Method

Fig.4 illustrates the overall framework of FaceID-GAN.

Given an input face xr of 128× 128, P estimates its facial

shape feature, frp ∈ R
229, based on the 3D Morphable

Model [3], and then turns frp into the desired shape feature,

f ′p, by using a transformation denoted as g(·). We have f ′p =
g(frp ), which represents the desired pose and expression.

C is a face recognition module to extract identity feature,

frid ∈ R
256. G employs f ′p, frid, and a random noise

z ∈ R
128 as inputs, and synthesizes a face image xs of

size 128× 128, denoted as xs = G(f ′p, f
r
id, z).

Overview. As discussed before, FaceID-GAN has three

players, including D, C, and G, where the first two coop-

erate to discriminate real and synthesized domains, while

the last one reduces their discriminateness. In this work,

G is also supervised by P , so as to control viewpoint and

expression. The loss functions for the above components

are defined as

min
ΘD

LD = R(xr)− ktR(xs), (1)

min
ΘC

LC = φ(xr, ℓrid) + λφ(xs, ℓsid), (2)

min
ΘG

LG = λ1R(xs) + λ2d
cos(frid, f

s
id) + λ3d

l2(f ′p, f
s
p ),

(3)

where R(·), φ(·, ·), dcos(·, ·), and dl2(·, ·) denote different

energy functions. λ, λ1, λ2, and λ3 are different weight

parameters between these functions. kt is a regularization

coefficient that balances between R(xr) and R(xs) at the

t-th update step. Intuitively, LD minimizes the energy

of R(xr) but maximizes that of R(xs) to distinguish two

domains according to their image quality. LC contains

identity classifier φ, which classifies faces of two domains

by using different identity labels as introduced before, to

differentiate two domains according to their identities. In

LG, G tries to compete with D by producing high-quality

face to minimize R(xs). G also is trained to minimize

the cosine distance between identity features of xr and

xs, denoted as dcos(frid, f
s
id), and to minimize l2 euclidean

distance between the synthesized shape feature fsp and the

desired shape feature f ′p, denoted as dl2(f ′p, f
s
p ), in order

to preserve identity and change pose and expression. We

discuss details of these components in the following.

3.1. Discriminator D

The conventional way [9] to to discriminate the real

and synthesized domains is by using a binary classifier.

However, it is infeasible for image generation because of its

sparse supervision. To incorporate per-pixel supervisions

[1, 35], this work employs an auto-encoder as discriminator

D, which is introduced in [2]. In other words, D works on

reconstructing an input image by minimizing the pixel-wise

distance between input and output. We have R(x) = ||x−
D(x)||1 and LD = R(xr)− ktR(xs), which differentiates

two domains by minimizing the reconstruction error of real

image, but maximizing that of synthesized image.

Following [2], to keep balance between R(xr) and

R(xs), we introduce a regularization term kt, which is

dynamically updated in the training process,

kt+1 = kt + λk(γR(xr)−R(xs)), (4)

where λk is the learning rate and γ represents a diversity

ratio of xs. We set λk = 0.001 and γ = 0.4 in this work.

3.2. Classifier C

To retain identity, C learns identity features of the real

and synthesized images, xr and xs, whose features are

denoted as frid and fsid. C discriminates two domains by

classifying them using different labels. We formulate C

as a 1-of-2N classification problem, with the purpose of

classifying xr to first N labels and xs to the last N labels,

by using the cross-entropy loss

φ(xr, ℓrid) =
∑

j

−{ℓrid}j log({C(xr)}j),

φ(xs, ℓsid) =
∑

j

−{ℓsid}j log({C(xs)}j),
(5)
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where j ∈ [1, 2N ] is the j-th index of identity classes.

However, treating these 2N classes equally is unreason-

able, because in the identity feature space, a synthesized

face should be closer to its corresponding real input face

when comparing with the other identities. Therefore, we

introduce a loss weight λ as shown in Eqn.(2), to balance

the contribution of the synthesized faces, making C learn

more accurate identity representation.

3.3. Shape Estimator P

We incorporate the 3D Morphable Model (3DMM) [3] to

project facial images into a shape feature space, represent-

ing pose and expression. The 3DMM of faces is formulated

as

S = S+Aidαid +Aexpαexp,

V(p) = f ∗R(θx, θy, θz) ∗ S+ [tx, ty, tz]
T
,

p = [αid
T ,αexp

T , θx, θy, θz, tx, ty, tz]
T
,

fp = [αid
T ,αexp

T , θy]
T
,

(6)

where S is a mean shape of a 3D face, Aid and Aexp are the

PCA bases for shape [23] and expression [4] respectively.

