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Abstract

For stationary Poisson hyperplane tessellations in d-dimensional Euclidean space and for a
dimension k ∈ {1, . . . , d}, we investigate the typical k-face and the weighted typical k-face
(weighted by k-dimensional volume), without isotropy assumptions on the tessellation. The
case k = d concerns the previously studied typical cell and zero cell, respectively. For k < d,
we first find the conditional distribution of the typical k-face or weighted typical k-face, given
its direction. Then we investigate how the shapes of the faces are influenced by assumptions
of different types: either via containment of convex bodies of given volume (including a new
result for k = d), or, for weighted typical k-faces, in the spirit of D.G. Kendall’s asymptotic
problem, suitably generalized. In all these results on typical or weighted typical k-faces with
given direction space L, the Blaschke body of the section process of the underlying hyperplane
process with L plays a crucial rôle.
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1. Introduction

A stationary Poisson hyperplane mosaic in Euclidean space Rd gives rise to interesting random
polytopes. The zero cell is the almost surely unique cell containing a given point, without loss of
generality the origin of Rd. Typical cells are obtained, heuristically, by picking out cells at random,
possibly with weights; a precise definition can be given with the aid of Palm distributions (see Section
2). The investigation of asymptotic shapes of such random polytopes was initiated by a well-known
problem of David Kendall. He asked (see the formulation in the foreword to the first edition of [14])
whether the zero cell of a stationary, isotropic Poisson line process in the plane, under the condition
of large area, must be approximately circular, with high probability. After an affirmative answer had
been given by I. N. Kovalenko [7], extensions of the problem to higher dimensions and without the
assumption of isotropy were treated. In the anisotropic case, it turned out that the so-called Blaschke
body, an auxiliary centrally symmetric convex body constructed from the directional distribution of
the underlying hyperplane process, governs the asymptotic shape. In [2], a suitable measure of shape
deviation from the Blaschke body was defined, and the following was shown. The probability that
the shape of the zero cell or the shape of the typical cell of a stationary Poisson hyperplane mosaic
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in Rd, under the condition that the volume of the cell is at least a > 0, deviates from the shape of
the Blaschke body by more than some prescribed bound, is exponentially small with increasing a.
Various modifications of Kendall’s problem are treated in [3], [4], and [5].

There are also other manifestations of the phenomenon that for the shape of the cells of stationary
Poisson hyperplane tessellations, under suitable assumptions, the Blaschke body of its underlying
Poisson hyperplane process plays a crucial rôle. Let K ⊂ Rd be a convex body containing the origin
and of given positive volume. Then the probability that the zero cell contains K is maximal if and
only if K is homothetic to the Blaschke body (see [13, Theorem 10.4.11]). Below we prove a (less
immediate) analogue of this result for the typical cell (Theorem 2 in Section 4).

The notions of typical cell and zero cell can be generalized to faces of lower dimensions in the
mosaic, in the form of typical k-faces and k-volume weighted typical k-faces. The extension of
the mentioned results to typical or weighted typical k-faces, for k < d, meets with the difficulty
that properties of lower-dimensional faces in the mosaic depend on their directions, except if the
mosaic is isotropic. By the direction of a k-dimensional convex body we understand here the linear
subspace that is a translate of the affine hull of the body. A version of Kendall’s problem for typical
k-faces was treated in [6], where the condition of large k-volume was supplemented by the condition
that the direction of the typical k-face is in a small neighbourhood of a prescribed direction. In the
following, we deal with typical k-faces of a given direction. Since in general these occur only with
probability zero, we consider the regular conditional probability distribution of the typical k-face (or
weighted typical k-face), given that its direction is a prescribed linear subspaceL. Our first main result
(Theorem 1 in Section 3) says that this conditional distribution is equal to the distribution of the typical
cell (respectively, the zero cell) of a stationary Poisson hyperplane process in L, whose intensity
and directional distribution are determined in a simple way from those of the original hyperplane
process. We see this fact as a further remarkable consequence of the independence properties of
Poisson processes. It allows us to extend the mentioned results for zero and typical cells to (weighted)
typical k-faces with given direction (Theorem 3 in Section 4 and Theorems 4, 5 in Section 5).

2. Preliminaries

First, we fix some notation and collect the fundamental facts about stationary Poisson hyperplane
tessellations (or mosaics—both terms are used synonymously). General introductions to random
tessellations can be found in [10], [14] and Chapter 10 of [13].

We work in d-dimensional Euclidean vector space Rd (d ≥ 2), with origin o, scalar product
〈·, ·〉 and norm ‖ · ‖. Its unit sphere is denoted by Sd−1, the Grassmannian of k-dimensional linear
subspaces of Rd by G(d, k), and the affine Grassmannian of k-dimensional affine subspaces of Rd by
A(d, k). These spaces carry their standard topologies. For L ∈ G(d, k), the set SL := Sd−1 ∩ L is
the unit sphere in L. By K we denote the space of convex bodies (nonempty, compact, convex sets)
in Rd, endowed with the Hausdorff metric. (Notions and results from convex geometry that are not
explained here can be found in [11].) For a convex body K, the number Vk(K) is its kth intrinsic
volume, and we note that for dimK = k this is the k-dimensional volume of K. By B(T ) we denote
the Borel σ-algebra of a topological space T . As usual, we identify a simple counting measure on a
topological space with its support. Accordingly, the realizations of a point process which is simple
and locally finite (as is always assumed in the following) are also treated as locally finite sets.

