
HUMAN NEUROSCIENCE

revealed a face-selective patch near the right inferior frontal sulcus 

in three out of nine human participants. Further evidence using 

fMRI in humans and macaque monkeys (Rajimehr et al., 2009) 

has also revealed a frontal face patch in the inferior frontal sulcus 

near the frontal eye field (FEF) across both species.

Recently, researchers have proposed a “core” network for face 

processing that consists of mainly occipitotemporal structures, 

and an “extended” network including limbic and frontal structures 

(see Haxby et al., 2000; Avidan and Behrmann, 2009). For exam-

ple, Ishai et al. (2005) assessed the response to line drawings and 

photographs of faces, compared to scrambled controls, and found 

responses in many areas including the orbitofrontal cortex and 

inferior frontal gyrus. While studies like these reveal face-driven 

responses outside the ventral stream, they do not establish the 

selectivity of these regions by comparison to other kinds of visual 

stimuli (Wiggett and Downing, 2008). Using a free-viewing task, 

we have previously reported a region in the human right lateral 

prefrontal region that elicited face-selective activation relative to 

19 other object categories (Downing et al., 2006). The activation 

is found at the junction of the inferior frontal sulcus and the pre-

central sulcus [45 9 36].

Here, we further investigate the properties of this region. Because 

it can be identified in most individual participants, it is amena-

ble to a functional localizer approach as used in previous studies 

of extrastriate cortex (Tootell et al., 1995; Kanwisher et al., 1997; 

Downing et al., 2001). Throughout the rest of this paper, we refer 

to this region as the right inferior frontal junction (rIFJ).

Previous work in monkey physiology (Scalaidhe et al., 1997, 

1999; Rajimehr et al., 2009) has attempted to establish the func-

tional role of the prefrontal face-selective region while suggesting 

its functional properties are similar the face-selective cluster in the 

temporal visual cortex. The present study not only aims to provide 

further clues to the functional role of the rIFJ in face representa-

tions in human, but also to investigate whether we can function-

ally dissociate between the face-selective rIFJ and the face-selective 

INTRODUCTION

It is well established that for humans and other primates, the vis-

ual appearance of the face provides rich, socially relevant cues. 

Accordingly, the neural representation of faces in the visual cortex 

(occipital and ventrolateral temporal lobes) has been well explored 

using multiple techniques. In macaques, single-unit (Gross et al., 

1972; Desimone et al., 1984; Perrett et al., 1985; Logothetis et al., 

1999; Tsao et al., 2006; Freiwald et al., 2009), fMRI (Tsao et al., 2003, 

2008a,b; Pinsk et al., 2005a, 2009; Bell et al., 2009; Rajimehr et al., 

2009), and genetic and protein expression (Zangenehpour and 

Chaudhuri, 2005) studies have demonstrated regional specializa-

tion for faces in the temporal lobe. In humans, studies have used 

intracranial recordings (Allison et al., 1999; McCarthy et al., 1999; 

Puce et al., 1999; Quiroga et al., 2005), ERP (Rossion et al., 2003; 

Itier and Taylor, 2004; Bentin et al., 2006; Thierry et al., 2007), MEG 

(Liu et al., 2002; Xu et al., 2005), PET (Haxby et al., 1994), and 

fMRI (Puce et al., 1996, 1997, 1998; Kanwisher et al., 1997; Haxby, 

2006) in order to reveal face-selective responses in the occipital 

and temporal lobes.

Additionally, some evidence has suggested that face-selective 

responses exist in the prefrontal cortex (Thorpe et al., 1983). In 

particular, Scalaidhe et al. (1997, 1999) identified a small number 

of highly face-selective cells in the prefrontal region in monkeys. 

They showed that face selectivity for viewing faces was found both 

in monkeys that had been previously trained to perform a work-

ing memory (WM) task, and in monkeys who had not learned 

WM tasks. This distinctive population of face neurons responded 

strongly to faces but weakly or not at all to non-face items such 

as common objects, scrambled faces, and simple colored shapes, 

supporting the claim that these neurons are category-selective. 

Intriguingly, these face-selective neurons received more than 95% 

of input from the temporal visual cortex.

