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Abstract

We show how a simple convolutional neural network

(CNN) can be trained to accurately and robustly regress 6

degrees of freedom (6DoF) 3D head pose, directly from im-

age intensities. We further explain how this FacePoseNet

(FPN) can be used to align faces in 2D and 3D as an alter-

native to explicit facial landmark detection for these tasks.

We claim that in many cases the standard means of measur-

ing landmark detector accuracy can be misleading when

comparing different face alignments. Instead, we compare

our FPN with existing methods by evaluating how they

affect face recognition accuracy on the IJB-A and IJB-B

benchmarks: using the same recognition pipeline, but vary-

ing the face alignment method. Our results show that (a)

better landmark detection accuracy measured on the 300W

benchmark does not necessarily imply better face recog-

nition accuracy. (b) Our FPN provides superior 2D and

3D face alignment on both benchmarks. Finally, (c), FPN

aligns faces at a small fraction of the computational cost

of comparably accurate landmark detectors. For many pur-

poses, FPN is thus a far faster and far more accurate face

alignment method than using facial landmark detectors.

1. Introduction

Facial landmark detection is rarely, if ever, an application

in its own right. Instead, it is typically a means to an end:

It is one component out of many in pipelines designed for

other face understanding and processing tasks, often pro-

viding effective means for aligning face photos and mak-

ing them easier to process. Most facial landmark detectors,

however, are developed without measuring their impact on

these applications but rather using standard facial land-

mark detection benchmarks such as the popular AFW [53],

LFPW [5], HELEN [26], and IBUG [41]. These bench-

marks contain face images with manually labeled ground

truth landmarks. Better detection accuracy on these bench-

marks equals better prediction of these manual positions.

Figure 1. The problem with manually labeled ground truth facial

landmarks. Images and annotations from the AFW [53] (left two

columns) and iBug [41] benchmarks. One of each pair shows man-

ually labeled ground truth landmarks; the other, a high-error pre-

diction of our FPN, which does not account for facial expression

or 3D shape. Which is which?1 Clearly, detection accuracy, as

measured by standard benchmarks, does not necessarily reflect the

quality of the landmark detection.

This raises an important question: Does better approxima-

tion of such human labeled landmarks imply better face

alignment and consequently better face understanding?

Why would higher accuracy on landmark detection

benchmarks not imply better alignment? The many land-

mark detection benchmarks used by the community to mea-

sure detection accuracy typically offer 5, 49 or 68 land-

marks painstakingly labeled on hundreds or thousands of

unconstrained face images, reflecting wide viewpoint, res-

olution and noise variations. On low resolution images,

however, even expert human operators can find it hard to

accurately pinpoint landmark positions. More importantly,

many landmark locations are not well defined even in high

resolution (e.g., points along the jawline or behind occlu-

1 Imagesone,three,andfivearegroundtruth.
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sions). Thus, improved landmark detection accuracy may

actually reflect better estimation of uncertain human labels

rather than better face alignment (Fig. 1).

An additional concern relates to how landmarks are used

for face alignment. Face alignment often implies using a

global 2D or 3D transformation to warp faces to ideal, ref-

erence frames: Detected landmarks are matched with their

corresponding landmarks in the reference coordinates and a

2D or 3D transformation is then computed by robust estima-

tion methods. To our knowledge, the effects landmark de-

tection noise, changing expressions or face shapes have on

these estimated transformations were never fully explored.

Responding to these concerns, we offer several contribu-

tions. (1) We propose comparing landmark detection meth-

ods by evaluating bottom line face recognition accuracy on

faces aligned with these methods. (2) As an alternative

to existing facial landmark detectors, we further present a

robust and accurate, landmark-free method for face align-

ment: our deep FacePoseNet (FPN). We show it to excel at

global, 3D face alignment even under the most challenging

viewing conditions. Finally, (3), we test our FPN exten-

sively and report that better landmark detection accuracy

on the widely used 300W benchmark [40] does not imply

better alignment and recognition on the highly challeng-

ing IJB-A [22] and IJB-B benchmarks [44]. In particular,

recognition results on images aligned with our FPN surpass

those on images aligned with state-of-the-art detectors.

Some applications require landmark estimation. Our

FPN provides a more accurate and far faster face alignment

technique in the many cases where global alignment, rather

than specific landmark positions, is needed. To support our

claims, we make our code publicly available 1.

