
Facelift: Hiding and Slowing Down Aging in Multicores∗

Abhishek Tiwari andJosep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

Abstract
Processors progressively age during their service life due to

normal workload activity. Such aging results in gradually slower
circuits. Anticipating this fact, designers add timing guardbands
to processors, so that processors last for a number of years. As a
result, aging has important design and cost implications.

To address this problem, this paper shows how to hide the ef-
fects of aging and how to slow it down. Our framework is called
Facelift. It hides aging through aging-driven application schedul-
ing. It slows down aging by applying voltage changes at key times
— it uses a non-linear optimization algorithm to carefully bal-
ance the impact of voltage changes on the aging rate and on the
critical path delays. Moreover, Facelift can gainfully configure
the chip for a short service life. Simulation results indicate that
Facelift leads to more cost-effective multicores. We can take a
multicore designed for a 7-year service life and, by hiding and
slowing down aging, enable it to run, on average, at a 14–15%
higher frequency during its whole service life. Alternatively, we
can design the multicore for a 5 to 7-month service life and still
use it for 7 years.

1 Introduction
The challenges of ensuring the reliability of upcoming, deep

sub-micron hardware have spurred interest in the fact that proces-
sors age or wear-out while executing their normal workloads [7].
In particular, the maximum frequency that a processor can deliver
decreases slowly and gradually with time [4].

Two major mechanisms that induce progressive slowdown in
processors are Negative Bias Temperature Instability (NBTI) and
Hot-Carrier Injection (HCI) [4]. Roughly speaking, these effects
are due to stresses induced on transistors by the normal, contin-
uous movement of charges. At the macroscopic level, these ef-
fects manifest as gradually slower transistors and, hence, gradu-
ally slower critical paths.

Anticipating this fact, processor designers add timing guard-
bands to their designs [3]. The goal of guardbands is to absorb
any increase in critical path delay during the processor’s service
life, and avert any timing error. Anecdotal evidence suggests that
current processors include a guardband to last for 7–10 years.
Clearly, the aging process has important implications on the de-
sign and cost of processors.

While aging or wearout has been extensively studied at the de-
vice level, there is relatively little work at the architecture or sys-
tem level. Specifically, Srinivasanet al. [29, 30] focus on model-

∗This work was supported by the National Science Foundation under
grant CPA-0702501 and by SRC GRC under grant 2007-HJ-1592. Ab-
hishek Tiwari is now with Goldman Sachs, New York City.

ing the Mean Time To Failure (MTTF) due to aging mechanisms.
The value of such MTTF is typically multiple times the expected
service life of a processor, since one should expect that only a
negligible fraction of processors will fail during their service life.
The authors propose voltage, frequency, and microarchitectural
adaptations to attain the required MTTF more cost-effectively.

Our goal is to understand how critical path delays increase due
to agingduring the service lifeof the processor, and then use in-
expensive techniques to reduce the performance degradation. The
most relevant work that we are aware of is that of Ramakrishnanet
al. [22], Abellaet al. [1], and Shinet al. [26]. Their idea is to dy-
namically set the transistors to a logic value that “undoes” some
of the aging process — during periods when this does not dis-
rupt processor execution. While their techniques are effective and
transparent to software layers, if they are applied widely across
processor structures, they are likely to be intrusive to the proces-
sor design and may have performance implications. Ideally, we
would like approaches that do not affect processor internals.

In practice, aging depends exponentially on high-level param-
eters that can be easily manipulated — supply voltage (Vdd), tem-
perature (T), and threshold voltage (Vt). Small changes to these
parameters at key times in the processor’s service life can have
major effects without requiring intrusive designs.

Using this general approach, this paper contributes with a
framework of techniques to (i) hide the effects of aging in a mul-
ticore, (ii) slow down aging, and (iii) gainfully configure the chip
for a short service life. We call our frameworkFacelift. A sec-
ond contribution is to show how the shorter guardband enabled
by Facelift can be used to either (i) design a less refined version
of the processor or (ii) clock the processor at a higher frequency.

Facelift hides the effects of aging in a multicore by steering
high-T jobs to the fast cores and low-T ones to the slow cores.
Keeping the slow cores cooler enables the chip to appear to age
less. Facelift slows down aging by making small, chip-wide
changes toVdd or Vt at key times — using a non-linear optimiza-
tion algorithm to carefully balance the impact of the changes on
the aging rate and on the critical path delays. Finally, Facelift con-
figures a chip for a short service life by “shifting” performance
from the unused lifetime portion to the used one.

Simulation results indicate that the Facelift techniques lead to
more cost-effective multicore designs. We can take a multicore
designed for a 7-year service life and, by hiding and slowing down
aging, enable it to run, on average, at a 14–15% higher frequency
during its whole service life. Alternatively, we can design the
multicore for a 5 to 7-month service life and still use it for 7
years. Finally, the implementation of the Facelift techniques is
very simple.

This paper is organized as follows. Section 2 provides a back-

ground; Section 3 discusses the impact of aging on architecture;
Section 4 presents the techniques to hide and slow down aging,
and configure for a short service life; Sections 5 and 6 evaluate
Facelift; and Section 7 discusses related work.

2 Background
During a processor’s normal, failure-free use, semiconductor-

level mechanisms gradually cause devices to become slower. At
the macroscopic level, this results in critical paths in the proces-
sor gradually and slowly taking longer — an important part of a
process that is popularly known as wearout or aging [4]. To tackle
this effect, processor designers add timing guardbands to their de-
signs [3], so that any increased critical path delays during a pro-
cessor’s expected service life can be absorbed by the guardband.
Informal observations indicate that current processors include a
guardband to last for 7–10 years, and possibly less for mobile de-
vices.

According to Bernsteinet al. [4], the two key mechanisms that
increase the delay of transistors during their normal, failure-free
operation are Negative Bias Temperature Instability (NBTI) and
Hot-Carrier Injection (HCI). In particular, NBTI is a dominant
effect that has been the subject of much interest (e.g., [10, 15,
19, 21, 36]). An important insight is that both NBTI and HCI
cause a gradual elevation of the threshold voltage (Vt) of transis-
tors [4] — PMOS transistors in NBTI and NMOS transistors in
HCI. A higherVt in turn increases the transistor switching delay
(Ts) through the alpha power law [24], whereα ≈ 1.3:

Ts ∝
VddLeff

µ(Vdd − Vt)α
(1)

To propose architectural mechanisms to hide or slow down ag-
ing, we need to understand what factors directly impact the in-
crease in transistor delay due to NBTI and HCI. We do this in
Sections 2.1 and 2.2. The formulas in these sections correspond
to 32nm technology. Bernsteinet al. [4] also indicate that elec-
tromigration in wires is another important mechanism observed
during aging. However, since we are unaware of any models in
the public domain that suggest how wire delays are affected by
electromigration during normal, failure-free operation, we neglect
wire delay changes. Finally, Section 2.3 discusses the related is-
sue of process variation.

2.1 NBTI
NBTI is explained by the Reaction-Diffusion model [20].

When logic input 0 is applied to the gate of a PMOS transistor
(Vgs=−Vdd), the presence of holes in the channel causes Si-H
bonds to break at the interface between the gate oxide and the
channel. The resulting H diffuses away, leaving positive traps
(Si+) in the interface, which increaseVt [15]. This process is
called theStressphase. The reaction rate mainly depends on the
temperature (T) and the supply voltage (Vdd). The increase inVt

is [36]:

∆Vt stress = ANBTI × tox ×
√

Cox(Vdd − Vt)×

e
(

Vdd−Vt
toxE0

−Ea
kT

) × t0.25
stress (2)

wheretstress is the time under stress,tox is the oxide thickness
(0.65nm), andCox is the gate capacitance per unit area (4.6×
10−20F/nm2). E0, Ea, andk are constants equal to 0.2V/nm,
0.13 eV , and 8.6174× 10−5eV/K, respectively.ANBTI is a
constant that depends on the aging rate.

When logic input 1 is applied to the gate (Vgs = 0), the tran-
sistor turns off, and H atoms diffuse back, eliminating some of
the traps. This process is called theRecoveryphase. The final in-
crease ofVt after considering both the stress and recovery phases
is [36]:

∆Vt = ∆Vt stress × (1−
√

η × trec/(tstress + trec)) (3)

wheretrec is the time under recovery andη is a constant equal to
0.35.