Throughout this paper we assume that X is a stationary Poisson hyperplane process in Rd, that
is, a Poisson point process in the space A(d, d − 1) of hyperplanes, with a distribution that is invari-
ant under translations. The underlying probability space is denoted by (Ω,A,P), and mathematical
expectation by E. The intensity measure Θ = EX(·) ofX has a representation (see, e.g., [13, (4.33)])

Θ(A) = 2γ

∫
Sd−1

∫ ∞
0

1A(H(u, t)) dt ϕ(du) (1)
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for A ∈ B(A(d, d− 1)), where we parametrize hyperplanes which do not contain o by

H(u, t) = {x ∈ Rd : 〈x,u〉 = t}

with u ∈ Sd−1 and t > 0. We assume that γ, the intensity of X , is positive and that ϕ, the directional
distribution of X , is an even probability measure on the sphere Sd−1 which is not concentrated on
any great subsphere (that is, on a set Sd−1 ∩ L, where L is a (d − 1)-dimensional linear subspace of
Rd).

Due to the latter assumption, the hyperplane process X induces a random tessellation or mosaic,
in the obvious way. We denote this random mosaic (that is, as in [13, ch. 10], the particle process
of its cells) by X(d), and the process of its k-dimensional faces by X(k), for k = 0, . . . , d − 1. For
the definition of grain-distributions we need a centre function (see [13], p. 110), and we use here
the Steiner point ([13], (14.28)). Being a stationary particle process, X(k) has a grain distribution
with respect to the Steiner point, and a random polytope with this distribution is called the typical
k-face of the random mosaic X(d) (as in [13]). Equivalently, we can define the random measure Nk

assigning mass one to each Steiner point of a k-face of the mosaic and then use the Palm distribution
P0
Nk

of X with respect to Nk. If Y is a hyperplane process with distribution P0
Nk

, then its induced
mosaic has almost surely a unique k-face containing o. This defines a random polytope which is
stochastically equivalent to the typical k-face of X(d). The same procedure, with Nk replaced by
the random measure defined by the k-dimensional Hausdorff measure restricted to the k-skeleton of
X(d) (i.e., the union of its k-faces), leads to the k-volume weighted typical k-face of X(d). Instead of
‘k-volume weighted typical k-face’ we briefly say ‘weighted typical k-face’. We denote the typical
k-face by Z(k) and the weighted typical k-face by Z(k)

0 . The distributions of both random polytopes
are connected by the relation

Ef(Z
(k)
0 ) =

1

EVk(Z(k))
E
[
f(Z(k))Vk(Z

(k))
]
, (2)

which holds for every translation invariant, nonnegative, measurable function f on the space of k-
dimensional polytopes. (More details are, e.g., in [1], [12]). The typical d-face, Z(d), is briefly
denoted by Z and called the typical cell. The weighted typical d-face is stochastically equivalent to
the zero cell of X(d), which is defined by

Z0 :=
⋂
H∈X

H−.

Here H− denotes the (for o /∈ H unique) closed halfspace bounded by H that contains o.

The investigation of these random polytopes requires a few more constructions from the theory of
hyperplane processes. For k ∈ {0, . . . , d−2}, the intersection process ofX of order d−k is obtained
by intersecting any d − k hyperplanes of X which have linearly independent normal vectors. It is a
stationary process of k-flats and is denoted by Xd−k. According to [13, Th. 4.4.8], its intensity γd−k
and its directional distribution Qd−k are given by

γd−kQd−k(A)

=
γd−k

(d− k)!

∫
(Sd−1)d−k

1A(u⊥1 ∩ · · · ∩ u⊥d−k)∇d−k(u1, . . . ,ud−k)ϕ
d−k(d(u1, . . . ,ud−k))

for A ∈ B(G(d, k)). Here u⊥ denotes the orthogonal complement of the linear subspace spanned by
u, and∇m(u1, . . . ,um) is the m-dimensional volume of the parallelepiped spanned by u1, . . . ,um.
In addition, Q1 := ϕ.
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Let k ∈ {1, . . . , d − 1} and L ∈ G(d, k). The section process of X with L is obtained by
intersecting L with each hyperplane of X which is in general position with respect to L, that is,
satisfies dim(L ∩H) = k − 1. This results in a stationary Poisson hyperplane process with respect
to L (thus, a process of (k − 1)-flats in L), which is denoted by X ∩ L (see [13, pp. 129 ff]). We
denote the intensity of this section process by γL and its directional distribution, defined on SL, by
ϕL. These data depend in the following way on γ and ϕ. Let (·)|L denote the orthogonal projection
to L. The spherical projection of the measure ϕ to SL is defined by

(πLϕ)(A) :=

∫
Sd−1\L⊥

1A

(
u|L
‖u|L‖

)
‖u|L‖ϕ(du) (3)

for A ∈ B(SL). Then
γLϕL = γπLϕ. (4)

This is formula (3.2) in [6] and a special case of [13, Th. 4.4.7]. In particular,

γL = γ

∫
Sd−1\L⊥

‖u|L‖ϕ(du).