More recently, Tsao et al. (2008b) used fMRI to identify three 

regions of macaque prefrontal cortex that respond highly selectively 

to images of faces. Intriguingly, a follow-up study (Tsao et al., 2008a) 
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fusiform face area (FFA; Kanwisher et al., 1997) in the visual cortex. 

In a wider perspective, our current studies intend to bridge the 

findings in monkey and human literatures.

To achieve this, similar to previous studies, we manipulated WM 

demands (Scalaidhe et al., 1997, 1999; Kanwisher et al., 1998) and 

stimulus categories (Tong et al., 2000) to explore the nature of 

activation in rIFJ and right FFA (rFFA). In the first experiment, in 

order to compare the response profiles of rIFJ and the rFFA and 

to examine their selectivity profiles in the presence and absence 

of WM demand, we compared the responses of these regions in a 

free-viewing task and a 1-back WM task. In the second experiment, 

we examined the response of the IFJ and FFA specifically to the 

eyes, relative to several control conditions. This was motivated by 

the clear significance of the eyes in communicating social infor-

mation, as reflected in previous studies that have examined the 

neural responses in the ventral stream to the eyes (Tong et al., 2000; 

Bentin et al., 2006; Itier et al., 2006; Harel et al., 2007; Lerner et al., 

2008). Finally, given recent evidence (Rajimehr et al., 2009) that 

shows that some frontal face responses are found near the FEF, we 

tested whether activation in the rIFJ overlaps with cortical regions 

involved in the execution of eye movements.

MATERIALS AND METHODS

EXPERIMENT 1

Participants

All participants were recruited from the University of Wales, Bangor 

community. Participants satisfied all requirements in volunteer 

safety screening, and gave written informed consent. Procedures 

were approved by the Psychology Ethics Committee at Bangor 

University. Twenty healthy adult volunteers were recruited.

Stimuli

Images of unfamiliar faces, bodies without heads, tools, and scenes 

were presented. Each image was 400 × 400 pixels. A small fixation 

cross overlaid the center of each image. Forty full color images 

were used for each category, which were divided into two stimulus 

sets. One set was presented in half of the scans, and the other in 

the other half.

Experimental design and tasks

The experiment consisted of four runs per participant. Within 

each run there were twenty-one 15-s blocks, resulting in a run 

duration of 5 min 15 s. Blocks 1, 6, 11, 16, and 21 were a fixa-

tion baseline condition. Each of the remaining blocks comprised 

presentation of 20 exemplars from a single category. The order of 

blocks was symmetrically counterbalanced within each version, 

so that the first half of each version was the mirror order of the 

second half, resulting in an equivalent mean serial position for 

each condition. The order of blocks was counterbalanced across 

runs, with two versions: the first half and second half of one ver-

sion were swapped to create the second version. Within a block, 

each image was presented for 300 ms, with an ISI of 450 ms 

between images. Ten participants were instructed to perform a 

free-viewing task (view the stimuli passively) during the scan 

session. The other 10 performed a 1-back task, in which they 

were asked to press a button whenever an image occurred twice 

in immediate succession. Two image repetitions trials occurred 

at randomly selected time points in each block in the 1-back 

task. Both groups were instructed to maintain central fixation 

throughout the scan.

fMRI data acquisition and preprocessing

Brain imaging was performed on a Philips Gyroscan Intera 1.5 T 

scanner equipped with a SENSE head coil (Pruessmann et al., 1999). 

An EPI sequence was used to image functional activation. Thirty 

slices were collected per image covering the whole brain. Scanning 

parameters were: repetition time/echo time (TR/TE) = 3000/50 ms, 

flip angle (FA) = 90°, slice thickness = 5 mm (no gap), acquisi-

tion matrix = 64 × 64, in-plane resolution = 3.75 mm × 3.75 mm. 

For anatomical localization, a structural scan was made for each 

participant using a T1-weighted sequence. Scanning param-

eters were: TR/TE = 12/2.9 ms, FA = 8°, coronal slice thick-

ness = 1.3 mm (no gap), acquisition matrix = 256 × 256, in-plane 

resolution = 1 mm × 1 mm. Three dummy volumes were acquired 

before each scan in order to reduce the effect of T1 saturation. 