2. Related work

Applications of facial landmark detectors. Facial land-

mark detection is big business, as reflected by the numerous

citation to relevant papers, the many facial landmark detec-

tion benchmarks [5, 23, 26, 40, 53], and popular interna-

tional events dedicated to this problem. With all this effort,

a rigorous survey of the many applications of facial land-

marks is outside the scope of this paper. In lieu of such a

survey, and to get some idea of why this problem attracts so

much attention, we offer the following cursory study.

We consider two of the most widely cited face land-

mark detector papers of the last decade, the tree based ap-

proach [53] and supervised descent method [48]. At the

time of writing, based on Google Scholar, the latter accumu-

lated nearly a thousand citations and the former well over a

thousand. We found 23 application names appearing fre-

quently (more than ten times) in the titles of the papers that

cite these two and counted the number of times these appli-

1https://github.com/fengju514/Face-Pose-Net

cations were mentioned. The relative frequencies of these

applications are reported in Fig. 2.

Of course, this simple survey is by no means accurate:

the same term is counted twice if the paper using it in its

title cites both [53] and [48] and many paper titles do not

clearly state the application they describe (e.g., [14] de-

scribes a method for face alignment in 3D but does not men-

tion “alignment” in the title). Nevertheless, with around two

thousand papers included in this survey, the result is quite

clear: Alignment, face recognition and pose estimation –

also considered alignment – are overwhelmingly more pop-

ular than any other application. This, of course, excluding

other landmark detection papers.

What does it mean to align a face? The term alignment

almost always appears in the titles of papers which present

facial landmark detection methods [1, 7, 38] (and most oth-

ers) implying that the two terms are used interchangeabil-

ity. This reflects an interpretation of alignment as forming

correspondences between particular spatial locations in one

face image and another. A different interpretation of align-

ment, and the one used here, refers not only to establish-

ing these correspondences but also to warping the two face

images, thus making them easier to compare and match.

Face warping with estimated 2D (in-plane) or 3D transfor-

mations is well known to have a profound impact on the

performance of face recognition systems [16, 18].

Although sometimes alignments involve non-parametric

or part-based warps [14, 15], often, global 2D or 3D (para-

metric) transformation are all that is required for this pur-

pose. Such aligned faces are then further processed in

systems for face recognition [8, 11, 52], emotion recogni-

tion [19, 29], age and gender estimation [12, 13, 28], and

more. In fact, it was recently claimed that a global align-

ment is both more robust and far faster to warp than non-

parametric transformations [31, 33]. This paper focuses on

such global transformations, showing how they can be esti-

mated quickly and accurately using a deep neural network.

Deep pose estimation. This work describes a deep net-

work trained to estimate the 6DoF of 3D faces viewed in

single images. Deep learning is increasingly used for sim-

ilar purposes, though typically focusing on general object

classes [4, 35, 42]. Some recently addressed faces in par-

ticular, though their methods are designed to estimate 2D

landmarks along with 3D face shapes [20, 25, 51]. Unlike

our proposed pose estimation, they regress poses by using

iterative methods which involve computationally costly face

rendering. We regress 6DoF directly from image intensities

without such rendering steps.

In all these cases, absence of training data was cited as

a major obstacle for training effective models. In response,

some turned to larger 3D object data sets [47, 46] or us-

ing synthetically generated examples [39]. We propose a

far simpler alternative and show it to result in robust and
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Figure 2. Applications of facial landmarks. Illustrating the fre-

quency of various task and application names in paper titles citing

two of the most popular landmark detectors [53] and [48].

accurate face alignment.

3. A critique of facial landmark detection

Before using an existing state-of-the-art facial landmark

detector in a face processing system, the following points

should be considered.

Landmark detection accuracy measures. Facial land-

mark detection accuracy is typically measured by consider-

ing the distances between estimated landmarks and ground

truth (reference) landmarks, normalized by the reference

inter-ocular distance of the face [10]:

e(L, L̂) =
1

m‖p̂l − p̂r‖2

m
∑

i=1

‖pi − p̂i‖2, (1)

Here, L = {pi} is the set of m 2D facial landmark coordi-

nates, L̂ = {p̂i} their ground truth locations, and p̂l, p̂r the

reference left and right eye outer corner positions. These

errors are then translated to a number of standard quanti-

ties, including the mean error rate (MER), the percentage

of landmarks detected under certain error thresholds (e.g.,

below 5% or 10% error rates) or the area under the accumu-

lative error curve (AUC).