Note that γL depends also on ϕ, although this is not shown by the notation. The measure ϕL depends
only on ϕ and L.

Finally, we need two useful auxiliary convex bodies. The associated zonoid ΠX of X is the
o-symmetric convex body with support function given by

h(ΠX ,u) =
γ

2

∫
Sd−1

|〈u,v〉|ϕ(dv), u ∈ Sd−1.

The Blaschke body BX of X is the o-symmetric convex body with surface area measure

Sd−1(BX , ·) = γϕ.

For the notion of the surface area measure, see [13], p. 607, or Section 4.2 of [11]. The existence and
uniqueness of the Blaschke body follow from Minkowski’s theorem (e.g., [11, Th. 7.1.2]).

For a subspace L ∈ G(d, k) we denote the associated zonoid of the section process X ∩ L by
ΠX∩L and its Blaschke body by BX∩L. Both are convex bodies in L. We have

ΠX∩L = ΠX |L (5)

(due to Matheron, see [13, (4.61)]). According to (4), the surface area measure SLk−1(BX∩L, ·) of
BX∩L with L as ambient space is given by

SLk−1(BX∩L, ·) = γπLϕ;

this is a measure on the unit sphere SL in L.

3. Typical faces with given directions

The direction D(K) ∈ G(d, k) of a k-dimensional convex body K ⊂ Rd is the linear subspace
which is a translate of the affine hull of K; it can also be written as D(K) = lin(K −K), the linear
hull of the vector sum ofK and−K. The mappingD from the space of k-dimensional convex bodies
to G(d, k) is continuous.
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The random polytope Z(k)
0 takes its values in K, which is a Polish space. Therefore, the regular

conditional distribution of Z(k)
0 , given the direction D(Z

(k)
0 ) = L, exists for L ∈ G(d, k). We denote

it by P{Z(k)
0 ∈ · | D(Z

(k)
0 ) = L}. Similarly, P{Z(k) ∈ · | D(Z(k)) = L} denotes the regular

conditional distribution of the typical k-face Z(k), given the directionD(Z(k)) = L, for L ∈ G(d, k).

The following theorem describes these conditional distributions. As a by-product, it also pro-
vides the directional distributions of the weighted typical k-face and of the typical k-face, that is, the
distributions of D(Z

(k)
0 ) and D(Z(k)).

Theorem 1. Let k ∈ {1, . . . , d− 1}.
The directional distribution of the weighted typical k-face is equal to Qd−k.

For Qd−k almost all L ∈ G(d, k), the conditional distribution of the weighted typical k-face Z(k)
0 ,

given the direction D(Z
(k)
0 ) = L, is equal to the distribution of the zero cell of a stationary Poisson

hyperplane process in L with intensity γL and spherical directional distribution ϕL.

The directional distribution Rk of the typical k-face is given by

Rk(C) =
Vd−k(ΠX)(
d
k

)
Vd(ΠX)

∫
C
Vk(ΠX |L) Qd−k(dL) (6)

for C ∈ B(G(d, k)) (and hence is equivalent to Qd−k).

For Qd−k almost all L ∈ G(d, k), the conditional distribution of the typical k-face Z(k), given
that D(Z(k)) = L, is equal to the distribution of the typical cell of a stationary Poisson hyperplane
process in L with intensity γL and spherical directional distribution ϕL.

Proof. A crucial tool is the following integral representation for the distribution of the weighted
typical k-face Z(k)

0 , which was obtained in [12, Th. 1]. For A ∈ B(K),

P
{
Z

(k)
0 ∈ A

}
=

∫
G(d,k)

P{Z0 ∩ L ∈ A}Qd−k(dL). (7)

For C ∈ B(G(d, k)) we get, since D(Z0 ∩ L) = L a.s.,

P
{
Z

(k)
0 ∈ A, D(Z

(k)
0 ) ∈ C

}
=

∫
C

P{Z0 ∩ L ∈ A}Qd−k(dL); (8)

in particular, P{D(Z
(k)
0 ) ∈ C} = Qd−k(C). Thus, Qd−k is equal to the distribution P

D(Z
(k)
0 )

of

D(Z
(k)
0 ) (this can also be seen in a more direct way).

By the definition of the conditional distribution,

P
{
Z

(k)
0 ∈ A, D(Z

(k)
0 ) ∈ C

}
=

∫
C

P{Z(k)
0 ∈ A | D(Z

(k)
0 ) = L}P

D(Z
(k)
0 )

(dL).