Therefore, S is the 3D shape of certain shape and expression

in the 3DMM coordinate system, which can be uniquely de-

fined by the coefficients αid ∈ R199 and αexp ∈ R29. Here

V(·) is a 3D shape in the image coordinate system, which is

obtained by transforming S using scaling coefficient f , ro-

tation coefficients [θx, θy, θz]
T , and translation coefficients

[tx, ty, tz]
T

. p denotes the complete set of parameters in

3DMM. Among these parameters, αid provides the general

shape information, which differs between identities, while

αexp and θy control expression and pose respectively.

To achieve end-to-end training, we incorporate a network

P to learn the shape feature. Before training, we follow

[38] to prepare the 3DMM coefficients for all the images

xr, denoted as f
r

p. Similar to [37], P is trained to minimize

the weighted distance function

min
ΘP

LP = (P (xr)− f
r

p)
T
W(P (xr)− f

r

p), (7)

where W is an importance matrix whose diagonal elements

are the weights.

Different from C that preserves identity of two domains,

this work requires pose and expression to be varied but not

preserved. Therefore, given an input real image xr, we use

P to extract its shape feature frp = [αr
id

T ,αr
exp

T , θry]
T

and

transform this feature by using

f ′p = g(frp ,α
′

exp, θ
′

y) = [αr
id

T
,α′

exp

T
, θ′y]

T , (8)

where α
r
id represents the original shape information of xr,

and α
′

exp and θ′y represent the desired pose and expression.

In other words, we disentangle frp into facial shape, pose,

and expression by using the network P , and use function

g(·) to introduce randomness to shape feature. Meanwhile,

G is trained to generate faces under the supervision of P by

keeping f ′p remained, no matter what α′

exp and θ′y are. In

this way, G is able to synthesis faces of arbitrary pose and

expression.

3.4. Generator G

As shown in Eqn.(3), besides minimizing R(xs) to

compete with D, G is also trained by minimizing two

distances

dcos(frid, f
s
id) = 1−

frid
T
fsid

||frid||2||f
s
id||2

, (9)

dl2(f ′p, f
s
p ) = ||fsp − f ′p||

2
2, (10)

where identity is preserved by minimizing the cosine dis-

tance between identity features of the real and synthesized

images, whereas pose and expression are changed by mini-

mizing the euclidian distance between shape feature of the

synthesized face and the desired shape.

3.5. Implementation Details

Before training, all faces used in this work are aligned by

using [26] to image size 128× 128. C employs ResNet-50

[13] by changing the active function from “BN+ReLU” to

“SELU” [18]. P employs ResNet-18, on top of which we

add three more fully-connected layers following [24]. G

and D use BEGAN structure [2].

At the training stage, z is sampled from a uniform

distribution with range [−1, 1]. λ1, λ2, λ3 are set to balance

the initial losses of generator G, corresponding to D, C

and P respectively. λ is 1 at the beginning and gradually

decreases as training proceeds. The batch size is 96, equally

distributed to 8 GPUs. We use Adam optimizer [17] for all

four components, and the parameters are updated for 200k
steps. The initial learning rate (lr) of G and D is 0.0008,

and drops 0.0002 for every 50k steps. The initial lr of C

is 0.0008, and drops to 0.0005 at 150k-th step. Except P

is well pre-trained, all other three modules in this work are

trained from scratch.

4. Experiments

FaceID-GAN aims at synthesizing high-quality identity-

preserving faces, but with high diversity in poses and

expressions. Extensive experiments are conducted to com-

pare FaceID-GAN with existing face generation methods,

including face synthesis and face verification.

Datasets. FaceID-GAN is trained on CASIA-WebFace

[31] and evaluated on multiple different datasets, including

LFW [14], IJB-A [19], CelebA [21], and CFP [25]. We

briefly introduce these datasets in the following.
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1) CASIA-WebFace. It consists of 494, 414 images

of 10, 575 subjects. We employ it for training. 2) LFW.

It consists of 13, 233 images of 5, 749 subjects. With

LFW, existing works [38, 33] evaluate their performances

on the tasks of face frontalization and verification. FaceID-

GAN is also applicable to these tasks by generating faces

with frontal viewpoint and neutral expression, though it

is not specially designed for this purpose. We evaluate

FaceID-GAN on these tasks following existing protocols

and compare it to previous works. 3) IJB-A. It consists of

25, 808 images of 500 subjects. Following previous works,

we evaluate the identity-preserving capacity of FaceID-

GAN on this dataset. 4) CelebA. This is a large-scale

dataset that contains 202, 599 images of 10, 177 subjects,

where the face images have large diversity, making it an

appropriate test set for face image synthesis. 5) CFP. It

consists of 500 subjects, each of which has 10 images in

frontal view and 4 images in profile view. Following prior

work [29], we evaluate the effectiveness of FaceID-GAN to

generate faces under different viewpoints.

