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Abstract 

FaceSync is an optimal linear algorithm that finds the degree of syn

chronization between the audio and image recordings of a human 

speaker. Using canonical correlation, it finds the best direction to com

bine all the audio and image data, projecting them onto a single axis. 

FaceSync uses Pearson's correlation to measure the degree of synchro

nization between the audio and image data. We derive the optimal linear 

transform to combine the audio and visual information and describe an 

implementation that avoids the numerical problems caused by comput

ing the correlation matrices. 

1 Motivation 

In many applications, we want to know about the synchronization between an audio signal 

and the corresponding image data. In a teleconferencing system, we might want to know 

which of the several people imaged by a camera is heard by the microphones; then, we can 

direct the camera to the speaker. In post-production for a film, clean audio dialog is often 

dubbed over the video; we want to adjust the audio signal so that the lip-sync is perfect. 

When analyzing a film, we want to know when the person talking is in the shot, instead of 

off camera. When evaluating the quality of dubbed films, we can measure of how well the 

translated words and audio fit the actor's face. 

This paper describes an algorithm, FaceSync, that measures the degree of synchronization 

between the video image of a face and the associated audio signal. We can do this task by 

synthesizing the talking face, using techniques such as Video Rewrite [1], and then com

paring the synthesized video with the test video. That process, however, is expensive. Our 

solution finds a linear operator that, when applied to the audio and video signals, generates 

an audio-video-synchronization-error signal. The linear operator gathers information 

from throughout the image and thus allows us to do the computation inexpensively. 

Hershey and Movellan [2] describe an approach based on measuring the mutual informa

tion between the audio signal and individual pixels in the video. The correlation between 

the audio signal, x, and one pixel in the image y, is given by Pearson's correlation, r. The 

mutual information between these two variables is given by f(x,y) = -1/2 log(l-?). They 

create movies that show the regions of the video that have high correlation with the audio; 
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from the correlation data, they estimate the centroid of the activity pattern and find the 
talking face. They make no claim of their algorithms ability to measure synchronization. 

FaceSync is an optimal linear detector, equivalent to a Wiener filter [3], which combines 
the information from all the pixels to measure audio-video synchronization. We developed 
our approach based on two surprisingly simple algorithms in computer-vision and audio
visual speech synthesis: EigenPoints [4] and ATR's multilinear facial synthesizer [5]. The 
relationship of these two algorithms to each other and to our problem is shown in Figure 1. 

EigenPoints [4] is an algorithm that finds a linear mapping between the brightness of a 
video signal and the location of fiduciary points on the face. At first, the validity of this 

mapping is not obvious; we might not expect the brightness of pixels on a face to covary 
linearly with x and y coordinates. It turns out, however, that the brightness of the image 

pixels, i(x,y), and the location of fiduciary points such as the comer of the mouth, Pi = (Xi' 

y), describe a function in a high-dimensional space. In the absence of occlusion, the com
bined brightness-fiduciary function is smoothly varying. Thus the derivatives are defined 
and a Taylor-series approximation is valid. The real surprise is that EigenPoints can find a 
linear approximation that describes the brightness-fiduciary space, and this linear approx
imation is valid over a useful range of brightness and control-point changes. 

Similarly, Yehia, Rubin, and Vatikiotis-Bateson at ATR [5] have shown that it is possible to 
connect a specific model of speech, the line-spectral pairs or LSP, with the position of 
fiduciary points on the face. Their multilinear approximation yielded an average correla

tion of 0.91 between the true facial locations and those estimated from the audio data. 

We derive a linear approximation to connect brightness to audio without the intermediate 
fiduciary points. Neither linear mapping is exact, so we had to determine whether the 
direct path between brightness and audio could be well approximated by a linear trans
form. We describe FaceSync in the next section. 

Fisher and his colleagues [6] describe a more general approach that finds a non-linear 
mapping onto subspaces which maximize the mutual information. They report results 
using a single-layer perceptron for the non-linear mapping. 

2 FaceSync Algorithm 

FaceSync uses a face-recognition algorithm and canonical correlation to measure audio
visual synchrony. There are two steps: training or building the canonical correlation 
model, and evaluating the fit of the model to the data. In both steps we use face-recogni
tion software to find faces and align them with a sample face image. In the training stage, 
canonical correlation finds a linear mapping that maximizes the cross-correlation between 



two signals: the aligned face image and the audio signal. Finally, given new audio and 
video data, we use the linear mapping to rotate a new aligned face and the audio signal 
into a common space where we can evaluate their correlation as a function of time. 

In both training and testing, we use a neural-network face-detection algorithm [7] to find 
portions of the image that contain a face. This approach uses a pyramid of images to 
search efficiently for pixels that look like faces. The software also allows the face to be 
tracked through a sequence of image and thus reduce the computational overhead, but we 

did not use this capability in our experiments. The output of Rowley's face-detection algo
rithm is a rectangle that encloses the position of a face. We use this information to align 
the image data prior to correlational analysis. 