Since this equation and (8) hold for all C ∈ B(G(d, k)), we deduce that

P{Z(k)
0 ∈ A | D(Z

(k)
0 ) = L} = P{Z0 ∩ L ∈ A}

for Qd−k almost all L ∈ G(d, k). Here the exceptional set depends on A, but since the σ-algebra
B(K) is countably generated, there is a Qd−k null set N ⊂ G(d, k) such that

P{Z(k)
0 ∈ · | D(Z

(k)
0 ) = L} = P{Z0 ∩ L ∈ ·}
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for all L ∈ G(d, k) \N .

It remains to observe that Z0 ∩ L = Z0(X ∩ L), where Z0(X ∩ L) denotes the zero cell of the
section process X ∩L, and that X ∩L is a stationary Poisson hyperplane process in L with intensity
γL and spherical directional distribution ϕL. This proves the part of Theorem 1 that refers to the
weighted typical k-face.

For the second part, concerning the typical k-face, let h be a translation invariant, nonnegative,
measurable function on the space of k-dimensional polytopes, and put f(K) := h(K)Vk(K)−1 for
such polytopes K. Then (2) gives

Eh(Z(k)) = EVk(Z
(k))E

[
h(Z

(k)
0 )Vk(Z

(k)
0 )−1

]
.

We apply (7), observe that Z0 ∩ L = Z0(X ∩ L), then apply (2) again, this time in L, where we
denote by Z(X ∩ L) the typical cell of X ∩ L. This yields

Eh(Z(k)) = EVk(Z
(k))

∫
G(d,k)

E
[
h(Z0(X ∩ L))Vk(Z0(X ∩ L))−1

]
Qd−k(dL)

= EVk(Z
(k))

∫
G(d,k)

1

EVk(Z(X ∩ L))
Eh(Z(X ∩ L)) Qd−k(dL)

=

∫
G(d,k)

Eh(Z(X ∩ L)) Rk(dL) (9)

with

Rk(C) =

∫
C

EVk(Z
(k))

EVk(Z(X ∩ L))
Qd−k(dL)

for C ∈ B(G(d, k)). From [13, (10.43), (10.3), (10.44)] we know that

EVk(Z
(k)) =

Vd−k(ΠX)(
d
k

)
Vd(ΠX)

.

This can be applied to X ∩ L, with Rd replaced by the k-dimensional space L, and together with (5)
this gives

EVk(Z(X ∩ L)) =
1

Vk(ΠX∩L)
=

1

Vk(ΠX |L)

and thus (6).

Let A ∈ B(K). We apply the result (9) to the function defined by h(K) = 1A(K− s(K)), where
s(K) denotes the Steiner point ofK. Since our notion of typical faces and cells uses the Steiner point
as centre function, we have s(Z(k)) = o and s(Z(X ∩ L)) = o. Thus, we arrive at

P
{
Z(k) ∈ A

}
=

∫
G(d,k)

P{Z(X ∩ L) ∈ A}Rk(dL).

This equation describes the distribution of the typical k-face of the stationary Poisson hyperplane
mosaicX(d) in terms of typical cells in k-dimensional subspaces and is thus a counterpart to Theorem
1 of [12]. It can be employed similarly as equation (7) was used above. In this way, the proof of
Theorem 1 is completed. �

6



4. Comparison with given shapes

The typical k-face Z(k) and weighted typical k-face Z(k)
0 are random polytopes, and we want

to study their ‘preferred’ shapes under different conditions. The question for a ‘mean shape’ can be
approached in different ways. If K is a random convex body in Rd satisfying a suitable integrability
condition, we can define its Aumann expectation, which is closely related to Minkowski addition.
In our context, a different type of mean body, related to Blaschke addition, is more appropriate.
The Blaschke sum K#M of two d-dimensional convex bodies K,M is the unique convex body
with surface area measure Sd−1(K#M, ·) = Sd−1(K, ·) + Sd−1(M, ·) and, say, Steiner point at
the origin. Let C be a d-dimensional random convex body in Rd with EVd−1(C) < ∞. Then the
Blaschke expectation (see Molchanov [9, p. 200]) of C can be defined as the convex body EBL(C)
with Sd−1(EBL(C), ·) = ESd−1(C, ·) and Steiner point at o. As indicated by Molchanov (loc. cit),
it is possible to derive a strong law of large numbers for normalized Blaschke sums.

For the typical cell Z, which is the typical grain of the stationary particle process X(d), it turns
out that its Blaschke expectation is a dilate of the Blaschke body BX of the hyperplane process X
(this follows from [13], pp. 488–489). This is one instance of the existing relations between the shape
of the typical cell and the Blaschke body of X . Another one is expressed in the following theorem.
Recall that a homothet of a convex body K ⊂ Rd is any body of the form λK + t with λ > 0 and
t ∈ Rd.

Theorem 2. Among all convex bodies C of given volume Vd(C) > 0, precisely the homothets of the
Blaschke body BX maximize the probability that the typical cell Z contains a translate of C.