There are two key problems with this method of eval-

uating landmark errors. First, the ground truth compared

against is manually specified, often by mechanical turk

workers. These manual annotations can be noisy, they are

ill-defined when images are low resolution, the landmarks

are occluded (in case of large out-of-plane head rotations,

facial hair and other obstructions), or located in featureless

facial regions (e.g., along the jawline). Accurate facial land-

mark detection, as measured on these benchmarks, thus im-

plies better matching human labels but not necessarily bet-

ter detection. These problems are demonstrated in Fig. 1.

A second potential problem lies in the error measure it-

self: Normalizing detection errors by inter-ocular distances

biases against images of faces appearing at non-frontal

views. When faces are near profile, perspective projection

of the 3D face onto the image plane shrinks the distances

between the eyes thereby naturally inflating the errors com-

puted for such images.

Landmark detection speed. Some facial landmark detec-

tion methods emphasize impressive speeds [21, 38]. Mea-

sured on standard landmark detection benchmarks, how-

ever, these methods do not necessarily claim state-of-the-art

accuracy, falling behind more sophisticated, yet far slower

detectors [50]. Moreover, aside from [51], no existing

landmark detector is designed to take advantage of GPU

hardware, a standard feature in commodity computer sys-

tems and most, including [51], apply iterative optimizations

which may be hard to convert to parallel processing.

Effects of facial expression and shape on alignment. It

was recently shown that 3D alignment and warping of faces

to frontal viewpoints (i.e. frontalization) is effective regard-

less of the precise 3D face shape used for this purpose [16].

Facial expressions and 3D shapes in particular, appear to

have little impact on the warped result as evident by the im-

proved face recognition accuracy reported by that method.

Moreover, it was recently demonstrated that by using such

a generic 3D face shape, rendering faces from new view-

points can be accelerated to the same speed as simple 2D

image warping [31].

Interestingly, they and many others used facial land-

mark detectors to compute parametric transformations –

projection matrix [16] or 2D affine or similarity trans-

forms [12, 18] – by applying robust estimators to corre-

sponding detected facial landmarks [14, 27]. Variations in

landmark locations due to expressions and face shapes es-

sentially contribute noise to this estimation process. The

effects these variations have on the quality of the alignment

were, as far as we know, never truly studied.

4. Deep, direct head pose regression

Rather than align faces using landmark detection, we re-

fer to alignment as a global, 6DoF 3D face pose, and pro-

pose to infer it directly from image intensities, using a sim-

ple deep network architecture. We next describe the net-

work and the novel method used to train it.

4.1. Head pose representation

We define face alignment as the 3D head pose h, ex-

pressed using 6DoF: three for rotations, r = (rx, ry, rz)
T ,

and three for translations, t = (tx, ty, tz)
T :

h = (rx, ry, rz, tx, ty, tz)
T (2)

where (rx, ry, rz) are represented as Euler angles (pitch,

yaw, and roll). Given m 2D facial landmark coordinates

on an input image, p2×m, and their corresponding, refer-

ence 3D coordinates, P3×m – selected on a fixed, generic
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Figure 3. Augmenting appearances of images from the VGG face dataset [34]. After detecting the face bounding box and landmarks we

augment its appearance by applying a number of simple planar transformations, including translation, scaling, rotation, and flipping. The

same transformations are applied to the landmarks, thereby producing example landmarks for images which may be too challenging for

existing landmark detectors to process.

3D face model – we can obtain a 3D to 2D projection of the

3D landmarks onto the 2D image by solving the following

equation for the standard pinhole model:

[p,1]T = A[R, t][P,1]T , (3)

where A and R are the camera matrix and rotation matrix

respectively and 1 is a constant vector of 1. We then ex-

tract a rotation vector r = (rx, ry, rz)
T from R using the

Rodrigues rotation formula:

R = cos θI+(1−cos θ)rrT +sin θ





0 −rz ry
rz 0 −rx
−ry rx 0



 ,

where we define θ = ||r||2.

Obtaining enough training examples. Although our net-

work architecture is not very deep compared to deep net-

works used today for other tasks, training it still requires

large quantities of labeled training data. We found the num-

bers of facial landmark annotated faces in standard data sets

to be too small for this purpose. A key problem is therefore

obtaining a large enough training set.