The above evaluation sets (2-5) consist of nearly 250K

images from a wide spectrum of viewpoints and subjects.

The overlapping ratio between the subjects in training and

evaluation sets is smaller than 0.1%. The experimental

setting used in this work is challenging, substantially char-

acterizing the superiorities over existing algorithms.

4.1. Face Synthesis

This section evaluates FaceID-GAN from three aspects,

including image quality, control of pose and expression, and

ability to preserve identity.

Frontalization and Identity. Generating faces of canonical

viewpoint is an important task, because it reduces facial

variations that hinder face verification. Unlike previous

approaches that are specially designed to address this

problem, such as HPEN[38] and FF-GAN [33], FaceID-

GAN treats it as a subtask by synthesizing faces with the

desired pose of 0◦. Fig.5 visualizes results of four images

selected from LFW by following [33]. On the left corner

of each synthesized image is a score, which indicates the

similarity of identity between the input and output images.

To compute these scores, we employ a face recognition

model [27] trained on MS-Celeb-1M [11], which is totally

independent of this work, making the results convincing.

This model is also applied to the remaining experiments.

From Fig.5, we see that faces generated by FaceID-GAN

outperform others in following aspects. First, FaceID-GAN

produces faces of exactly frontal viewpoint, which benefits

from the shape controlling module P , while previous meth-

ods produced distortions. Second, FaceID-GAN generates

a new face, instead of just learning an interpolation. This

is because we filter out extraneous information by passing

identity feature into generator instead of the full image.

(a)

(b)

(c)

(d)
Figure 5. Face frontalization results on LFW. (a) Input. (b) HPEN

[38]. (c) FF-GAN [33]. (d) FaceID-GAN (ours). On the top-

left corner of each frontalized face, a score indicates the identity

similarity between the input and the generated face.

Input ͳͷ°Ͳ° GT͵Ͳ° Ͷͷ°

Figure 6. Face rotation results on CFP. Odd rows are the rotation

results from DR-GAN [29], and even rows are results from

FaceID-GAN (ours).

Third, FaceID-GAN makes a better synthesis from the view

of both image quality and identity maintenance, owing to

the three-player competition.

Rotation and Identity. In this part, we evaluate the

effectiveness of FaceID-GAN when generating faces under

different viewpoints, while maintaining face identity. We

compare our method with DR-GAN [29], which is a recent

advanced method to solve this task. Both methods are

trained on CASIA-WebFace and then directly evaluated on

CFP without fine-tuning the models on the CFP dataset. We

select a set of testing images that are the same as [29]. Fig.6

shows the comparison results by rotating face from 0◦ to

45◦. In this case, the identity similarity is computed by

using ground truth image as reference.
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(a)

(c)

(b)

(d)

1 2 3Input

Figure 7. Face synthesis results of different datasets, including (b) CelebA, (c) LFW, and (d) IJB-A. (a) shows the 3D templates with the

desired poses and expressions. In (b-d), the first column is the input image, whilst the remaining columns show the synthesized results.

As shown in Fig.6, several evidences suggest that our

method has a strong ability for face synthesis. First,

FaceID-GAN produces faces with higher resolution than

DR-GAN, which is trained on images of 96×96, but

FaceID-GAN is able to train with 128×128 face images.

Second, FaceID-GAN preserves identity much better than

DR-GAN, especially when large pose is presented. Third,

in DR-GAN, the image quality drops rapidly when rotating

the faces, while FaceID-GAN demonstrates stableness and

robustness. Finally, besides the angles reported in Fig.6,

FaceID-GAN can actually rotate face with arbitrary angle

as shown in Fig.7.

Pose, Expression and Identity. We further evaluate the

generalization capacity of FaceID-GAN by controlling pose

and expression, and maintaining identity simultaneously.

Fig.7 visualizes results on multiple datasets, including

CelebA, LFW, and IJB-A. Note that we do not fine-tune

the model to adapt these datasets.

In Fig.7 (a), we illustrate the 3D templates of the

desired poses and expressions. From (b) to (d), we see

that the synthesized images exactly match the templates in

(a), while preserving the face identity. We also observe

that the face characteristics can be preserved for different

identities. For example, under the 8-th face template, smil-

ing is presented differently in different identities, showing

that FaceID-GAN can learn to change expression while

preserving identity’s characteristics. However, synthesized

faces don’t vary much in expressions. This is attributed to

the fact that most faces in training set are with neutral or

smile expression. Just like other GAN-based framework,

FaceID-GAN generates images by learning the underlying

distribution of input data. A training set with larger diversity

in expressions will likely alleviate this issue.

In summary, FaceID-GAN can synthesize high-quality

facial images by maintaining identity and controlling pose

and expression.