A similar result holds for the zero cell, but without admitting translations ([13, Th. 10.4.11]).
Theorem 2 requires a different approach. We extend the proof of [13, Th. 10.4.8], which uses an
idea of Miles [8] to determine the distribution of the inradius of the typical cell; we generalize this
from the usual inradius to the relative inradius. Let C be a convex body of positive dimension. For a
convex body K containing some positive homothet of C, the relative inradius of K with respect to C
is defined by

rC(K) := max{λ > 0 : ∃ z ∈ Rd with λC + z ⊂ K}.

We shall show that

P{rC(Z) > a} = e−2dV (C,BX ,...,BX)a for a ≥ 0, (10)

where V denotes the mixed volume. From (10) we can then deduce that

P{Z contains a translate of C} = P{rC(Z) ≥ 1}

= e−2dV (C,BX ,...,BX)

≤ exp
[
−2dVd(C)

1
dVd(BX)1− 1

d

]
,

by Minkowski’s inequality (e.g., [11, Th. 6.2.1]). Equality holds if and only if C is homothetic to the
Blaschke body BX . This is the assertion of Theorem 2.

We remark that the assertion (10) holds whenever C has positive dimension. We prove it under
this asumption.

Proof of (10). We modify the proof of [13, Th. 10.4.8] as far as necessary. For a convex body K, let

HK = {H ∈ A(d, d− 1) : H ∩K 6= ∅}. (11)
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We assume, without loss of generality, that o ∈ C. Let a ≥ 0 and put

Ωa := {ω ∈ Ω : X(ω)(HaC) = 0}.

Every hyperplane H ∈ A(d, d − 1) \ HaC is of the form H = H(u, t) with u ∈ Sd−1 and t >
h(aC,u), where h denotes the support function. We define a map Ta : A(d, d − 1) \ HaC →
A(d, d − 1) by TaH(u, t) := H(u, t − h(aC,u)). Let Aa be the trace σ-algebra of A on Ωa and
Pa the restriction of P/P(Ωa) to Ωa. On the probability space (Ωa,Aa,Pa) we define a simple
hyperplane process Xa by Xa(ω) := {TaH : H ∈ X(ω)}, ω ∈ Ωa.

Let A ∈ B(A(d, d− 1)) (with o /∈ H for all H ∈ A, without loss of generality). We have

Θ(T−1
a (A)) = 2γ

∫
Sd−1

∫ ∞
h(aC,u)

1T−1
a (A)(H(u, t)) dt ϕ(du)

= 2γ

∫
Sd−1

∫ ∞
h(aC,u)

1A(H(u, t− h(aC,u)) dt ϕ(du)

= 2γ

∫
Sd−1

∫ ∞
0

1A(H(u, t)) dt ϕ(du)

= Θ(A).

Let k ∈ N0. Since T−1
a (A) ∩HaC = ∅, the independence property of Poisson processes gives

Pa{Xa(A) = k} = P(Ωa)
−1P

{
X(T−1

a (A)) = k, X(HaC) = 0
}

= P
{
X(T−1

a (A)) = k
}

= e−Θ(T−1
a (A)) Θ(T−1

a (A))k

k!
= e−Θ(A) Θ(A)k

k!

= P{X(A) = k}.

It follows (e.g., from [13, Th. 3.1.1]) that Xa and X are equal in distribution.

With every hyperplaneH ∈ X we associate the slabHa := H−aC. The cells induced byX and
a are defined as the closures of the connected components of Rd\

⋃
H∈X Ha. The systemX(d,a) of all

these cells is a stationary particle process. We denote its intensity by γ(d,a) and its grain distribution
by Q(d,a). If ω ∈ Ωa, then among the cells induced by X(ω) and a there is one containing o; we
denote it by Z(a)

0 . This defines a random polytope on (Ωa,Aa,Pa); it is equal to the zero cell of the
hyperplane mosaic induced by Xa. Since Xa and X are stochastically equivalent, also Z(a)

0 and Z0

are stochastically equivalent. Now we can exactly copy the argument in [13, p. 503], with e−2γ̂a

replaced by P(Ωa), to derive that
γ(d,a) = P(Ωa)γ

(d,0). (12)

Let K be a d-dimensional convex body, and suppose that λC + x ⊂ K, where λ is maximal.
Then x is called a relative incentre of K. The set Z(K) of all relative incentres of K is a convex
body (often one-pointed, but not always), and we denote by z(K) its Steiner point. The function z
is translation covariant and measurable and hence can be used as a centre function (in the sense of
[13, Sect. 4.1]). We do this, and write K0 := {K ∈ K : z(K) = o}. (Since the relative inradius is
translation invariant, the distribution of the relative inradius of the typical cell does not depend on the
choice of the centre function.)
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Now we observe that to every cell K ∈ X(d) with rC(K) > a there corresponds a unique cell
Ka ∈ X(d,a) contained in it: if

K =
m⋂
i=1

{x : 〈x,ui〉 ≤ ti}, then Ka =
m⋂
i=1

{x : 〈x,ui〉 ≤ ti − ah(C,ui)}.