We investigated a number of ways to describe the audio signal. We looked at mel-fre
quency cepstral coefficients (MFCC) [8], linear-predictive coding (LPC) [8], line spectral 
frequencies (LSF) [9], spectrograms, and raw signal energy. For most calculations, we 
used MFCC analysis, because it is a favorite front-end for speech-recognition systems 
and, as do several of the other possibilities, it throws away the pitch information. This is 
useful because the pitch information affects the spectrogram in a non-linear manner and 
does not show up in the image data. For each form of audio analysis, we used a window 
size that was twice the frame interval (2/29.97 seconds,) 

Canonical correlation analysis (CCA) uses jointly varying data from an input subspace Xi 

and an output subspace Yi to find canonic correlation matrices, A x and A y . These matri
ces whiten the input and output data, as well as making the cross correlation diagonal and 
"maximally compact." Specifically, the whitened data matrices are 

11 = A: (x - x) and cp = A~ (y - y), (1) 

and have the following properties: 

E{l1l1 T } = I, E{cpcpT} = I, E{<P11T} = LK = diag{cr1, cr2, ... , crL }, (2) 

where 1 ::": cr 1 ::": cr2 ::": ... > 0 and cr M + 1 = ... = cr L = O. In addition, for i starting from 
1 and then repeating up to L, cri is the largest possible correlation between 11i and 

<Pi (where 11i and <Pi are the ilh elements of 11 and <P respectively), given the norm and 
orthogonality constraints on 11 and <p, expressed in equation 2. We refer to this property 
as maximal compaction, since the correlation is (recursively) maximally compacted into 
the leading elements of 11 and <p. 

We find the matrices A x and Ay by whitening the input and output data: 

, R- l 12 ( -) d' R - 1I2 ( -) (3) x = xx X - x an y = yy y - y 

and then finding the left (U) and right (V) singular vectors of the cross-correlation matrix 

between the whitened data 
- 112 -112 T 

K=Ry'x·=Ryy RyxRxx =UKLKVK . (4) 

The SVD gives the same type of maximal compaction that we need for the cross correla
tion matrices, A x and A y ' Since the SVD is unique up to sign changes (and a couple of 

other degeneracies assocIated with repeated singular values), A x and A x must be: 
- 1/ 2 - 1/ 2 

Ax = Rxx V K and Ay = Ryy UK' 

We can verify this by calculating E { <P11 T} using the definitions of <P and 11 . 

(5) 

T _ - 112 T _ T - 112 _ 
<P = A}'(y-y) = (Ryy UK) (y-y) = UKRyy (y-y), 

T _ - 112 T _ T - 112 _ 
11 = Ax(x-x) = (Rxx V K ) (x-x) = VKRxx (x-x), 

(6) 

(7) 

then note 
T T - 112 T - 112 T - 112 - 112 

E{<P11 } = UKRyy E{yx }Rxx V K = UKRyy RyxRxx V K (8) 



and then by using equation 4 (twice) 
T T T T T T 

E{<Pl1 } = UKKVK = UK(UKLKVK)VK = (UKUK)LK(VKVK) = LK . (9) 

This derivation of canonical correlation uses correlation matrices. This introduces a well
known problem due to doubling the dynamic range of the analysis data. Instead, we for
mulate the estimation equations in terms of the components of the SVDs of the training 
data matrices. Specifically, we take the SVDs of the zero-mean input and output matrices: 

[x 1 -x ... xN -x] = IN-IUxLxV~'[YI-Y'''YN-Y] = IN-IUyLyV~.(10) 
From these two decompositions, we can write the two correlation matrices as 

2 T - 112 - 1 T 
Rxx = UxLxUx Rxx = UxLx Ux ' 

Ryy = U L2 UT R- 1I2 = U L- 1UT 
y y y yy y y y 

and then write the cross-correlation matrix as 
T T 

Ryx = UyLyVy VxLxUx' 

Using these expressions for the correlation matrices, the K matrix becomes 
- 1 T T T - 1 T T T 

K = (UyL yUy )(UyL1VY VxLxUx)(UxLx Ux ) = UyVy VxUx ' 

Now let's look at the quantity U y K U x in terms of its SVD 
T T T T T 

UyKUx= Vy Vx = (UyUK)LK(VKU) = UUKULKVUKU' 

and, due to the uniqueness of the SVD, note 
T T 

UyUk = UUKU and UxVK = V UKU · 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Now we can rewrite the equation for A x to remove the need for the squaring operation 
- 1/ 2 - 1 T - 1 

Ax = Rxx V K = UxLx (Ux V K) = UxLx V UKU (17) 

and similarly for Ay 
- 112 - 1 T - 1 

Ay = Ryy UK = UyLy (UyUK) = UyLy UUKU' (18) 

Using these identities, we compute A x and Ay using the following steps: 

1) Find the SVDs of the data matrices using the expressions in equation 10. 

2) Form a rotated version of the cross-correlation matrix K and computes its SVD using 
equation 14. 

3) Compute the A x and Ay matrixes using equations 17 and 18. 