We produce our training set by synthesizing 6D, ground

truth pose labels by running an existing facial landmark de-

tector [3] on a large image set: the 2.6 million images in

the VGG face dataset [34]. The detected landmarks were

then used to compute the 6DoF labels for the images in this

set. A potential danger in using an existing method to pro-

duce our training labels, is that our CNN will not improve

beyond the accuracy of its training labels. As we show in

Sec. 5, this is not necessarily the case.

To further improve the robustness of our CNN, we ap-

ply a number of face augmentation techniques to the im-

ages in the VGG face set, substantially enriching the appear-

ance variations it provides. Fig. 3 illustrates this augmen-

tation process. Specifically, following face detection [49]

and landmark detection [3], we transform detected bound-

ing boxes and their detected facial landmarks using a num-

ber of simple in-plane transformations. The parameters for

these transformations are selected randomly from fixed dis-

tributions (Table. 1). The transformed faces are then used

Table 1. Summary of augmentation transformation parameters

used to train our FPN. Where U(a, b) samples from a uniform dis-

tribution ranging from a to b and N (µ, σ2) samples from a normal

distribution with mean µ and variance σ2. width and height are

the face detection bounding box dimensions.

Transformation Range

Horizontal translation U(−0.1, 0.1)× width

Vertical translation U(−0.1, 0.1)× height

Scaling U(0.75, 1.25)
Rotation (degrees) 30×N (0, 1)

for training, along with their horizontally mirrored versions,

to provide yaw rotation invariance. Ground truth labels are,

of course, computed using the transformed landmarks.

Some example augmented faces are provided in Fig. 4.

Note that augmented images would often be too challenging

for existing landmark detectors, due to extreme rotations

or scaling. This, of course, does not affect the accuracy

of the ground truth labels which were obtained from the

original images. It does, however, force our CNN to learn

to estimate poses even on such challenging images.

FPN training. For our FPN we use an AlexNet architec-

ture [24] with its initialized weights provided by [32]. The

only difference is that here the output regresses 6D float-

ing point values rather than predicts one-hot encoded, multi

class labels. Note that during training each dimension of the

head pose labels is normalized by the corresponding mean

and standard deviation of the training set, compensating for

the large value differences among dimensions. The same

normalization parameters are used at test time.

2D and 3D face alignment with FPN. Given a test im-

age, it is processed by applying the same face detector [49],

cropping the face and scaling it to the dimension of the net-

work’s input layer. The 6D network output is then converted

to a projection matrix. Specifically, the projection matrix is

produced by the camera matrix A, rotation matrix R, and

the translation vector t in Eq. (3). With this projection ma-

trix we can render new views of the face, aligning it across

3D views as was recently proposed by others [33, 31].

For 2D alignment, we compute the 2D similarity trans-

form to warp the 2D projected landmarks to pre-defined
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Figure 4. Example augmented training images. Example images from the VGG face data set [34] following data augmentation. Each triplet

shows the original detected bounding box (left) and its augmented versions (mirrored across the vertical axis). Both flipped versions were

used for training FPN. Note that in some cases, detecting landmarks would be highly challenging on the augmented face, due to severe

rotations and scalings not normally handled by existing methods. Our FPN is trained with the original landmark positions, transformed to

the augmented image coordinate frame.

landmark locations. With frontal images (absolute yaw an-

gle ≤ 30◦), we use the eye centers, the nose tip, and the

mouth corners for alignment. With profile images (absolute

yaw angle > 30◦), however, only the visible eye center and

the nose tip are used.

5. Results

We provide comparisons of our FPN with the follow-

ing widely used, state-of-the-art, facial landmark detection

methods: Dlib [21], CLNF [2], OpenFace [3], DCLM [50],

RCPR [6], and 3DDFA [51] evaluating them for their effects

on face recognition vs. their landmark detection accuracy.

5.1. Effect of alignment on recognition

Sec. 3 discusses the various potential problems of com-

paring face alignment methods by measuring their landmark

detection accuracy. As an alternative, we propose compar-

ing methods for face alignment and landmark detection by

evaluating their effect on the bottom line accuracy of a face

processing pipeline. Since face recognition is arguably one

of the most popular applications for face alignment, we use

recognition accuracy as a performance measure. To our

knowledge, this is the first time alignment methods are com-

pared based on their effect on recognition accuracy.