Preprocessing of data and statistical analyses were performed using 

Brain Voyager 4.9 (Brain Innovation, Maastricht, The Netherlands). 

Preprocessing of functional images included: 3D-motion correction 

of functional data using trilinear interpolation and temporal high 

pass filtering (0.006 Hz cutoff). Five millimeters of spatial smooth-

ing was applied. Functional data were manually co-registered with 

the anatomical scans. The anatomical scans were transformed into 

Talairach and Tournoux space (Talairach and Tournoux, 1993), 

and the parameters for this transformation were then applied to 

the co-registered functional data.

fMRI data analysis

For multiple-regression analyses, predictors were generated for each 

category. The event time series for each condition was convolved 

with a model of the hemodynamic response. Voxel time series were 

z-normalized for each run, and additional predictors accounting 

for baseline differences between runs were included in the design 

matrix. For functional region of interest (ROI) analyses, general 

linear models were performed on the aggregate time course of the 

voxels included in the ROI, and the resulting beta parameters were 

used as estimates of the magnitude of the ROI’s response to a given 

stimulus condition. A split-half analysis method was employed in 

order to avoid circularity (Kriegeskorte et al., 2009). The data from 

each participant was divided into two sets (one set for each block 

order design). Runs with order version 1 were used to define the 

ROIs, and runs with order version 2 to estimate the responses of 

the ROIs across conditions, and vice versa. The results of these two 

calculations were combined before further analysis with ANOVA. 

This procedure ensured that all data contributed to the analysis, and 

that the data were independent from those used for ROI definition. 

Where a robust ROI could not be identified with both halves of the 

data, the results from the ROIs defined by one-half were analyzed.

The rIFJ and the rFFA ROIs were defined by the contrast of 

faces minus tools in each participant. For rFFA, the most activated 

voxel was identified in close proximity to previously reported ana-

tomical locations (Puce et al., 1996, 1997, 1998; Kanwisher et al., 

1997; Haxby, 2006). For rIFJ, the region was selected within each 
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movements were self-paced but participants were instructed to 

re-fixate approximately once per second. After each eye movement 

block, the fixation condition would start with a fixation cross at the 

center, and the dots on both sides would no longer be presented. 

Participants were required to fixate the cross for 30 s. There were 

10 cycles of eye movement and fixation blocks. fMRI data acquisi-

tion and preprocessing were the same as for Experiments 1 and 2.

RESULTS

EXPERIMENT 1

In the free-viewing task group, 10 out of 10 participants showed 

significant activation in the rIFJ, and 8 out of 10 showed significant 

activation in the rFFA. In the 1-back task group, all participants 

showed significant activation in both the rIFJ and rFFA. To facilitate 

comparison between the two groups, analyses were performed on 

those eight participants in the free-viewing task group who showed 

significant activation in both regions, and on 8 out of 10 partici-

pants who were selected randomly from the 1-back task group. The 

mean Talairach coordinates (with standard deviation, SD) of the 

peak location of the ROIs across participants were: 1-back group: 

rIFJ [48(6), 8(7), 33(5)]; rFFA [38(3), −45(7), −17(4)]; free-view-

ing group: rIFJ [43(7), 11(9), 35(6)]; rFFA [38(3), −48(8), −14(4); 

see Figure 1].

A mixed-design ANOVA was conducted on the beta values 

from each participant, with ROI (within-participants), stimulus 

category (within-participants), and task (between participants) 

as factors (Figure 2). A significant main effect of category was 

found, F(3,21) = 25.4, p < 0.005, indicating that faces elicited 

the strongest activation compared to other categories. A signifi-

cant ROI × category interaction, F(1,7) = 12.7, p < 0.001 was 

observed. There was also a significant task × category interaction 

F(1,7) = 6.4, p < 0.05, in the absence of a significant three-way 

interaction of task × category × ROI, F(3,21) = 0.34, p = 0.79. To 

examine the effect of categories in each ROI regardless of task, an 

ANOVA within each ROI was performed. We found that both rFFA 

[F(3,45) = 35.05, p < 0.0001] and rIFJ [F(3,45) = 18.68, p < 0.0001] 