2.2 HCI
In HCI, electrons accelerated in the electric field of the chan-

nel collide with the gate oxide interface. The collision creates
electron-hole pairs. Energetic electrons — referred to as “hot”
— get trapped in the gate oxide layer, causing an increase in
Vt [31]. Hot-carrier induced degradation mainly affects NMOS
transistors. Moreover, since hot electrons are generated during
logic transitions, the impact of HCI is directly proportional to the
switching frequency. The increase inVt with time is empirically
found to follow a power law relationship [31]:

∆Vt = AHCI × α× f × e
Vdd−Vt
toxE1 × t0.5 (4)

wheret is time, andα and f are the activity factor and the fre-
quency, respectively.tox is the oxide thickness (0.65nm), andE1

is a constant equal to 0.8V/nm [38]. AHCI is a constant that
depends on the aging rate.

Finally, the rate of HCI-induced aging also depends onT.
While, to our knowledge, there is no closed-form analytical re-
lationship between the two, experimental results from [39] show
thatVt has a piecewise linear relationship withT.

2.3 Process Variation
Process variation is the deviation of transistor parameters from

their nominal specification [4]. It is caused by the increasing dif-
ficulty to precisely control the fabrication process as feature sizes
decrease. Process variation can be die-to-die (D2D) or within-die
(WID). WID variation is typically modeled as the combination of
a systematic and a random component. The former is induced by
limitations of the lithography and other manufacturing processes.
Systematic variation exhibits a spatial correlation, meaning that
nearby transistors share similar systematic parameter values. On
the other hand, random variation is mostly induced by materials
effects such as changes in dopant density. Random variation has
a different profile for each transistor.

As per Equation 1, variations in transistor parameters such as
Vt and gate length (Leff) induce variations in transistor switch-
ing delay. At the microarchitecture level, this translates into vari-
ations in the delay of logic paths in a processor — as modeled by
several microarchitecture models (e.g., [13, 17, 18, 25]). In partic-
ular, due to the systematic component of variation, some regions
of a chip are slower than others. In a multicore chip, this results
in some cores being slower than others. For example, at 32nm, it
is estimated that the difference in frequency between the cores in
a 20-core chip may reach over 20% [32].

3 Impact of Aging on Architecture
The equations in Section 2 are, to the best of our knowledge,

the most accurate descriptions of NBTI and HCI available. They
have been validated by experts [15, 20, 31, 34, 36, 39]. Based
on them, this section builds a simple model of how aging affects

critical paths in a processor. First, however, we summarize the
factors that induce aging.

3.1 Factors that Induce Aging
From Equations 2 and 4, we see that∆Vt due to NBTI and

HCI follows a power lawwith time (∆Vt NBTI ∝ t0.25 and
∆Vt HCI ∝ t0.5). Since the exponents oft are less than one,
∆Vt increases rapidly first and then more slowly — as shown in
Figure 1. In the case of NBTI, as given by Equation 3, the increase
occurs only while the transistor is under stress, and the recovery
phase brings∆Vt down at a lower rate than it went up.

Time

V t
h

Time

V t
h

RecoveryStress Stress Recovery

(a) NBTI (b) HCI

Figure 1:Shape of the change inVt due to NBTI (a) and
HCI (b).

From Equations 2 and 4, we note that∆Vt increases exponen-
tially with (Vdd − Vt) in both NBTI and HCI aging. Moreover,
∆Vt also increases rapidly withT — exponentially in NBTI and
linearly in HCI. Finally,∆Vt in HCI also depends linearly on the
activity factorα and the frequencyf. These dependences are sum-
marized in Table 1.

Factor Impact
NBTI HCI

Vdd − Vt exponential exponential
T exponential linear

α, f — linear

Table 1:Impact of key factors on aging.

NBTI-induced aging also depends on the duration of the pe-
riod under stress. What matters is the fraction of the time that the
PMOS transistor is stressed, rather than the timing of the inter-
leaving of the stress and recovery periods [16].

3.2 Modeling the Impact of Aging on Critical
Paths

We estimate the microarchitectural impact of aging by model-
ing its effect on a processor’s critical paths. Consider first a single
transistor. Its switching delayTs is computed using Equation 1,
whereVt = Vt0 + ∆Vt, and∆Vt is taken from Equations 3 or 4
depending on whether the transistor is PMOS or NMOS, respec-
tively. Next, we model critical paths in logic structures and in
memory structures.

A simple model of a critical path in a logic structure is a chain
of FO4 inverters. As shown in Figure 2(a), each CMOS inverter
has one transistor of each type. When we change the value of the
input of the chain, each inverter relies on one transistor to charge
or discharge its output. For example, in Figure 2(b), transistorT2
discharges nodeA. These transistors are, successively, of different
types — in the figure, N, P, N.

The speed at which the signal propagates along the critical path
depends primarily on the speed of the transistors that charge or
discharge the output nodes. In reality, the other transistors have
some effect, but we neglect it. Overall, therefore, we estimate the

01 10 01 10 1 0 1 0

DD

D

HCI HCI

NBTI

(a) (b)

P

N

T

T

1

2

A

Figure 2:Critical path in a logic structure.

delay of an N-FO4 critical path to be the delay of N/2 NBTI-aged
PMOS transistors plus N/2 HCI-aged NMOS transistors.

In reality, a critical path can have a completely different struc-
ture and a different ratio of PMOS to NMOS transistors. In this
case, we need to identify the number of transistors of each type
that need to be activated for the signal to propagate. Then, to com-
pute the critical path delay, we multiply the two curves in Figure 1
by the number of activated transistors of the corresponding type,
and add up the results.

In all cases, the curve resulting from combining the NBTI and
HCI curves for the individual transistors has the general shape of
a power law with an exponent less than one. As a result, it will
increase quickly first and then flatten out toward the end.

We model a critical path in a memory structure to be the de-
coder of the structure, wordline, pass transistor, bitline, and sense
amplifier. We use CACTI [33] to estimate the number of cycles
taken by the critical path without aging, and the fraction of the
time taken by each component. To add the effect of aging, we
again use the NBTI and HCI aging of the transistors present in
the path, and assume no aging for the wires.

Finally, the NBTI and HCI effects are such that similar nomi-
nal devices under similar conditions may age at slightly different
rates. Consequently, the aging equations 3 and 4 have a statisti-
cal component. This statistical component has been studied only
very recently [14], and there is no accepted model. Moreover,
it appears that this component is randomly distributed, since its
effect comes from the finite number of Si-H bonds in the transis-
tor channel. As a result, its effect tends to average out over the
several transistors of a critical path. For these two reasons, we
neglect this component in our analysis. Any uncertainty induced
by this component will be included in the guardbands selected by
the designer.

4 Hiding, Slowing Down, and
Consolidating Aging in Multicores

We now propose how to limit the effect of aging. First, we
present the Facelift framework to understand the benefits of lim-
iting aging. Then, we examine how to hide aging, slow it down,
and configure a processor for a shorter service life.

4.1 Facelift Framework
Consider a processor that, when it is first used, has a critical-

path delay equal toC0 (Figure 3(a)). As the processor is used, the
critical path slows down due to aging. After a periodt=Y0 equal
to the service life for which the processor was designed (e.g., 7
years), aging has caused the critical path delay to reachτ0. Con-
sequently, for the processor to be usable for the duration of its ex-
pected service life, it needs to be clocked at a frequency no higher
thanf0 = 1/τ0. Moreover, the designers need to add a guardband
G0 = τ0 − C0 that is gradually consumed (Figure 3(a)).

The same effect is shown in a different way in Figure 3(b). In
the figure, the guardband is given as a fractionS0 of C0.

Y Y0

S

S0

Without Technique at f0

With Technique at f0

Time

Y0

S

S0

Without Technique at f0

With Technique at f

Time

Period

τ0

Critical Path Delay = C0

Critical Path Delay

t = 0

t = Y0

0

Guardband
0

Period

τ0

Critical Path Delay = C

Critical Path Delay

t = 0

t = Y0

Period

τ = C (1+S) = 1/

Critical Path Delay = C
t = 0

t = Y0

f0

S

(a) (b)

(c) (d)

(e)

= 1/f

G = S x C0 0

0G = S x C

0G = S x C
0

D
el

ay
 In

cr
ea

se
 (F

ra
c.

 o
f C

)

d

d
d d d

d
f

f

f f f

f f

Y0 Time

(f)

C0

τ0

G0}
C

rit
ic

al
 P

at
h

D
el

ay

Critical Path Delay

D
el

ay
 In

cr
ea

se
 (F

ra
c.

 o
f C

) 0
0

Figure 3:General framework to understand the benefits of limiting aging.