Specifically, we use two of the most recent benchmarks

for face recognition: IARPA Janus Benchmark A [22] and

B [44] (IJB-A and IJB-B). Importantly, these benchmarks

were designed with the specific intention of elevating the

difficulty of face recognition. This heightened challenge is

reflected by, among other factors, an unprecedented amount

of extreme out of plane rotated faces including many ap-

pearing in near-profile views [33]. As a consequence, these

two benchmarks not only push the limits of face recogni-

tion systems, but also the alignment methods used by these

systems, possibly more so than the faces in standard facial

landmark detection benchmarks.

Face recognition pipeline. We employ a system similar

Table 2. Verification and identification results on IJB-A and IJB-

B, comparing landmark detection based face alignment methods.

Three baseline IJB-A results are also provided as reference at the

top of the table. ∗ State-of-the-art method which uses meta data

seed landmarks and face bounding boxes; all others did not. ∗∗

Numbers estimated from the ROC and CMC in [44].

Method ↓ TAR@FAR Identification Rate (%)

Eval. → .01% 0.1% 1.0% Rank-1 Rank-5 Rank-10 Rank-20

IJB-A [22]

Crosswhite et al. [9] – – 93.9 92.8 – 98.6 –

Ranjan et al. [37] – 82.3 92.2 94.7 – 98.8 –

Masi et al. [31]∗ 56.4 75.0 88.8 92.5 96.6 97.4 98.0

RCPR [6] 64.9 75.4 83.5 86.6 90.9 92.2 93.7

Dlib [21] 70.5 80.4 86.8 89.2 91.9 93.0 94.2

CLNF [2] 68.9 75.1 82.9 86.3 90.5 91.9 93.3

OpenFace [3] 58.7 68.9 80.6 84.3 89.8 91.4 93.2

DCLM [50] 64.5 73.8 83.7 86.3 90.7 92.2 93.7

3DDFA [51] 74.8 82.8 89.0 90.3 92.8 93.5 94.4

Our FPN 77.5 85.2 90.1 91.4 93.0 93.8 94.8

IJB-B [44]

GOTs [44]∗∗ 16.0 33.0 60.0 42.0 57.0 62.0 68.0

VGG face [44]∗∗ 55.0 72.0 86.0 78.0 86.0 89.0 92.0

RCPR [6] 71.2 83.8 93.3 83.6 90.9 93.2 95.0

Dlib [21] 78.1 88.2 94.8 88.0 93.2 94.9 96.3

CLNF [2] 74.1 85.2 93.4 84.5 90.9 93.0 94.8

OpenFace [3] 54.8 71.6 87.0 74.3 84.1 87.8 90.9

DCLM [50] 67.6 81.0 92.0 81.8 89.7 92.0 94.1

3DDFA [51] 78.5 89.1 95.6 89.0 94.1 95.5 96.9

Our FPN 83.2 91.6 96.5 91.1 95.3 96.5 97.5

to the one recently proposed by [31, 33], building on their

publicly available ResFace101 model and related code. We

chose this system, as it explicitly aligns faces to multiple

viewpoints, including rendering novel views. These steps

are highly dependent on the quality of alignment and so its

recognition accuracy should reflect alignment accuracy. In

practice, we used their 2D (similarity transform) and 3D

(new view rendering) code directly, changing how the trans-

formations are computed: our tests compare different land-

mark detectors used to recover the 6DoF head pose required

by their warping and rendering method, with the 6DoF re-

gressed using our FPN.

Their system uses a single Convolutional Neural Net-

work (CNN), a ResNet-101 architecture [17], trained on

both real face images and synthetic, rendered views. We
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(a) ROC IJB-A (b) CMC IJB-A

(c) ROC IJB-B (d) CMC IJB-B
Figure 5. Verification and identification results on IJB-A and IJB-B. ROC and CMC curves accompanying the results reported in Table 2.

fine tune the ResFace101 CNN using L2-constrained Soft-

max Loss [36] instead of the original softmax used by Masi

et al. for their publicly released model. This fine tuning is

performed using the MS-Celeb face set [30] as an example

set. Aside from this change, we use the same recognition

pipeline from [31] and we refer to that paper for details.

Bounding box detection. We emphasize that an identical

pipeline was used with the different alignment methods; dif-

ferent results vary only in the method used to estimate fa-

cial pose. The only other difference between recognition

pipelines was in the facial bounding box detector.