showed a significant main effect of category, suggesting that both 

regions are selective for faces. We also examined the effect of cat-

egory in each task, and found a robust main effect of category in 

both free-viewing task [F(3,45) = 16.87, p < 0.0001], and 1-back 

task [F(3,45) = 36.75, p < 0.0001]. We then conducted planned 

comparisons within each region and in each task. In the 1-back 

task, we found that the response to faces was greater than to the 

next-most-effective category (bodies) in each ROI [rFFA: t(7) = 2.7, 

p < 0.05; rIFJ: t(7) = 3.4, p < 0.05]. In the free-viewing task this 

difference was significant for the rFFA [t(7) = 3.6, p < 0.01], but 

not for rIFJ [t(7) = 0.79, p = 0.45]. However, rIFJ responded more 

strongly to faces than to the other two categories [scenes: t(7) = 3.5, 

p < 0.05; tools: t(7) = 2.8, p < 0.05].

The above analyses indicate that to a large extent the rFFA and 

rIFJ showed a similar activation pattern to categories. Both regions 

showed robust activation to faces across both tasks, thus leading to 

a lack of significant three-way interaction. However, a difference 

between the two regions could be found in the free-viewing task, 

where the rIFJ showed robust responses not only faces but also for 

bodies, relative to scenes and tools.

participant’s anatomy, and the most activated voxel was identified 

within the junction where the inferior frontal sulcus met the pre-

central sulcus. The rIFJ and rFFA clusters were defined as the set of 

contiguous voxels that were significantly activated within 9 mm in 

the direction of anterior/posterior, superior/inferior, and medial/

lateral direction of the most activated voxel. Voxels were included 

at a threshold of p < 0.05 uncorrected; the lenient threshold was 

adopted because the split-half procedure reduced the amount of 

data available for a given localizer by half. This procedure ensured 

that the ROIs were segregated from nearby areas, and ensured that 

each ROI contained a similar number of voxels.

EXPERIMENT 2

Participants

Another nine participants were recruited to participate in 

Experiment 2. Recruitment and ethics procedures were as in 

Experiment 1.

Stimuli

Images of whole faces, faces with a gray rectangle covering the 

eyes (where the brightness of the gray rectangle was matched with 

the surrounding face in Adobe Photoshop 8.0), images of pairs 

of eyes (in a rectangular cut out), and flowers were presented in 

gray-scale. In total, there were 20 400 × 400 pixel images in each 

condition. Half of the stimuli for each of the three face conditions 

were female and half were male. Different face images were used in 

the whole faces condition and the eyes masked condition. Stimuli 

in the eyes alone condition were cut-outs from the faces used in the 

eyes masked condition. For the stimuli used in the localizer scan, 

we used the same stimuli in Experiment 1, except that a different 

set of face images were used.

Experimental design and task

Four localizer scans (1-back task) were tested on each participant, 

interleaved with runs for the main experiment. Stimuli in the local-

izer scans were identical to Experiment 1 except with regard to the 

face stimuli, as noted above. In the main experiment (free-viewing), 

block designs and presentation rates were identical to Experiment 

1, except with regard to the specific stimuli used.

fMRI data acquisition, preprocessing, and analysis

Experiment 2 fMRI data were acquired and pre-processed exactly as 

in Experiment 1. The rIFJ and rFFA were defined in a similar way as 

in Experiment 1, except that the ROIs were defined independently 

from a four runs of localizer scan. The rIFJ and rFFA were defined 

in each participant by the contrast of faces vs tools at the threshold 

of p < 0.0001 (uncorrected).

Eye movement localizer

To identify the location of eye movement related regions, four par-

ticipants (who had also participated in Experiment 1) were asked 

to perform alternating blocks of repeated eye movements and fixa-

tion. In the eye movement blocks, participants were required to 

look at the central fixation cross on the screen first, then look to 

small dot on the left, back to the center and then look at a small 

dot on the right and back to the center and so on for 30 s. Eye 
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EXPERIMENT 2

A significant rFFA activation was found in seven out of nine 

 participants, and robust rIFJ activation was found in eight out of 

nine participants. ROI and statistical analyses were conducted on 

the seven participants with robust activation in both rFFA and rIFJ. 