Suppose that we now augment the processor with a technique
that limits aging. Figure 3(c) shows the increase in critical path
delay as a fraction ofC0 without the technique (upper curve) and
with it (lower curve). The upper curve comes from Figure 3(a)
with a different Y-axis; byt=Y0, it reachesS0. By t=Y0, the lower
curve reaches onlySd (whered stands fordesign simplification
approach, as we will see). We will show later that, forS0 ≈ 0.25,
we attainSd ≈ 0.09–0.14.

The reduction in needed guardband can be used in one of two
ways: (1) to design a less refined or more “sloppy” version of the
processor and still cycle it at the same frequencyf0, or (2) keep
the same processor design and cycle it at a higher frequency. We
now consider each of these two cases.

4.1.1 Less Refined Design
If designers know that the processor will only age bySd, they

may choose not to speed-tune the paths so carefully (which may
save design time), use less sophisticated circuit designs (which
may save power), or use cheaper technology or design method-
ologies. In essence, they can design the processor for a shorter
target service life than the standard one.

Figure 3(d) shows the critical path timing in this case. The pro-
cessor still has a period equal toτ0. However, att=0, the delay of
the critical path isCd (for targetingdesign simplification), which
is longer thanC0 — leaving a guardbandGd = Sd × C0, which
is smaller thanG0. We callCd/C0 theSimplificationfactor be-
cause it may suggest how much easier it is to design the processor.

Observed values from our evaluation are 1.10–1.16, where higher
values mean easier designs. After the processor has been in use
for the usualt=Y0, the critical path takes no longer thanτ0. This is
despite the fact that the processor has been designed with a guard-
bandGd, which would correspond to an expected service life of
only Yd without the aging-limiting technique (Figure 3(c)).

4.1.2 Higher Frequency
One can instead keep the same processor design and cycle it

at a higher frequencyff (for targetingfrequency). Note that we
do not require the transistors to propagate signals any faster — at
t=0, the delay of the critical path isC0, the same as without the
technique. We simply live with a smaller guardband. We can do
so because the processor ages less. Wedo notchangeVdd.

Increasingf accelerates aging — directly, it increases HCI ef-
fects and, indirectly, by boostingT, it increases NBTI and HCI
effects. As shown in Figure 3(e), the aging-induced increase in
delay atY0 as a fraction ofC0 is Sf , which is slightly longer than
Sd. As a result, we need a guardbandGf = Sf × C0.

The resulting timing is shown in Figure 3(f). The processor
period is a shortτf = C0 × (1 + Sf). The delay of the critical
path att=0 is C0, like in the case without the technique. Due to
thef increase, this leaves only a small guardbandGf = Sf ×C0.
After the processor has been in use for the usualt=Y0, the critical
path delay is no higher thanτf — even though the processor has
been cycling at a higherf.

4.1.3 Other Approaches
In the two approaches described, we keep the frequency of the

processor constant throughout its service life —f0 andff , re-
spectively. A different way to leverage an aging-limiting tech-
nique would be to start the processor’s life at a high frequency
and gradually decrease it as the processor ages and consumes the
guardband. In this paper, we do not consider this approach.

4.2 Hiding Aging: Aging-Driven Scheduling
4.2.1 Description of the Technique

Already in current technologies, multicores experience signif-
icant within-die process variation [4]. As a result, the processors
within the chip differ in the maximum frequency that they can
support. In the future, this effect is expected to grow. For ex-
ample, at 32nm, it is estimated that the difference in frequency
between the cores in a 20-core chip may reach over 20% [32].

If we assume a multicore with a single frequency domain, the
maximum frequency supported by the slowest core determines the
frequency of the whole chip. In this case, Figure 4(a) shows the
aging curves for the slowest core in the chip (P1) and the fastest
one (P2). At t=0, the critical paths of the cores have different
delays (C1

0 andC2
0). As the chip is exercised, processors age.

At the end of the expected service life,P1’s critical path delay
reaches the clock period used by the multicore chip, namelyτ0.

Y0

Time

C0

τ0

C
rit

ic
al

 P
at

h
D

el
ay

C0

P

P

1
1

2
2

Y0

Time

C0

τ0

C0

P

P
1

1

22

τ

(a) (b)

Figure 4:Hiding the effects of aging in a multicore with
aging-driven application scheduling.

To hide the effects of aging, we propose to schedule applica-
tions on the different cores of the chip in anaging-drivenmanner.
Specifically, we like the schedule to be such that the slowest core
ages the slowest, while the faster cores age faster. The net result
is shown in Figure 4(b). Since the slowest core has aged less than
before, and it alone determines the chip’s frequency, we are able
to clock the chip with a periodτ < τ0. The faster cores have aged
more but their aging ishidden.

To accomplish this behavior, recall from Table 1 that cores age
faster if theirT is high and if their logic switches frequently (they
have a highα). This suggests scheduling hot, high-activity ap-
plications on the fast cores. Specifically, to simplify the imple-
mentation, we propose to measure the averageT of applications
as they run and, to the extent possible, steer high-T applications
to the fast cores and low-T ones to the slow cores.

4.2.2 Implementation Issues
To implement this technique, we approximately measure the

averageT of an application on the fly, using per-coreT sensors.
Also, we need the ranking of cores according to the frequency
they support. This can be obtained by running a simple test at
regular periods, e.g., every month. The test is a suite of programs
together with a check for the correct results, that is run on each
core at increasing frequencies. As cores detect errors, the system
constructs a ranking of cores according to their frequency. From

then on until the next test, when multiple applications need to be
scheduled, they are rank-ordered according to theirT and assigned
to processors that are rank-ordered according to their speed —
giving higher-T applications to faster processors.

Note that the faster processors are likely to be the leakier
ones and, as a result, this scheduling algorithm increases leakage.
While this effect reduces the benefits obtained, we still expect the
overall gains to be significant.

To estimate how much guardband the chip consumes with this
technique, we proceed as follows. The baseline fraction of delay
increase due to aging (S0 in Figure 3(c)) assumes a certain aver-
ageT of use — sayTavg. Under aging-driven scheduling, we size
the fraction of delay increase (Sd in Figure 3(c)) assuming that the
slowest core will be used at a lower averageT — sayTavg slow.
With this Sd estimate, we can now compute the Simplification
factorCd/C0 that we can rely on (if we desire a less refined de-
sign) or estimate the higher frequencyff that we can use (if we
desire a higher frequency).

The manufacturer can have a differentTavg slow estimate for
each different type of processor usage, and size guardbands ap-
propriately. For example, for desktop multicores, where the dif-
ferent cores in the chip typically run different tasks and several
cores are often idle,Tavg slow is significantly lower thanTavg.
In multicores for the server or supercomputing market, the cores
in the chip are likely to run more similar tasks and be busy more
often. In this case,Tavg slow is closer toTavg. In all cases, the pe-
riodic tests of processor speeds described above, or aging sensors
such as those in [3, 5, 6, 28] can indicate if guardbands are being
consumed at an usually high rate. If so, the system can trigger the
techniques to slow down aging described in Section 4.3 or reduce
the processor frequency.

Finally, although we focus on a multicore with a single fre-
quency domain, aging-driven scheduling also works for multi-
cores with multiple frequency domains. The same idea can be
used, namely concentrate the aging mostly on the cores that, due
to variation, are endowed with longer guardbands — i.e., the
faster cores. However, in such an environment, there is a richer
set of tradeoffs to be made. An analysis of such an environment
is beyond our scope.

4.3 Slowing Down Aging: Chip-Wide ASV/ABB
4.3.1 Description of the Techniques

According to Table 1, two important parameters that determine
the aging rate are (Vdd−V t) andT. To slow down aging, we pro-
pose to apply in achip-widemanner, one of two techniques that
directly affect these parameters, namely Adaptive Supply Voltage
(ASV) and Adaptive Body Bias (ABB) [11].