Facial landmark detectors are sensitive to the face detec-

tor they are used with. We therefore report results obtained

when running landmark detectors with the best bounding

boxes we were able to determine. Specifically, FPN was

applied to the bounding boxes returned by the detector of

Yang and Nevatia [49], following expansion of its dimen-

sions by 25%. Most detectors performed best when applied

using the same face detector, without the 25% increase. Fi-

nally, 3DDFA [51] was tested with the same face detector

followed by the face box expansion code provided by its

authors.

Face verification and identification results. Face verifi-

cation and identification results on both IJB-A and IJB-B

are provided in Table 2. We report multiple recognition

metrics for both verification and identification: For veri-

fication, these measure the recall (True Acceptance Rate)

at three cut-off points of the False Alarm Rate (TAR-

{1%,0.1%,0.01%}). For identification we provide recogni-

tion rates at four ranks from the CMC (Cumulative Match-

ing Characteristic). The overall performances in terms of

ROC and CMC curves are shown in Fig. 5. The table

also provides, as reference, three state-of-the-art IJB-A re-

sults [9, 31, 37] and baseline results from [44] for IJB-B

(to our knowledge, we are the first to report verification and

identification accuracies on IJB-B).

Faces aligned with our FPN offer higher recognition

rates, even compared to the most recent, state-of-the-art fa-

cial landmark detection method of [50]. In fact, our verifi-

cation scores on IJB-A outperform the reported those of the

system used as the basis for our own [31]. Their recog-

nition results are higher than ours, but importantly, they

used ground truth annotations to initialize landmark detec-

tion search. This allowed them to correctly align faces in

images where face landmark detectors would normally fail,

explaining their higher recognition results. These annota-

tions were not used by any of the other methods compared.

5.2. Landmark detection accuracy

From 6DoF pose to facial landmarks. Given a 6DoF

head pose estimate, facial landmarks can then be estimated

and compared with existing landmark detection methods for

their accuracy on standard benchmarks. To obtain landmark

predictions, 3D reference coordinates of facial landmarks
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Method ≤ 5% ≤ 10% ≤ 20% ≥ 40% MER Sec./im.

RCPR [6] 44.44 % 66.96 % 77.39 % 9.55 % 0.1386 0.05

Dlib [21] 60.03 % 82.65 % 90.94 % 2.83 % 0.0795 2.26

CLNF [2] 20.86 % 65.11 % 87.62 % 2.63 % 0.1106 0.64

OpenFace [3] 54.39 % 86.74 % 95.42 % 1.27 % 0.0702 0.64

DCLM [50] 64.91 % 91.91 % 96.00 % 1.17 % 0.0611 16.2

3DDFA [51] N/A N/A N/A N/A N/A 0.6

Our FPN 1.75 % 65.40 % 93.86 % 0.97 % 0.1043 0.003

(a) Quantitative results (b) Acumulative error curves

Figure 6. 68 point detection accuracies on 300W. (a) The percent of images with 68 landmark detection errors lower than 5%, 10%, and

20% inter-ocular distances, or greater than 40%, mean error rates (MER) and runtimes. Our FPN was tested using a GPU. On the CPU,

FPN runtime was 0.07 seconds. 3DDFA used the AFW collection for training. Code provided for 3DDFA [51] did not allow testing on

the GPU; in their paper, they claim GPU runtime to be 0.076 seconds. As AFW was included in our 300W test set, landmark detection

accuracy results for 3DDFA were excluded from this table. (b) Accumulative error curves.

Figure 7. Qualitative landmark detection examples. Landmarks detected in 300W [40] images by projecting an unmodified 3D face shape,

pose aligned using our FPN (red) vs. ground truth (green). The images marked by the red-margin are those which had large FPN errors

(> 10% inter-ocular distance). These appear perceptually reasonable, despite these errors. The mistakes in the red-framed example on the

third row was clearly a result of our FPN not representing expressions.

are selected off line once on the same generic, 3D face

model used in [31]. Given a pose estimate, we convert it to

a projection matrix and project these 3D landmarks down to

the input image.

Recently, a similar process was proposed for accurate

landmark detection across large poses [51]. In their work,

an iterative method was used to simultaneously estimate a

3D face shape, including facial expression, and project its

landmarks down to the input image. Unlike them, our tests

use a single generic 3D face model, unmodified. By not iter-
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ating over the face shape, our method is simpler and faster,

but of course, our predicted landmarks will not reflect dif-

ferent 3D shapes and facial expressions. We next evaluate

the effect this has on landmark detection accuracy.