The mean Talairach coordinates (with SD) of the peak location 

of the ROIs across participants were: rIFJ [43(7), 1(7), 41(12)]; 

rFFA [40(3), −47(8), −20(9)]. Data from these ROIs were assessed 

with a within-subjects repeated-measures ANOVA, with ROI and 

stimulus type as factors (Figure 3; also see the mean time courses 

in Figure 4).

There was a significant interaction of stimulus type and ROI 

[F(3,18) = 6.5, p < 0.001], indicating a different pattern of responses 

to these stimuli in the two ROIs. A series of paired-samples t-tests 

was performed to examine the effect of category in each ROI. In 

Behavioral performance in the 1-back task for six participants 

(data was not collected for two participants due to technical error) 

was generally successful (mean hit rate = 77%) and did not differ 

significantly by category, F(1,5) = 2.84, p = 0.21.

We identify three main findings from this experiment. First, we 

were able to demonstrate a strong response in most participants 

to visually presented faces, not only in rFFA, as expected, but also 

in the right inferior prefrontal cortex (rIFJ). Second, the response 

profile of these two regions was generally comparable, both in the 

ordering of response magnitude to the categories tested and in the 

overall increase in response in the 1-back as opposed to passive 

viewing tasks. Finally, responses were larger in rFFA as opposed to 

rIFJ, but in ratio terms the degree of selectivity was comparable, at 

least in the 1-back task. In contrast, in the passive viewing task, the 

response to bodies and faces in the rIFJ were approximately equal.

FIGURE 1 | Panel (A) shows activations in the rIFJ and the rFFA during a 

1-back task. Panel (B) shows activations in the rIFJ during passive viewing. 

Panel (C) shows the activation overlap in the rIFJ for both tasks (green for 1-back, 

yellow for passive viewing). All regions are defined by the contrast of faces–tools 

(p < 0.0001, t > 5.30). For comparison, panel (D) shows the FFA in the 1-back 

task (left), in the passive task (center), and the overlap between these 

activations (right). All regions are defined by the contrast of faces–tools 

(p < 0.0005, t > 3.50). Axial slices at Z = −18.
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Our results show a pattern of responses in rFFA that is  consistent 

with the results of previous imaging studies (Tong et al., 2000), 

which found a gradation of responses from whole faces (the most 

effective category), faces with eyes masked, and eyes alone, com-

pared to houses, which elicited weak responses. In contrast, the face 

response in rIFJ is driven strongly, perhaps entirely, by a response 

to the eyes. The response to a pair of eyes alone was no different 

from that to the entire face, showing that the eyes are sufficient to 

generate a strong rIFJ response. On the other hand, when the eyes 

are removed from an otherwise whole face, the response drops to 

a level no greater than that to flowers, showing that the presence of 

the eyes is necessary to generate a strong rIFJ response. Future inves-

tigation to examine the IFJ response to other face parts would also 

provide a useful comparison against the eye conditions tested here.

the rFFA, whole faces elicited a stronger response than that to eyes 

[t(6) = 3.6, p < 0.05] and flowers [t(6) = 3.9, p < 0.01]. The responses 

to eyes alone and faces with the eyes masked did not differ sig-

nificantly, t(6) = 1.5, p = 0.19. In contrast, in the rIFJ the greatest 

response was elicited by the eyes alone condition. This response was 

greater than that to faces with the eyes masked, t(6) = 2.9, p < 0.05, 

and to flowers, t(6) = 3.4, p < 0.01. The response to the eyes alone 

did not differ from that to whole faces, t(6) = 1.4, p = 0.2), and 

importantly, due to the fact that there was also a significant greater 

responses for whole faces than to eyes masked t(6) = 2.1, p < 0.05, 

we argue that the region’s preference for eyes cannot be due to 

any low level effect of the eyes being cropped out. In contrast, the 

response to faces with the eyes masked did not differ from that to 

flowers, t(6) = 0.53, p = 0.61.