In ASV, the chip’sVdd is slightly increased over its nominal
value (a case we call ASV+) or slightly decreased (a case we call
ASV-). Under ASV+, the gates become faster and spend more
dynamic and static power. Under ASV-, the opposite occurs. This
technique can reuse support for Dynamic Voltage and Frequency
Scaling (DVFS), although the frequency is unchanged.

In ABB, a voltage is applied between the chip’s substrate and
the source (or drain) of the transistors. Depending on the volt-
age polarity, it either decreases the transistors’ threshold voltage
Vt (Forward Body Bias or FBB) or increases it (Reverse Body
Bias or RBB). Under FBB, the gates become faster and consume
more leakage power. Under RBB, the opposite occurs. ABB re-
quires adding on-chip signal lines for the bias voltage. ABB is
used in chips such as Intel’s Xscale [12] and 80-core network-on-

Slow
Age

Slow
AgeNothing

High
Speed

De
la

y
In

cr
ea

se
 (%

)

Time
FBB or ASV+

Nothing

De
la

y
In

cr
ea

se
 (%

)

Time
RBB or ASV−

Nothing

De
la

y
In

cr
ea

se
 (%

)

High
Speed

Nothing

FBB or
ASV+

Time

(a) (b) (c) (d)

Time

De
la

y
In

cr
ea

se
 (%

)

RBB or ASV−

Figure 5:Applying techniques that change the aging rate during only part of the expected service life.

chip [35].
Consequently, we have two groups of techniques. The first

one, which includes RBB and ASV-, increases the delay of critical
paths but reduces the aging rate. The aging rate is reduced due
to the decrease inVdd (in ASV-), increase inVt (in RBB), and
decrease inT (in both, since both techniques save power). We call
these techniquesSlowAge.

The second group, which includes FBB and ASV+, reduces the
delay of critical paths but increases the aging rate. The aging rate
goes up due to the increase inVdd (in ASV+), decrease inVt (in
FBB), and increase inT (in both, since both techniques increase
power). We call these techniquesHighSpeed.

Figure 6(a) shows the impact of theSlowAgetechniques on the
critical path delay of a core. The original critical path delay curve
is shown in dashes. Att=0, SlowAgeincreases the core’s critical
path delay by aSlowdownamount overC0. However, it also re-
duces the aging rate and, therefore, as the core is exercised, the
critical path delay increases with alower slopethan before. De-
pending on theSlowAgetechnique’s parameters, the critical path
delay at the end of the service life (t=Y0) may be lower than before
(Favorable Casein the figure) or higher (Unfavorable Case).

Y0

Time

C0

τ0

C
rit

ic
al

 P
at

h
D

el
ay

(a) (b)

Slowdown
Favorable case

Unfavorable case

Y0

Time

C0

τ0

Speedup

Favorable case
Unfavorable case

Figure 6: Changing the critical path delay in a core with
SlowAge(a) andHighSpeed(b).

Figure 6(b) shows the impact of theHighSpeedtechniques. At
t=0,HighSpeedreduces the core’s critical path delay by aSpeedup
amount. However, it also increases the aging rate and, therefore,
as the core is used, the critical path delay increases with ahigher
slope than before. Att=Y0, the core’s critical path delay may
be lower than before (Favorable Case) or higher (Unfavorable
Case).

Since bothSlowAgeandHighSpeedtechniques can potentially
slow down aging, we now examine when to apply them and the
difference between the effectiveness of ASV and ABB.

4.3.2 When To Apply These Techniques
A key observation is that these techniques impact (i) the aging

rate and (ii) the critical path delaydifferently. Specifically, they
impact the aging rate strongly at the beginning of the processor
lifetime, and little toward the end. In contrast, they impact the

delay more uniformly across time.
As an example, consider ASV+. From Equation 2, it can be

shown that increasingVdd increases the aging rate (i.e., the slope
of the curve in Figure 3(a)) by roughly the same fraction irrespec-
tive of when it is applied. However, as shown in the figure, the
slope changes with time — it is highest att=0 and decreases with
time. Consequently, the absolute impact of ASV+ on the aging
rate is higher at the beginning than toward the end of the service
life. On the other hand, Equation 1 shows that increasingVdd re-
duces the critical path delay by the same amount irrespective of
when it is applied — modulo the fact thatVt changes with time.

A consequence of this is that it is best to applySlowAgetech-
niques toward the beginning of the service life. At that time, they
reduce the aging rate the most and, therefore, slow down aging the
most. Toward the end of the service life, when they do not matter
anyway, they can be disabled, and their contribution to lengthen-
ing the critical path delay mostly disappears. On the other hand, it
is best to applyHighSpeedtechniques only toward the end of the
service life. At that time, they still reduce the critical path delay,
while they increase the aging rate the least.

Figure 5 qualitatively shows the effect of applying these tech-
niques during only part of the service life. We show their impact
on the delay increase overC0. In Figures 5(a) and (b), they are
applied at their best time. Specifically, in Figure 5(a),SlowAgeis
applied in the beginning of the service life and no technique to-
ward the end. WhenSlowAgeis applied, it slows aging so much
that, when it is removed, the critical paths are much faster than
in the baseline case. After that, the remaining aging does not in-
crease the delay to baseline values.

In Figure 5(b), we apply no technique at the beginning and
HighSpeedtoward the end. By the time we applyHighSpeed, the
aging rate has substantially saturated. Consequently,HighSpeed
increases the aging rate only slightly, while it still reduces the
critical path delay.

In Figures 5(c) and (d), these techniques are applied at their
worst time. Specifically, in Figure 5(c),SlowAgeis applied toward
the end — when the aging rate is small. In this case, the reduced
aging rate cannot make up for the increase in critical path delay.
In Figure 5(d),HighSpeedis applied at the beginning. By the time
HighSpeedis removed, the critical paths have aged substantially,
and they are slower than they would be in baseline conditions.

Finally, the best case involves applying aSlowAgetechnique in
the beginning of the service life and aHighSpeedone toward the
end.

4.3.3 ASV Versus ABB
While either ASV or ABB can be used to implementSlowAge

andHighSpeed, they have different properties. Specifically, for
a fixed change in critical path delay, ASV changes the aging rate

S

High
Speed

RBB

(a) (b)

or ASV−

Slow
Age

D D
So

SA HS
So

S

Voltage Domains
Temporal

ABB
ASV
ABB

ASV
ABB

ASV
FBB
or ASV+

ttrans
Time Time

1
1

2
2 3

3or or or

D
el

ay
 In

cr
ea

se
 (F

ra
c.

 o
f C

)0 0

D
el

ay
 In

cr
ea

se
 (F

ra
c.

 o
f C

)

Figure 7:Applying different techniques in different epochs.

Y0 Time

C0

τ0

C
rit

ic
al

 P
at

h
D

el
ay

Y

τ

Figure 8: Configuring a core for a
shorter service life.

more than ABB. Indeed, from Equation 1, it can be shown that,
for the same change in aging rate,Vt changes due to ABB have a
greater impact on delay thanVdd changes due to ASV. In addition,
the overall impact of ASV on total power is higher than that of
ABB — directly affectingT and, therefore, the aging. Overall,
therefore, for a fixed change in delay, the aging rate is affected
more with ASV.

Consequently, when applying aSlowAgetechnique as in Fig-
ure 5(a), we prefer ASV- over RBB — since ASV- reduces the
aging rate more. On the other hand, when applying aHighSpeed
technique as in Figure 5(b), we prefer FBB over ASV+ — since
FBB reduces the critical path delay more. The best techniques are
circled in Figures 5(a)-(b).

4.3.4 Implementation: Non-Linear Optimization
We propose to apply aSlowAgetechnique in an epoch at the

beginning of the service life and aHighSpeedtechnique in an
epoch toward the end. We need to find an optimal Transition Time
(ttrans) where theSlowAgetechnique is disabled and theHigh-
Speedone is enabled (Figure 7(a)). Such optimalttrans is one for
which the maximum critical path delay increase (Sin Figure 7(a))
is minimized.

There may be multiple optimalttrans, and they are not nec-
essarily at half the service life of the processor. At these points,
the critical path delay increase underSlowAge(DSA) must be
equal to the delay increase underHighSpeedat the end of the ser-
vice life (DHS). This is shown in Figure 7(a). To see why, con-
sider a counter-example where the delay increase at the end of the
SlowAgeepoch (DSA) is higher thanDHS . In this case, we can
slightly reduce the duration ofSlowAgeapplication, which will
reduceDSA. At the same time,DHS will go up slightly, because
more aging now takes place in theHighSpeedepoch. Overall, the
result will be a lower maximum delay increaseS for the proces-
sor. A symmetric argument holds for the case whenDSA is lower
thanDHS .