If rC(K) = λ, the set of relative incentres of K is given by Z(K) = K ∼ λC, where ∼ denotes
the Minkowski difference (see [11, p. 133]). We have Ka = K ∼ aC and hence (by [11, (3.3.14)])
Ka ∼ (λ − a)C = K ∼ λC 6= ∅. This shows that rC(Ka) ≥ λ − a, and from Ka + aC ⊂ K
it follows that rC(Ka) + a ≤ rC(K) = λ, hence rC(Ka) = λ − a. Therefore, Z(Ka) = Ka ∼
(λ− a)C = Z(K). We conclude that z(Ka) = z(K).

Let B ∈ B(Rd) be a set with Lebesgue measure 1. Since Q(d,0) is the distribution of the typical
cell Z, we obtain from [13, Th. 4.1.3(a)] that

P{rC(Z) > a} =

∫
K0

1(a,∞)(rC(K)) Q(d,0)(dK)

=
1

γ(d,0)
E

∑
K∈X(d),z(K)∈B

1(a,∞)(rC(K))

=
1

γ(d,0)
E

∑
Ka∈X(d,a),z(Ka)∈B

1

=
1

γ(d,0)
γ(d,a) = P(Ωa),

by (12). It remains to remark that, by the Poisson property, P(Ωa) = e−Θ(HaC), and (1) gives

Θ(HaC) = 2γ

∫
Sd−1

h(aC,u)ϕ(du)

= 2a

∫
Sd−1

h(C,u)Sd−1(BX ,du) = 2dV (C,BX , . . . , BX)a, (13)

where a formula for mixed volumes ([13, (14.23)]) was used. This yields

P(Ωa) = e−2dV (C,BX ,...,BX)a

and thus (10). �

We can now use Theorem 1 to derive from Theorem 2 and from [13, Th. 10.4.11] the following
result.

Theorem 3. Let k ∈ {1, . . . , d − 1}. For each L ∈ G(d, k), let CL ⊂ L be a convex body with
Vk(CL) = 1. Then, for Qd−k almost all L ∈ G(d, k), the following holds.

The conditional probability that the typical k-face Z(k) contains a translate of CL, given that
D(Z(k)) = L, is at most

exp
[
−2kVk(BX∩L)1− 1

k

]
, (14)

and it is equal to this value if and only if CL is homothetic to BX∩L.

Assume in addition that o ∈ CL for L ∈ G(d, k). The conditional probability that the weighted
typical k-face Z(k)

0 contains CL, given that D(Z(k)) = L, is at most the value (14), with equality if
and only if CL is homothetic to BX∩L.
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5. Large faces

The solution of D.G. Kendall’s problem for the zero cell of anisotropic stationary Poisson hy-
perplane processes, mentioned in the introduction, was extended in [6] to weighted typical k-faces
with large k-dimensional volume and direction in a small neighbourhood of a given direction. In this
section, we state a version of this result for the conditional distribution of a weighted typical k-face,
given its direction and given that it has large k-volume.

To define the conditional probabilities in question, we consider, for any a ≥ 1, the random
variable ηa : Ω → {0, 1} defined by ηa := 1{Vk(Z

(k)
0 ) ≥ a}, where {0, 1} is endowed with the

σ-algebra generated by the singletons. We denote by

P
{
Z

(k)
0 ∈ · | (ηa, D(Z

(k)
0 )) = (b, L)

}
(15)

the regular conditional probability distribution ofZ(k)
0 , given that (ηa, D(Z

(k)
0 )) = (b, L), for (b, L) ∈

{0, 1} ×G(d, k).

Lemma 1. A version of the regular conditional probability distribution (15) is given by

%(b,L)(·) :=
P {Z0(X ∩ L) ∈ · , Vk(Z0(X ∩ L)) < a}

P {Vk(Z0(X ∩ L)) < a}
1{b = 0}

+
P {Z0(X ∩ L) ∈ · , Vk(Z0(X ∩ L)) ≥ a}

P {Vk(Z0(X ∩ L)) ≥ a}
1{b = 1}

for (b, L) ∈ {0, 1} ×G(d, k).

Proof. For L ∈ G(d, k), we define a measure µL on {0, 1} by

µL := P {Vk(Z0(X ∩ L)) < a} δ0 + P {Vk(Z0(X ∩ L)) ≥ a} δ1,

where δ0, δ1 are the Dirac measures at 0 and 1, respectively. Then (8) implies that

P
{

(ηa, D(Z
(k)
0 )) ∈ ·

}
=

∫
G(d,k)

∫
{0,1}

1{(b, L) ∈ ·}µL(db) Qd−k(dL).