Detection accuracy on the 300W benchmark. We evalu-

ate performance on the 300W data set [40], the most chal-

lenging benchmark of its kind [45], using 68 landmarks. We

note that we did not use the standard training sets used with

the 300W benchmark (e.g., the HELEN [26] and LFPW [5]

training sets with their manual annotations). Instead we

trained FPN with the estimated landmarks, as explained in

Sec. 4.1. As a test set, we used the standard union con-

sisting of the LFPW test set (224 images), the HELEN test

set (330), AFW [53] (337), and IBUG [41] (135). These

1026 images, collectively, form the 300W test set. Note

that unlike others, we did not use AFW to train our method,

allowing us to use it for testing.

Fig. 6 (a) reports five measures of accuracy for the var-

ious methods tested: The percent of images with 68 land-

mark detection errors lower than 5%, 10%, and 20% inter-

ocular distances, and the mean error rate (MER), averaging

Eq. (1) over the images tested. Fig. 6 (b) additionally pro-

vides accumulative error curves for these methods.

Not surprisingly, without accounting for face shapes and

expressions, our predicted landmarks are not as accurate as

those predicted by methods which are influenced by these

factors. Some qualitative detection examples are provided

in Fig. 7 including a few errors larger than 10%. These

show that mistakes can often be attributed to FPN not mod-

eling facial expressions and shape. One way to improve

this would be to use a single-view 3D face shape estimation

method [15, 43] to better approximate landmark positions,

though we have not tested this here.

Detection runtime. In one tested measure FPN far outper-

forms its alternatives: The last column of Fig. 6 (a) reports

the mean, per-image runtime for landmark detection. Our

FPN is an order of magnitude faster than any other face

alignment method. This is true even compared to the GPU

runtimes reported for 3DDFA in their paper [51].

All methods were tested using an NVIDIA, GeForce

GTX TITAN X, 12GB RAM, and an Intel(R) Xeon(R) CPU

E5-2640 v3 @ 2.60GHz, 132GB RAM. The only exception

was 3DDFA [51], which required a Windows system and

was tested using an Intel(R) Core(TM) i7-4820K CPU @

3.70GHz (8 CPUs), 16GB RAM, running 8 Pro 64-bit.

5.3. Discussion

Landmarks predicted using FPN in Sec. 5.2 were less

accurate than those estimated by other methods. How does

that agree with the better face recognition results obtained

with images aligned using FPN? As we mentioned in Sec. 3

better accuracy on a face landmark detection benchmark

reflects many things which are not necessarily important

when aligning faces for recognition. These include, in par-

ticular face shapes and expressions, the latter can actually

cause misalignments when computing face pose and warp-

ing the face accordingly. FPN, on the other hand, ignores

these factors, instead providing a 6DoF pose estimates at

breakneck speeds, directly from image intensities.

An important observation is that despite being trained

with labels generated by OpenFace [3], recognition results

on faces aligned with FPN are better than those aligned with

OpenFace. This can be explained in a number of ways:

First, FPN was trained on appearance variations introduced

by augmentation, which OpenFace was not necessarily de-

signed to handle. Second, poses estimated by FPN were

less corrupted by expressions and facial shapes, making the

warped images better aligned. Third, as was recently ar-

gued by others [43], CNNs are remarkably adapt at training

with label noise such as any errors in the poses predicted

by OpenFace for the ground truth labels. Finally, CNNs are

highly capable of domain shifts to new data, such as the ex-

tremely challenging views of the faces in IJB-A and IJB-B.

6. Conclusions

For many practical purposes, face alignment requires

only global, parametric 2D or 3D transformations. This is

often the case in state-of-the-art face recognition pipelines

and a wide variety of other face understanding tasks. In

such circumstances, accurate facial landmark detection is

superfluous and its potential for introducing errors when-

ever facial expressions and shapes are not explicitly consid-

ered was never fully explored. In this paper we present an

alternative method for aligning faces: using a simple CNN,

uniquely trained to regress 6DoF face pose, directly from

image intensities. We show that by using a GPU, this leads

to staggering alignment speeds. Moreover, by comparing

alignment methods by considering bottom line performance

of a face recognition system, rather than landmark detec-

tion accuracy, we show that this simple method outperforms

state-of-the-art alignment techniques in the face recognition

accuracy it provides.
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