To find one set of optimal values forttrans, Vdd SA, and
Vdd HS (or, under ABB,Vbb SA andVbb HS), we proceed as fol-
lows. We generate the aging function∆Vt() for each of the
two epochs from the equations in Sections 2.1 and 2.2. Then,
we plug∆Vt() into the alpha power law (Equation 1) and, from
there, build the delay of the critical paths. Finally, we constrain
the delays of the critical paths at the end of the epochs to be
DSA = DHS , and we minimizeDSA using the IPOpt [37] non-
linear optimization package. The result of the algorithm isttrans,
the pair ofVdd (or Vbb), and the guardband increase neededS.

We envision this computation to be performed by the chip man-
ufacturer. TheSlowAgetechniques are enabled from the begin-
ning until ttrans. After that, theHighSpeedtechniques are en-

abled until the end of the service life. As indicated before, it is
possible that the working conditions of the chip differ markedly
from those expected by the manufacturer. In this case, aging sen-
sors in the chip such as those in [3, 5, 6, 28] detect if guardbands
are about to be consumed too early. When this happens under
SlowAge, the system triggers an early transition toHighSpeed;
when it happens underHighSpeed, the system reduces the fre-
quency.

To slow down aging even more, the algorithm presented can
be easily extended to have more than two epochs. The idea is
shown in Figure 7(b). Each epoch has a differentVdd (or Vbb). As
the processor ages, the environment changes from strongSlowAge
to weakSlowAge, to weakHighSpeed, and to strongHighSpeed.
Effectively, we are having chip-widetemporalvoltage domains —
without changing the frequency. The result is a lower guardband
increase neededS.

4.4 Consolidating Aging: Configuring Cores for
a Shorter Service Life

Often, a user ends up discarding the processor chip before the
expiration of the expected service life. In this case, significant
available performance may be wasted. If we know when the chip
will be discarded, we can use Facelift to “shift” some performance
from the unused portion of the chip’s lifetime to the used time.

This case is shown in Figure 8. The dashed curve shows the
baseline critical path delay. We want to discard the chip att=Y.
Our goal is to applySlowAgeandHighSpeedtechniques so that,
during 0≤ t ≤ Y, the critical path delay remains below a valueτ
that is as low as possible — allowing us to cycle the processor at
the very high frequencyf=1/τ all along.

The approach we use is similar to that of Section 4.3.4. We
record the short service life desired (t=Y), and run the non-linear
optimization technique to find the parameters of two (or more)
SlowAgeand HighSpeedepochs, the transition times, and the
maximum guardband needed (τ −C0). The resulting critical path
delay evolution is shown in Figure 8 as a solid curve.

5 Evaluation Setup
We evaluate our techniques for hiding, slowing down, and con-

solidating aging using the SESC [23] execution-driven simulator.
In the following, we describe the models that we use.

5.1 Architecture Modeled
We model a chip multiprocessor at 32nm with 16 cores run-

ning at a baseline frequency of 4 GHz. The cores are out-of-
order, 4-issue, and similar to the Alpha 21264. Each core has
private L1 and L2 caches. The chip has a single frequency and
voltage domain. The architecture parameters are shown in Ta-

Architecture Aging and Variation

Chip: 16-core multicore, 32nm, 1V Expected processor service life: 7 years
Frequency: 4GHz, single frequency and voltage domain Low Wearoutaging rate: 10% in 7 years
Cores: out-of-order, 4-issue, like Alpha 21264 High Wearoutaging rate: 25% in 7 years
On-chip network: 4x4 2-D torus, 6 cyc hop latency Vt0: 200mV at 80oC
Private D-L1, I-L1: 64KB, 2-way, 64B line, 2 cyc roundtrip Max ∆Vdd for ASV: ±0.1V; Max∆Vt for ABB: ±75mV
Private L2: 2MB, 8-way, 64B line, 8 cyc roundtrip Vt var: σ/µ=0.12,φ=0.3;Leff var: σ/µ=0.06,φ=0.3
Memory: 400 cycle roundtrip Number of chips/experiment: 100
Tmax: 120oC Average coreT running apps: 47–92oC

Table 2:Architecture modeled. All latencies are given in processor cycles.

ble 2. Our simulator is enhanced with dynamic power models
based on Wattch [9] and CACTI [33]. We also model static
power with models based on HotLeakage [40] and temperature
with HotSpot [27]. We control that the temperature never exceeds
120oC.

5.2 Modeling Critical Paths
We do not have access to detailed information on the structure

and distribution of a real processor’s critical paths. For this rea-
son, we design a simple model for our experiments. The model
was outlined in Section 3.2. In pipeline stages with logic struc-
tures (e.g., the execution unit), we model critical paths as chains of
FO4 inverters. In stages with memory structures (e.g., the cache
access), we model critical paths as stretching from the decoder of
the structure, to the wordline, pass transistor, bitline, and sense
amplifier. We use CACTI to determine the optimal sub-array
sizes, physical layout, and cycle count of the structures.

We model each pipeline stage as having many, spatially-
distributed critical paths. Specifically, we use Bowmanet al.’s [8]
estimate that a high-performance processor chip at our technol-
ogy may have≈ 50,000 critical paths. We distribute these paths
uniformly on the area taken by the cores and L1 caches — we as-
sume that the L2s and the interconnect do not have critical paths.
Each pipeline stage gets critical paths of its type.

5.3 Modeling Aging
To our knowledge, there is no publicly-available validated in-

formation on expected service lifes and aging rates of proces-
sors. Consequently, we assume a range of values. Specifically,
we assume that processor chips are designed for a 7-year service
life [3], and evaluate two different aging rates, calledLow Wearout
andHigh Wearout. They increase the delay of the critical paths by
10% and by 25%, respectively, in 7 years — namely,G0 in Fig-
ure 3(a) is 0.10×C0 and 0.25×C0, respectively. These numbers
are similar to those assumed in the literature.

There are three other important parameters related to aging
which, due to the lack of experimental data, are explored with
ranges of values. The first one is the average fraction of time
when PMOS transistors are in stress mode. This parameter de-
termines the fraction of the time that NBTI aging is active. We
examine a range between 10% and 90%, and a default value of
50%. The second parameter is NBTI’s impact on transistor delay
relative to HCI’s impact — given two transistors of the correct
types. We use a range between 1 and 10, and a default value of
3, as asserted by Bernsteinet al.’s [4]. The final parameter is the
average ratio of PMOS to NMOS transistors in critical paths. We
use a range between 0.1 and 10, and a default value of 1. The last
two parameters determine the relative impact of NBTI and HCI
on aging. With the default parameters, we calibrate theANBTI

andAHCI constants from Sections 2.1 and 2.2 to induce Low and
High Wearout as defined.

In SlowAgeandHighSpeedtechniques, when we apply ASV,
we changeVdd by at most±0.1V; when we apply ABB, we ap-
ply voltages that changeVt by at most±75mV. These figures are
shown in Table 2.

5.4 Modeling Process Variation
To model process variation, we use the VARIUS frame-

work [25]. VARIUS models the within-die systematic and ran-
dom variation ofVt andLeff, which it characterizes with two sta-
tistical measures, namelyσ/µ and φ. The latter measures the
spatial correlation of the systematic component of variation. For
these measures, we use values similar to those recommended by
the authors, as shown in Table 2.

Using this model, we create chip-wide variation maps forVt

and Leff. As we superimpose these maps and the temperature
profiles obtained from the simulator on the multicore layout, we
use Equation 1 to determine how variation impacts the delay of
each gate of each critical path. The slowest of the critical paths
in a processor determines the processor frequency. Finally, since
variation is a statistical process, using the sameσ/µ andφ param-
eter values, we create 100 variation profiles — which correspond
to 100 different chips. Every experiment in Section 6 is performed
on all of the 100 chips, and the average is reported. We found that
including more than 100 chips in our experiments did not change
the numbers appreciably.