For Borel sets A ⊂ K and C ⊂ G(d, k), and for B ⊂ {0, 1}, we get∫
{0,1}×G(d,k)

%(b,L)(A)1{(b, L) ∈ B × C}P
(ηa,D(Z

(k)
0 ))

(d(b, L))

=

∫
C

∫
B
%(b,L)(A)µL(db) Qd−k(dL)

=

∫
C

[
P {Z0(X ∩ L) ∈ A, Vk(Z0(X ∩ L)) < a}1B(0)

+ P {Z0(X ∩ L) ∈ A, Vk(Z0(X ∩ L)) ≥ a}1B(1)
]

Qd−k(dL)

= P
{
Z

(k)
0 ∈ A, (ηa, D(Z

(k)
0 )) ∈ B × C

}
,

from which the assertion follows. �
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In the following, we choose %(b,L)(·) as a definite version of the regular conditional probability
distribution (15). Thus, introducing the notation

P
{
Z

(k)
0 ∈ · | Vk(Z

(k)
0 ) ≥ a, D(Z

(k)
0 ) = L

}
:= P

{
Z

(k)
0 ∈ · | (ηa, D(Z

(k)
0 )) = (1, L)

}
for a ≥ 1 and L ∈ G(d, k), we obtain

P
{
Z

(k)
0 ∈ · | Vk(Z

(k)
0 ) ≥ a, D(Z

(k)
0 ) = L

}
=

P {Z0(X ∩ L) ∈ · , Vk(Z0(X ∩ L)) ≥ a}
P {Vk(Z0(X ∩ L)) ≥ a}

. (16)

For L ∈ G(d, k), in addition to the Blaschke body BX∩L of the section process X ∩ L, we
introduce the scaled version BL ⊂ L, which is defined by SLk−1(BL, ·) = ϕL. Moreover, for a k-
dimensional convex body K ⊂ L, we measure the deviation (in shape) of K from BL by the function

ϑ(K,BL) = log min{β/α : α, β > 0, ∃ z ∈ L : αBL ⊂ K + z ⊂ βBL}.

The constants c1, c2, . . . appearing in the following may depend onϕ, γ, ε; the precise dependence
will be indicated in each case.

By Lemma 4.2 in [6] (recall that Z0 ∩ L = Z0(X ∩ L)), the following is true. For 0 < ε < 1,
there are a constant c1 > 0, depending only on ϕ, γ, ε, and a constant c2 > 0, depending only on ϕ,
such that, for L ∈ G(d, k), a ≥ 1 and h ∈ (0, 1/2),

P {ϑ(Z0(X ∩ L), BL) ≥ ε, Vk(Z0(X ∩ L)) ∈ a(1, 1 + h)}

≤ c1h exp
[
−2(1 + 2c2ε

k+1)γLτLa
1/k
]
, (17)

where τL = kVk(BL)1−1/k.

By Lemma 4.1 in [6], there are constants c3 and 0 < h0 < 1/2, depending only on ϕ, γ, ε, such
that

P {Vk(Z0(X ∩ L)) ≥ a} ≥ P {Vk(Z0(X ∩ L)) ∈ a(1, 1 + h0)}

≥ c3h0 exp
[
−2
(

1 + (c2/2)εk+1
)
γLτLa

1/k
]
.

We apply (17) with h = h0. Since L 7→ γLτL is continuous and therefore bounded from below
by a positive constant depending only on ϕ, γ, we get as in [2, pp. 1164–1165, CASE 2] that

P {ϑ(Z0(X ∩ L), BL) ≥ ε, Vk(Z0(X ∩ L)) ≥ a}

≤ c4h0 exp
[
−2(1 + c2ε

k+1)γLτLa
1/k
]
,

where c4 > 0 is a constant which depends only on ϕ, γ, ε.

Hence, for L ∈ G(d, k) and a ≥ 1 we get

P
{
ϑ(Z

(k)
0 , BL) ≥ ε | Vk(Z

(k)
0 ) ≥ a, D(Z

(k)
0 ) = L

}
≤ c5 exp

[
−c2ε

k+1γLτLa
1/k
]
,

where c5 > 0 is a constant which depends only on ϕ, γ, ε. Thus, we have proved the following
theorem.
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Theorem 4. Let ε ∈ (0, 1) and a ≥ 1. There exist constants c6, c7 > 0, where c6 depends only on
ϕ, γ, ε and c7 depends only on ϕ, γ, such that

P
{
ϑ(Z

(k)
0 , BL) ≥ ε | Vk(Z

(k)
0 ) ≥ a, D(Z

(k)
0 ) = L

}
≤ c6 exp

[
−c7ε

k+1a1/k
]

for Qd−k almost all L ∈ G(d, k).

We note that for the special version given by (16) the estimate of Theorem 4 is valid for all
L ∈ G(d, k).

Now we denote by P{Z(k)
0 ∈ · | (Vk(Z

(k)
0 ), D(Z

(k)
0 )) = (a, L)} the regular conditional probabil-

ity distribution of Z(k)
0 , given that (Vk(Z

(k)
0 ), D(Z

(k)
0 )) = (a, L). A similar argument as above leads

to an estimate for
P
{
ϑ(Z

(k)
0 , BL) ≥ ε | Vk(Z

(k)
0 ) = a, D(Z

(k)
0 ) = L

}
.