FIGURE 2 | Results of Experiment 1. Responses of rFFA and rIFJ, based on independent functional localizers, to faces, headless bodies, tools, and outdoor scenes, 

in both free-viewing and 1-back tasks. Response magnitudes indicate beta weights from general linear models fit to the aggregate data from each region of interest. 

Error bars indicate standard error of the mean. Asterisks indicate significant differences between conditions: *p < 0.05; **p < 0.01.
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presence of the eyes. While this is a preliminary finding, it raises 

a number of questions about the functional role of this region, 

which we address below.

In the macaque, a strong connection between the PFC and the 

inferior temporal cortex (ITC) has been well documented (Kuypers 

et al., 1965; Jones and Powell, 1970; Ungerleider et al., 1989; Bullier 

et al., 1996; Scalaidhe et al., 1997, 1999; Levy and Goldman-Rakic, 

2000; Miller and Cohen, 2001). It has been proposed that the ventral 

PFC is functionally associated with and is an extension of the ventral 

temporal cortex, and that there is selective connectivity between the 

two cortical regions (Goldman-Rakic, 1996; Levy and Goldman-

Rakic, 2000). Connectivity between the two regions has further been 

illustrated by Scalaidhe et al. (1997), who used injections of wheat 

germ agglutinin-horseradish peroxidase or fluorescent dyes to show 

EYE MOVEMENT LOCALIZER

A whole brain fixed-effects analysis contrasted eye movement 

blocks vs fixation blocks at an uncorrected threshold of p < 0.00001. 

The group-defined FEFs (right peak: 50, −1, 42; left peak: −48, −4, 

45) and supplementary eye fields (peak: 0, −10, 66) did not overlap 

with rIFJ, as defined in a comparable fixed-effects group analysis 

(see Figure 5).

GENERAL DISCUSSION

In this paper, we report that a region of the right prefrontal cortex 

at the junction of the inferior frontal sulcus and the precentral 

sulcus responds strongly to faces compared to scenes and tools (and 

to a lesser extent, to human bodies). In contrast to the rFFA, the 

response to faces in the rIFJ appears to be driven primarily by the 

FIGURE 3 | Results of Experiment 2. Responses of rFFA and rIFJ, based on independent functional localizers, to flowers, whole faces, eyes, and faces with eyes 

masked. Conventions as in Figure 2. Asterisks indicate significant differences between conditions: *p < 0.05; **p < 0.01.
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that the face-selective neurons that were located in the inferior fron-

tal convexity received more than 95% of input from the temporal 

visual cortex. Specifically, these neurons received inputs from the 

ventral bank of the superior temporal sulcus (STS), as well as the 

neighboring inferior temporal gyrus, which have frequently been 

reported to contain face-selective neurons (Perrett et al., 1982, 1985; 

Desimone et al., 1984; Pinsk et al., 2005b). These projections, if also 

present in humans, could provide the visual analysis that contributes 

to the stimulus selectivity seen in the present findings.

The literature on lateral prefrontal cortex implicates this broad 

region in a very diverse set of cognitive functions, spanning domains 

such as object recognition, WM, and task switching, as demon-

strated in animal, patient, and neuroimaging studies (Kuypers et al., 

1965; Jones and Powell, 1970; Ungerleider et al., 1989; Bullier et al., 

1996; Scalaidhe et al., 1997, 1999; Levy and Goldman-Rakic, 2000; 

Miller and Cohen, 2001; Brass et al., 2005). In a recent review, 

for example, Duncan and Owen (2000) identified three relatively 

focal regions of prefrontal cortex – mid dorsolateral, mid ventro-

lateral, and dorsal anterior cingulate – that are recruited across 

FIGURE 4 | Times courses extracted from ROIs within each participant in Experiment 2, both IFJ and FFA were identified by the localizer scans (faces vs tool, 

p < 0.0001; N = 6). Mean percent signal change (PSC) is plotted along the y-axis, repetition time (TR) is plotted on the x-axis. The colored bars in the figure are shifted 

by two timepoints to accommodate the HRF.

FIGURE 5 | Activation map from the 1-back task (yellow, faces–tools, 

p < 0.0001, t > 5.30) overlaid onto the activation map from the eye 

movement localizer (green, eye movements-fixation, p < 0.0001, t > 12.0).
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