5.5 Workloads Used
The application set consists of the 26 SPEC2000 int and fp

applications. Each application is measured for 1B instructions,
after skipping its initialization. For our experiments, we place the
applications in random order in a circular queue. Then, we con-
struct many 16-application workloads by consecutively selecting
the next 16 applications in order from the queue. We assume that
the load generated by each of these 16-application workloads pre-
vails for 10 days. Consequently, to model the load in a 7-year
service life, we simulate 3 (workloads/month) x 12 (months/year)
x 7 (years) = 252 different workloads, and report the cumulative
results. In the baseline multicore, the programs of each of these
16-application workloads are scheduled on the 16 cores randomly.
We refer to this approach asRandomscheduling.

Table 2 shows that the average temperature (T) of the cores run-
ning the applications ranges from 47 to 92oC. This number is ob-
tained with random scheduling. For each given core-application
pair, we compute the averageT across time and across all the
modules in the processor.

6 Results
6.1 Hiding Aging with Aging-Driven Scheduling

To gain intuition, we take one sample chip and measure the in-
crease in the delay of the chip-critical path due to aging under dif-
ferent application scheduling algorithms. We consider the base-

line Random scheduling and the proposed Aging-Driven schedul-
ing (which we callSched), both under High Wearout (Figure 9).
We see that, with Random scheduling, the delay of the chip-
critical path in this particular chip increases by≈23% in 7 years.
With Sched, the delay increase is only≈14%, thanks to the aging-
hiding effect ofSched.

Aging-Driven Scheduling (Sched)

Random Scheduling

0 10 20 30 40 50 60 70 80
Time (months)

0
4
8

12
16
20
24

D
el

ay
 In

cr
ea

se
(%

)

Figure 9: Increase in the delay of the chip-critical path
under different scheduling algorithms.

Schedsteers low-T applications to the slowest processor, which
ages the least. Table 3 shows theT for the average processor-
application pair under Random scheduling (top row) and for the
slowest processor underSched(bottom row). For a given pair, we
measure the maximumT at any point in the execution and at any
module in the processor (Max(T)) and the averageT across the
execution and modules (Avg(T)). From the table, we see a large
difference betweenT under Random scheduling and in the slow-
est processor underSched. This is the source ofSched’s ability
to limit aging. It helps, of course, that this application mix has
variance, as can be seen from theT ranges.

Environment Max(T)(oC) Avg(T)(oC)
Avg Range Avg Range

Random
Scheduling 92 47–116 77 47–92
Sched
(Slowest Proc) 52 47–59 50 47–55

Table 3:MeasuredT in processor-application pairs.

One way to leverageSchedis to increase the multicore fre-
quency and still retain the same service life. For this scenario, Fig-
ure 10(a) shows the frequency increase over the baseline enabled
under Low and High Wearout. For comparison, each wearout
level also includes a second bar with the frequency increase pos-
sible had there been no aging. Each bar shows the average of all
100 chips and the spread. The figure shows thatSchedincreases
the frequency over Random by, on average, 4% and 9% under
Low and High Wearout, respectively. Moreover,Schedregains
35–40% of the frequency loss due to aging (No Agingbars).

Low Wearout High Wearout
0
4
8

12
16
20
24
28
32

F
re

qu
en

cy
 In

cr
ea

se
 (

%
)

Sched
No Aging

(a)

16 months

21 months

Low Wearout High Wearout
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16

S
im

pl
ifi

ca
tio

n
F

ac
to

r

(b)
Figure 10:Frequency increases (a) and Simplification fac-
tors (b) enabled bySched.

The second way to leverageSchedis to spend less time refining
the multicore design. For this scenario, Figure 10(b) shows the
Simplification factors relative to the baseline under Low and High

Wearout. As shown by the Simplification factors, the critical path
delay of the slowest core in the chip can be extended att=0 by
4% and 11% under Low and High Wearout, respectively — and
still have enough guardband to complete the full service life. The
chips can be designed as if they were expected to last for only a
reduced service life. Such reduced service life is shown on top of
the bars: it is only 16 and 21 months for Low and High Wearout,
respectively. Compared to the 7-year baseline service life, this
shows the remarkable aging-hiding impact ofSched.

6.2 Slowing Aging with Chip-Wide ASV or ABB
We take a sample chip and apply the non-linear optimization

algorithm of Section 4.3.4 on the slowest processor of the chip to
identify optimalSlowAgeandHighSpeedepochs. Here, we only
use ASV- and ASV+. Figure 11 shows the resulting effect on the
delay of the chip-critical path under High Wearout. We see that,
in theSlowAgeepoch, the critical path delay starts-off longer, but
it grows more slowly than in the baseline. At the 16-month point,
the processor enters theHighSpeedepoch. The critical path delay
drops significantly, at the cost of a slight increase in the slope
of the critical path delay growth. However, since the aging rate
is already small by now, the critical path delay at the end of the
service life is much smaller than in the baseline.

0 10 20 30 40 50 60 70 80
Time (months)

0
4
8

12
16
20
24

D
el

ay
 In

cr
ea

se
(%

)

Slow
Age

High
Speed

Figure 11: Increase in the delay of the chip-critical path
with SlowAgeandHighSpeedepochs.

We now apply aging-slowing techniques to the whole 100-chip
batch to increase frequency or enable the use of a less refined
design. Figure 12(a) shows the frequency increases enabled by
ASVS+H or ABBS+H application under Low and High Wearout
— whereS+H stands forSlowAge+HighSpeed. The bars show the
average and spread of the measurements. From the figure, we see
that the frequency increases attained after slowing down aging are
significant. Using ASVS+H , we increase the average frequency
by 4% and 9% for Low and High Wearout, respectively. Using
ABBS+H , the increase is 7% under both Low and High Wearout.

Low Wearout High Wearout
0
4
8

12
16
20
24
28
32

F
re

qu
en

cy
 In

cr
ea

se
 (

%
)

ASV_S+H ABB_S+H No Aging

(a)

Low Wearout High Wearout
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16

S
im

pl
ifi

ca
tio

n
Fa

ct
or

ASV_S+H ABB_S+H

18 months
1 month

23 months
32 months

(b)
Figure 12:Frequency increases (a) and Simplification fac-
tors (b) enabled by ASVS+H or ABBS+H .

ASVS+H performs better under High Wearout and ABBS+H

under Low Wearout. This is because, as per Section 4.3.3, ASV is
more effective at changing the aging rate, whereas ABB is more

effective at changing path delays. Consequently, when the aging
rate is high, ASVS+H performs better, while when the aging rate
is low, ABBS+H performs better.

If, instead, we choose to use a less refined design, Figure 12(b)
shows the average Simplification factors and the equivalent target
service lifes for the techniques. As shown in the figure, with these
techniques, the chips can be designed as if they were expected
to be used for only 1–32 months, on average — rather than the
baseline 7 years.

6.3 Hiding and Slowing Down Aging
We now combineSchedwith ASVS+H or ABBS+H . Note

that the non-linear optimization algorithm works in the same
way. Figure 13(a) shows the frequency increases enabled by
Sched+ASVS+H and Sched+ABBS+H under Low and High
Wearout. For comparison, we also showSchedandNo Aging. We
see thatSched+ASVS+H enables an increase of the frequency
by, on average, 8% and 14% under Low and High Wearout, re-
spectively.Sched+ABBS+H is slightly better with 11% and 15%
increases. Comparing these bars toNo Aging, we see that the
combination of aging-hiding and slowing techniques recovers 54–
110% of the frequency lost to aging. Note that, in one case, these
techniques do even better thanNo Aging. This is because, thanks
to the power spent by ABB, the critical paths are sped-up more
than they are slowed down by aging. Finally, the bars show that
aging-hiding and aging-slowing techniques combine well.

Low Wearout High Wearout
0
4
8

12
16
20
24
28
32

F
re

qu
en

cy
 In

cr
ea

se
 (

%
)

Sched
Sched+ASV_S+H
Sched+ABB_S+H
No Aging

(a)

Low Wearout High Wearout
1.00
1.04
1.08
1.12
1.16
1.20

S
im

pl
ifi

ca
tio

n
Fa

ct
or

Sched
Sched+ASV_S+H
Sched+ABB_S+H

16 months
1 month

0 months

21 months 7 months
5 months

(b)
Figure 13:Frequency increases (a) and Simplification fac-
tors (b) enabled by the combination of aging-hiding and
aging-slowing techniques.