To show this, we first remark that (8) implies that

P
{

(Vk(Z
(k)
0 ), D(Z

(k)
0 )) ∈ ·

}
=

∫
G(d,k)

∫ ∞
0

1{(t, L) ∈ ·}PVk(Z0(X∩L))(dt) Qd−k(dL). (18)

Hence, for Borel sets A ⊂ K, C ⊂ G(d, k) and I ⊂ [0,∞), we deduce from (8) and (18) that∫
C

∫
I

P
{
Z

(k)
0 ∈ A | (Vk(Z

(k)
0 ) , D(Z

(k)
0 )) = (t, L)

}
PVk(Z0(X∩L))(dt) Qd−k(dL)

=

∫
I×C

P
{
Z

(k)
0 ∈ A | (Vk(Z

(k)
0 ), D(Z

(k)
0 )) = (t, L)

}
P

(Vk(Z
(k)
0 ),D(Z

(k)
0 ))

(d(t, L))

= P
{
Z

(k)
0 ∈ A, Vk(Z

(k)
0 ) ∈ I, D(Z

(k)
0 ) ∈ C

}
=

∫
C

P {Z0(X ∩ L) ∈ A, Vk(Z0(X ∩ L)) ∈ I}Qd−k(dL)

=

∫
C

∫
I

P {Z0(X ∩ L) ∈ A | Vk(Z0(X ∩ L)) = t} PVk(Z0(X∩L))(dt) Qd−k(dL),

where P{Z0(X ∩ L) ∈ · | Vk(Z0(X ∩ L)) = t} is the regular conditional probability distribution of
Z0(X ∩ L), given that Vk(Z0(X ∩ L)) = t. Therefore,

P
{
Z

(k)
0 ∈ · | (Vk(Z

(k)
0 ), D(Z

(k)
0 )) = (t, L)

}
= P {Z0(X ∩ L) ∈ · | Vk(Z0(X ∩ L)) = t} , (19)

for P
(Vk(Z

(k)
0 ),D(Z

(k)
0 ))

almost all (t, L) ∈ (0,∞) × G(d, k). Let λ1 denote Lebesgue measure on R.
Then, by the same arguments as in [4, Section 9], applied to the section process X ∩ L in L, we
get that P{Vk(Z0(X ∩ L)) ∈ ·} and λ1 have the same null sets and that, for a Borel set A ⊂ K,
L ∈ G(d, k) and λ1 almost all t > 0,

P {Z0(X ∩ L) ∈ A | Vk(Z0(X ∩ L)) = t}

= lim
n→∞

P
{
Z0(X ∩ L) ∈ A, Vk(Z0(X ∩ L)) ∈ [t, t+ 1

n ]
}

P
{
Vk(Z0(X ∩ L)) ∈ [t, t+ 1

n ]
} .
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Lemma 4.2 in [6] yields that for ε ∈ (0, 1) and L ∈ G(d, k) there are constants c8 > 0, depending
only on γ, ϕ, ε, and c9 > 0, depending only on γ, ϕ, such that, for t ≥ 1 and all integers n ≥ 3,

P

{
ϑ(Z0(X ∩ L), BL) ≥ ε, Vk(Z0(X ∩ L)) ∈

[
t, t+

1

n

]}
≤ c8

nt
exp

[
−2
(

1 + c9ε
k+1
)
γLτLt

1/k
]
. (20)

In addition, Lemma 4.1 in [6] shows that for ε ∈ (0, 1) and L ∈ G(d, k) there are constants n0 ≥ 3
and c10, depending only on γ, ϕ, ε, such that, for t ≥ 1 and all integers n ≥ n0,

P

{
Vk(Z0(X ∩ L)) ∈

[
t, t+

1

n

]}
≥ c10

nt
exp

[
−2
(

1 + (c9/2)εk+1
)
γLτLt

1/k
]
. (21)

Thus, (20) and (21) imply that, for ε ∈ (0, 1), L ∈ G(d, k) and λ1 almost all t ≥ 1,

P {ϑ(Z0(X ∩ L), BL) ≥ ε | Vk(Z0(X ∩ L)) = t} ≤ c11 exp
[
−c12ε

k+1t1/k
]
,

where c11 depends on γ, ϕ, ε and c12 depends on γ, ϕ. Thus, (19) yields the following theorem.

Theorem 5. Let ε ∈ (0, 1). There exist constants c11, c12 > 0, where c11 depends only on ϕ, γ, ε and
c12 depends only on ϕ, γ, such that

P
{
ϑ(Z

(k)
0 , BL) ≥ ε | Vk(Z

(k)
0 ) = a, D(Z

(k)
0 ) = L

}
≤ c11 exp

[
−c12ε

k+1a1/k
]
,

for P
(Vk(Z

(k)
0 ),D(Z

(k)
0 ))

almost all (a, L) ∈ (1,∞)×G(d, k).

The exceptional set of P
(Vk(Z

(k)
0 ),D(Z

(k)
0 ))

measure zero that is possibly excluded in Theorem 5 can

be chosen independently of ε ∈ (0, 1). This follows from the fact that the constant c11 = c11(ϕ, γ, ε′)
can be bounded uniformly for ε′ ∈ [ε/2, ε], for all ε ∈ (0, 1), as can be seen by an inspection of the
proofs in [3].
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