4.2. Face Verification

Here we evaluate FaceID-GAN on LFW and IJB-A for

face verification, to further verify its identity preserving

ability. The identity features of both real and synthesized

images are extracted by module C in FaceID-GAN and the

cosine distance is used as the metric for face verification.

Evaluation on LFW. By following existing works [12,

38, 33], we frontalize all the images in LFW and then

evaluate face verification performance on the frontalized

images, to verify whether FaceID-GAN retains the identity

information properly. Tab.1 compares our results to the

state-of-the-art methods. The improvement demonstrates

that FaceID-GAN can synthesis both realistic and identity-

preserving face images.

Evaluation on IJB-A. We further evaluate the verification

performance on IJB-A dataset. IJB-A defines a different

protocol by matching templates, where each template con-

tains a variant amount of images. We define a confidence

value of each image to be the reciprocal of its correspond-

ing reconstruction error estimated by D. This value can

describe image quality to some extent. We fuse the features

of images in a template with their confidence values as

weights, and use the fused result to represent such template.
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Tab.2 shows the verification accuracy on IJB-A. Com-

paring to the state-of-art methods, FaceID-GAN achieves

superior results both at FAR 0.01 and at FAR 0.001, which

suggests that by competing with G, C and D in FaceID-

GAN also perform well in their respective tasks, i.e. identity

reprensentation learning and image quality evaluation.

4.3. Ablation Study

FaceID-GAN consists of four components, C, P , D

and G, where G is necessary for a generative model. To

evaluate the contributions of other three parts, we train

three models by removing these components respectively,

while keeping the training process and all hyper-parameters

the same. Among them, the model without D diverges.

Meanwhile, FaceID-GAN advances existing methods by

proposing 3-player competition and information symmetry,

so we train two extra models to evaluate these two improve-

ments. Among them, the convergence of the model without

following information symmetry is slow and instable.

Fig.8 shows the visual results generated by remaining

three models as aforementioned, as well as the full model.

Our proposed FaceID-GAN outperforms the others in the

following aspects: visual effect (image quality), identity

preservation, and the capability to control pose and expres-

sion. For example, the images in (b) have exactly the same

facial shape with the inputs, demonstrating the ability of

3DMM to represent pose and expression. However, only

providing shape information to the generator is not suffi-

cient to preserve identity. This problem is greatly alleviated

with the help of a face recognition engine. Images in (c)

show better results by retaining more identity information.

But it still fails when dealing with large poses, and the pose

of synthesized faces becomes uncontrollable. Images in (d)

are generated by incorporating the elements of both (b) and

(c). By comparing (c) and (d), we conclude that besides

controlling pose, 3DMM also plays an important role by

providing general facial shape information, especially for

inputs with extreme poses. The comparison of (d) and (e)

shows that by introducing the third player, FaceID-GAN

achieves better synthesis from the aspects of both image

quality and identity preservation. To better illustrate the

improvement from (d) to (e), we pick 10,000 face pairs,

which are generated by (d) and (e) respectively, and ask

annotators to vote which one is better in terms of visual

quality and similarity of identity. As a result, (e) beats

(d) with 56% votes for higher quality and 72% for better

preserving identity.

5. Conclusion

In this work, we propose an end-to-end deep framework,

FaceID-GAN, with the ability to synthesize photo-realistic

face images of arbitrary viewpoint and expression, while

preserving face identity. FaceID-GAN is formulated as a

Table 1. Performance comparison on LFW

Method Verification Accuracy

3D [12] 93.62± 1.17

HPEN [38] 96.25± 0.76

FF-GAN [33] 96.42± 0.89

FaceID-GAN (ours) 97.01± 0.83

Table 2. Performance comparison on IJB-A

Verification Accuracy

Method @FIR=0.01 @FIR=0.001

Wang et al. [30] 72.9± 3.5 51.0± 6.1

PAM [22] 73.3± 1.8 55.2± 3.2

DCNN [5] 78.7± 4.3 −

DR-GAN [28] 77.4± 2.7 53.9± 4.3

FF-GAN [33] 85.2± 1.0 66.3± 3.3

FaceID-GAN (ours) 87.6± 1.1 69.2± 2.7

(a)

(b)

(c)

(d)

(e)

Figure 8. Visual results from abliation study. (a) Input. (b) FaceID-

GAN w/o C. (c) FaceID-GAN w/o P . (d) FaceID-GAN w/o the

competition between G and C. (e) FaceID-GAN (ours).

three-player GAN by introducing an identity classifier C as

an additional competitior to the conventional GAN. C co-

operates together with the discriminator D to compete with

the generator G from two different aspects, facial identity

and image quality respectively. An information symmetry

criterion is also presented to design the architecture of

FaceID-GAN, improving the performance and stability by

alleviating training difficulty. We believe this work is

promising as a general method for effectively solving other

conditional generative problems.
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