Figure 13(b) shows the Simplification factors. From the
Sched+ASVS+H andSched+ABBS+H bars, we see that the crit-
ical path delay of the slowest core in the chip can be extended
at t=0 by 8–11% under Low Wearout and 15–16% under High
Wearout. This enables a chip designed for 1 month under Low
Wearout or 5–7 months under High Wearout to last for 7 years.

6.4 Consolidating for a Shorter Service Life
We now configure the chips for 1- and 3-year expected ser-

vice lifes. Figure 14 shows the frequency increases enabled by
ASVS+H , Sched+ASVS+H , ABBS+H , and Sched+ABBS+H .
For comparison, we also show the frequency increases for 7 years.
We find thatSched+ABBS+H is the best performing technique
for both wearout environments. The key reason behind this is
that ABB is a goodHighSpeedtechnique, better able than ASV to

speed up circuits with a lesser cost in aging rate.

0
4
8

12
16
20
24
28

Fr
eq

ue
nc

y
In

cr
ea

se
 (%

)

1yr
3yr
7yr

ASV_S+H Sched+
ASV_S+H

ABB_S+H Sched+
ABB_S+H

(a) Low Wearout

0
4
8

12
16
20
24
28

Fr
eq

ue
nc

y
In

cr
ea

se
 (%

)

1yr
3yr
7yr

ASV_S+H Sched+
ASV_S+H

ABB_S+H Sched+
ABB_S+H

(b) High Wearout
Figure 14: Frequency increases enabled by configuring
the chips for shorter expected service lifes.

For 1- and 3-year expected service lifes, these techniques en-
able sizable frequency increases. For example,Sched+ABBS+H

enables frequency increases of, on average, 14–16% for Low
Wearout and 19–24% for High Wearout. To realize such substan-
tial frequency increases, the chip may require an upgrade in its
power dissipation capability — a topic beyond this paper’s scope.
Overall, these results show that, if we are willing to discard chips
early, we can extract much more performance during their short
service life.

6.5 Sensitivity Analysis
To ensure that our techniques are applicable for a wide range

of conditions, we briefly describe four sensitivity experiments we
performed. Figure 15 shows the increase in the critical path delay
of the slowest processor in the chip if the fraction of time that
its PMOS transistors are under stress changes. We had calibrated
the Low Wearout environment so that if such a fraction of time is
50%, the processor slows down 10% after 7 years. We see that if
the fraction is 10–90%, the slowdown changes to 2–20%.

0.1
0.3
0.5
0.7
0.9

0 10 20 30 40 50 60 70 80
Time (months)

0
4
8

12
16
20
24

D
el

ay
 In

cr
ea

se
(%

)

Figure 15: Effect of the fraction of time that the PMOS
transistors are under stress under Low Wearout.

Figure 16 shows the frequency increases enabled as we vary
NBTI’s impact on transistor delay relative to HCI’s impact—
given transistors of the correct types. We examine the range 1:1
to 10:1, which includes the default value of 3:1. The total delay
increase after 7 years is fixed at 10% and 25% for Low and High
Wearout. We only show two of the most effective techniques:
ABBS+H under Low Wearout, andSchedand ASVS+H under
High Wearout. Overall, this parameter has little impact.

Figure 17 shows the frequency increases enabled as we vary
the ratio of PMOS to NMOS transistors in the critical path. We

1:1 3:1 5:1 10:1
NBTI:HCI Impact on Delay

0
4
8

12
16
20
24
28
32

F
re

qu
en

cy
 In

cr
ea

se
 (

%
) ABB_S+H No Aging

(a) Low Wearout

1:1 3:1 5:1 10:1
NBTI:HCI Impact on Delay

0
4
8

12
16
20
24
28
32

F
re

qu
en

cy
 In

cr
ea

se
 (

%
)

ASV_S+H Sched No Aging

(b) High Wearout
Figure 16: Frequency increases enabled for different
NBTI:HCI impact on delay for a constant total aging.

examine the range 0.1 to 10, which includes the default value of
1. Since NBTI’s impact on delay is higher than HCI’s, as the
ratio increases, the total aging increases. Hence, theNo Aging
bars go up. The ABBS+H bars go down because ABBS+H is
less effective with higher aging rates. The ASVS+H bars go up
because the opposite is true for ASVS+H . Schedstays constant
because it saves the same amount of aging for PMOS and NMOS.

0.1 0.2 0.5 1.0 2.0 5.0 10.0
PMOS:NMOS on Critical Path

0
8

16
24
32
40
48

F
re

qu
en

cy
 In

cr
ea

se
 (

%
)

ABB_S+H
No Aging

(a) Low Wearout

0.1 0.2 0.5 1.0 2.0 5.0 10.0
PMOS:NMOS on Critical Path

0
8

16
24
32
40
48

F
re

qu
en

cy
 In

cr
ea

se
 (

%
)

ASV_S+H
Sched
No Aging

(b) High Wearout
Figure 17: Frequency increases enabled for different
PMOS:NMOS transistor ratios in the critical path.

Figure 18 shows the effect of changing the order in which the
applications are placed in the circular queue for the experiments
(Section 5.5). This results in different workload compositions for
our experiments. The figure compares the baseline order (bars0)
to 8 other permutations. The differences are negligible.

7 Related Work
Srinivasanet al. [29, 30] examine the related problem of life-

time reliability of processors. Their work is different than ours in
terms of the problem looked at, the goals, and the approach taken.
They focus on the problem of Mean Time To Failure (MTTF) of
processors due to aging mechanisms. The value of this MTTF is
typically multiple times the expected service life of a processor,
since one should expect that only a negligible fraction of proces-
sors will fail during their service life. Their goal is to estimate
at run time the MTTF based on operating conditions since the
processor was manufactured, and then extend the MTTF or attain
it more cost-effectively. Their approach is to monitor application
behavior and, based on that, dynamically adapt the processor (V, f,

0 1 2 3 4 5 6 7 8
0
4
8

12
16
20
24
28
32

F
re

qu
en

cy
 In

cr
ea

se
 (

%
) ABB_S+H No Aging

(a) Low Wearout

0 1 2 3 4 5 6 7 8
0
4
8

12
16
20
24
28
32

F
re

qu
en

cy
 In

cr
ea

se
 (

%
) ASV_S+H Sched No Aging

(b) High Wearout
Figure 18:Frequency increases enabled for different ap-
plication permutations.

or microarchitecture structures) to maintain its reliability target in
MTTF — an approach called Dynamic Reliability Management.

Rather than focusing on failures, we instead look at the prob-
lem of progressive processor slowdown with time due to aging
during the expected service life of the processor. Our goal is to
reduce the rate of guardband consumption, so that processors can
be designed more cost-effectively — namely, they need less de-
sign tuning to work or, for the same tuning, can be clocked at a
higher, fixed frequency. Finally, our approach is to hide the effects
of aging with aging-driven job scheduling, and slow down aging
with a one-time change inVdd or Vt (or a few changes, always in
the same direction).

Blomeet al. [5, 6], Agarwalet al. [3], and Smolenset al. [28]
propose circuits to detect when critical paths have slowed down
due to aging. These are “aging sensors” that can be used to initiate
the replacement of components. Facelift can use these sensors to
improve its effectiveness.

Ramakrishnanet al. [22] reduce the NBTI-induced wearout in
FPGAs by loading NBTI-reversing bit patterns into devices (i.e., a
logic 1 in the gates of PMOS transistors) during idle periods. Such
patterns reverse the aging as described in Section 2.1. Abellaet
al. [1] use the same technique in a processor. They discuss ap-
proaches to insert the desired bit patterns into several microarchi-
tectural structures. Most recently, Shinet al. [26] propose a sim-
ilar approach for SRAM caches. It proactively puts PMOS tran-
sistors from cache arrays in recovery mode. The scheme requires
moving data to a spare cache array. While all these techniques
are effective and transparent to software layers, if they are applied
widely across processor structures, they are likely to be intrusive
to the processor design and may have performance implications.

Facelift does not try to change the stress time of PMOS transis-
tors. Instead, it changes high-level parameters such as application
scheduling,Vdd, andVt, that can be easily manipulated architec-
turally. Our work is orthogonal to theirs, and both can be used
simultaneously.

Finally, Abellaet al. [2] propose an improved design of mem-
ory cells that is resilient to NBTI. In their design, the stress time
of PMOS transistors is reduced by construction.

8 Conclusions
This paper presentedFacelift, a framework to address the grad-

ual slowdown that processors experience during their service life.
The paper made two contributions. First and foremost, it pre-
sented a set of techniques to (i) hide the effects of aging in a mul-
ticore, (ii) slow down aging, and (iii) gainfully configure the chip
for a short service life. A second contribution was to show how
the resulting shorter guardband needed can be used to either de-
sign a less refined processor version or to clock the processor at a
higher frequency.

Facelift hides the effects of aging in a multicore by steering
jobs in an aging-driven manner: high-temperature ones to fast
cores and low-temperature ones to slow cores. Keeping the slow
cores cooler enables the chip to appear to age less. Facelift slows
down aging by makingchip-widechanges toVdd or Vt in two (or
more) time epochs, carefully balancing the impact on the aging
rate and on the critical path delays. We use a non-linear opti-
mization algorithm to select the optimal voltages and the optimal
epoch-transition point. Finally, Facelift configures a chip for a
short service life by “shifting” performance from the unused life-
time portion to the used one.

Overall, our results showed that Facelift leads to more cost-
effective multicore designs. For example, we can take a multicore
designed for a 7-year service life and, by hiding and slowing down
aging, enable it to run, on average, at a 14–15% higher frequency.
Alternatively, we can design a multicore for a 5 to 7-month ser-
vice life and use it for 7 years. Finally, the implementation of the
Facelift techniques is very simple.

References
[1] J. Abella, X. Vera, and A. González. Penelope: The NBTI-aware

processor. InInt. Symp. on Microarchitecture, December 2007.

[2] J. Abella, X. Vera, O. Unsal, and A. Gonzalez. NBTI-resilient mem-
ory cells with NAND gates for highly-ported structures. InWork-
shop on Dependable and Secure Nanocomputing, June 2007.

[3] M. Agarwal, B. Paul, and S. Mitra. Circuit failure prediction and its
application to transistor aging. InVLSI Test Symposium, May 2007.

[4] K. Bernstein et al. High-performance CMOS variability in the 65-
nm regime and beyond. InIBM Journal of Res. and Dev., 2006.

[5] J. Blome, S. Feng, S. Gupta, and S. Mahlke. Online timing analy-
sis for wearout detection. InWorkshop on Architectural Reliability,
December 2006.

[6] J. Blome, S. Feng, S. Gupta, and S. Mahlke. Self-calibrating online
wearout detection. InInter. Symp. on Microarch., December 2007.

[7] S. Borkar. Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation.IEEE Mi-
cro, 25(6), 2005.

[8] K. Bowman, S. Duvall, and J. Meindl. Impact of die-to-die and
within-die parameter fluctuations on the maximum clock frequency
distribution for gigascale integration.IEEE Journal of Solid-State
Circuits, 2002.

[9] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. InInterna-
tional Symposium on Computer Architecture, June 2000.

[10] G. Chen, M. F. Li, C. H. Ang, J. Z. Zheng, and D. L. Kwong. Dy-
namic NBTI of p-MOS transistors and its impact on MOSFET scal-
ing. In IEEE Electron Device Letters, December 2002.

[11] T. Chen and S. Naffziger. Comparison of adaptive body bias (ABB)
and adaptive supply voltage (ASV) for improving delay and leakage
under the presence of process variation.IEEE Transactions on VLSI
Systems, October 2003.

[12] L.T. Clark et al. An embedded 32-b microprocessor core for low-
power and high-performance applications.IEEE Journal of Solid-
State Circuits, 2001.

[13] E. Humenay, D. Tarjan, and K. Skadron. Impact of process varia-
tions on multicore performance symmetry. InConference on Design,
Automation and Test in Europe, April 2007.

[14] K. Kang et al. Estimation of statistical variation in temporal NBTI
degradation and its impact in lifetime circuit performance. InInt.
Conf. on Computer-Aided Design, October 2007.

[15] N. Kimizuka et al. The impact of bias temperature instability for
direct-tunneling ultra-thin gate oxide on MOSFET scaling. InSym-
posium on VLSI Technology Digest of Technical Papers, 1999.

[16] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. An analytical model
for negative bias temperature instability. InInternational Confer-
ence on Computer-Aided Design, November 2006.

[17] X. Liang and D. Brooks. Mitigating the impact of process variations
on CPU register file and execution units. InInternational Sympo-
sium on Microarchitecture, December 2006.

[18] D. Marculescu and E. Talpes. Variability and energy awareness: A
microarchitecture-level perspective. InDesign Automation Confer-
ence, June 2005.

[19] J. W. McPherson. Reliability challenges for 45nm and beyond. In
Design Automation Conference, July 2006.

[20] S. Ogawa and N. Shiono. Generalized diffusion-reaction model for
the low-field charge build up instability at theSi− SiO2 interface.
In Phys. Rev. B., February 1995.

[21] B. C. Paul et al. Negative bias temperature instability: Estima-
tion and design for improved reliability of nanoscale circuits. In
Trans. on Computer-Aided Design of Integrated Circuits and Sys-
tems, April 2007.

[22] K. Ramakrishnan, S. Suresh, N. Vijaykrishnan, M. J. Irwin, and
V. Degalahal. Impact of NBTI on FPGAs. InInternational Con-
ference VLSI Design, January 2007.

[23] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
K. Strauss, S. R. Sarangi, P. Sack, and P. Montesinos. SESC Simu-
lator, January 2005. http://sesc.sourceforge.net.

[24] T. Sakurai and R. Newton. Alpha-power law MOSFET model and
its applications to CMOS inverter delay and other formulas.IEEE
Journal of Solid-State Circuits, 1990.

[25] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari,
and J. Torrellas. VARIUS: A model of process variation and re-
sulting timing errors for microarchitects. InIEEE Transactions on
Semiconductor Manufacturing, February 2008.

[26] J. Shin, V. Zyuban, P. Bose, and T. M. Pinkston. A proactive wearout
recovery approach for exploiting microarchitectural redundancy to
extend cache SRAM lifetime. InInternational Symposium on Com-
puter Architecture, June 2008.

[27] K. Skadron et al. Temperature-aware microarchitecture. InInterna-
tional Symposium on Computer Architecture, June 2003.

[28] J. Smolens, B. T. Gold, J. C. Hoe, B. Falsafi, and K. Mai. Detecting
emerging wearout faults. InWorkshop on Silicon Errors in Logic –
System Effects, April 2007.

[29] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The case for life-
time reliability-aware microprocessors. InInternational Symposium
on Computer Architecture, June 2004.

[30] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Exploiting
structural duplication for lifetime reliability enhancement. InInter-
national Symposium on Computer Architecture, June 2005.

[31] E. Takeda, C. Y. Yang, and A. Miura-Hamada.Hot-Carrier Effects
in MOS Devices. Academic Press, 1995.

[32] R. Teodorescu and J. Torrellas. Variation-aware application schedul-
ing and power management for chip multiprocessors. InInterna-
tional Symposium on Computer Architecture, June 2008.

[33] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. Jouppi. CACTI
5.1. Technical Report HPL-2008-20, HP Labs, April 2008.

[34] Y. Uraoka et al. Hot carrier effect in ultrathin gate oxide metal oxide
semiconductor field effect transistor. InJapanese Journal of Applied
Physics, 2005.

[35] S. Vangal et al. An 80-tile 1.28 TFLOPS network-on-chip in 65nm
CMOS. InInt. Solid-State Circuits Conference, Feb. 2007.

[36] R. Vattikonda, W. Wang, and Y. Cao. Modeling and minimization
of PMOS NBTI effect for robust nanometer design. InDesign Au-
tomation Conference, July 2006.

[37] A. Wächter and L. T. Biegler. On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlin-
ear programming. InMathematical Programming, 2006.

[38] W. Wang et al. Compact modeling and simulation of circuit reliabil-
ity for 65-nm CMOS technology. InIEEE Transactions on Device
and Materials Reliability, December 2007.

[39] W.-K. Yeh et al. Temperature dependence of hot-carrier-induced
degradation in 0.1µm SOI nMOSFETs with thin oxide. InIEEE
Electron Device Letters, July 2002.

[40] Y. Zhang et al. HotLeakage: A temperature-aware model of sub-
threshold and gate leakage for architects. Technical Report CS-
2003-05, Univ. of Virginia, 2003.