Given the linear mapping between audio data and the video images, as described by the 
A x and A matrices, we measure the correlation between these two sets of data. For each 
candidate face in the image, we rotate the audio data by the first column of Ax ' rotate the 
face image by the first column of A , and then compute Pearson's correlation of the 
rotated audio and video data. We use the absolute value of this correlation coefficient as a 
measure of audio-video synchronization. 

3 Results 

We evaluated the performance of the FaceSync algorithm using a number of tests. In the 
simplest tests we measured FaceSync's sensitivity to small temporal shifts between the 
audio and the video signals, evaluated our performance as a function of testing-window 
size and looked at different input representations. We also measured the effect of coarticu
lation. 

To train the FaceSync system, we used 19 seconds of video. We used Rowley's face-detec

tion software to find a rectangle bounding the face but we noticed a large amount (several 
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Figure 4: Correlation of audio and video 
data as the audio data is shifted in time 
past the video. (29.97 frames/sec.) 

pixels) of jitter in the estimated positions. Figure 2 shows the standard deviation of our 
aligned facial data. The standard deviation is high along the edges of the face, where small 
amounts of motion have a dramatic effect on the brightness, and around the mouth, where 
the image brightness changes with the spoken sounds. 

Figure 3 shows the results of the canonical-correlation analysis for the 7 (distinct) seconds 
of audio and video that we used for testing. Canonical correlation has rotated the two mul
tidimensional signals (audio and image) into the directions that are maximally correlated 

with each other. Note that the transformed audio and image signals are correlated. 

We can evaluate the quality of these results by looking at the correlation of the two sets of 
data as the audio and image data are shifted relative to each other (such shifts are the kinds 
of errors that you would expect to see with bad lip sync.) An example of such a test is 
shown in Figure 4. Note that, after only a few frames of shift (about lOOms), the correla
tion between the audio and image data declined to close to zero. 

We used the approach described by Hershey and Movellan to analyze which parts of the 
facial image correlate best with the audio data. In their work, they computed correlations 
over 16 frame intervals. Since we used aligned data, we could measure accurately the cor
relations over our entire 9 second test sequence. Our results are shown in Figure 5: Each 
pixel shows the correlation that we found using our data. This approach looks at each pixel 
individually and produces a maximum correlation near 0.45. Canonical correlation, which 
accumulates all the pixel information from all over the image, also produces a maximum 
correlation near 0.45, but by accumulating information from all over the image it allows us 
to measure sychronization without integrating over the full 9 seconds. 

Figure 6 shows FaceSync's ability to measure audio-visual synchronization as we varied 
the testing-window size. For short windows (less than 1.3 seconds), we had insufficient 
data to measure the correlation accurately. For long windows (greater than 2.6 seconds), 
we had sufficient data to average and minimize the effect of errors, but as a result did not 
have high time resolution. As shown in Figure 5, there is a peak in the correlation near 0 
frame offset; there are often, however, large noise peaks at other shifts. Between 1.3 and 
2.6 seconds of video produces reliable results. 

Different audio-analysis techniques provide different information to the FaceSync algo
rithm. Figure 7 shows the audio-video synchronization correlation, similar to Figure 3, for 
several different kinds of analysis. LPC and LSF produced identical narrow peaks; MFCC 
produced a slightly lower peak. Hershey used the power from the spectrogram in his algo
rithm to detect the visual motion. However, our result for spectrogram data is in the noise, 
indicating that a linear model can not use spectrogram data for fine-grain temporal mea
surements. 
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Figure 6: Perfonnance of the FaceSync 
algorithm as a function of test window 
length. We would like to see a large peak 
(dark line) for all frames at zero shift. 

We also looked at FaceSync's perfonnance when we enhanced the video model with tem
poral context. Normally, we use one image frame and 67 ms of audio data as our input and 
output data. For this experiment, we stacked 13 images to fonn the input to the canonical
correlation algorithm Our perfonnance did not vary as we added more visual context, 
probably indicating that a single image frame contained all of the infonnation that the lin
ear model was able to capture. 

As the preceding experiment shows, we did not improve the performance by adding more 

image context. We can, however, use the FaceSync framework with extended visual con
text to learn something about co-articulation. Coarticulation is a well-known effect in 
speech; the audio and physical state of the articulators not only depends on the current 
phoneme, but also on the past history of the phonemic sequence and on the future sounds. 

We let canonical correlation choose the most valuable data, across the range of shifted 
video images. Summing the squared weighting terms gives us an estimate of how much 
weight canonical correlation assigned to each shifted frame of data. Figure 8 shows that 
one video frame (30ms) before the current audio frame, and four video frames (120ms) 
after the current audio are affected by coarticulation. Interestingly, the zero-shift frame is 
not the one that shows the maximum importance. Instead, the frames just before and after 
are more heavily weighted. 

4 Conclusions 

We have described an algorithm, FaceSync, that builds an optimal linear model connect
ing the audio and video recordings of a person's speech. The model allows us to measure 
the degree of synchronization between the audio and video, so that we can, for example, 
determine who is speaking or to what degree the audio and video are sychronized. 

While the goal of Hershey's process is not a temporal synchronization measurement, it is 
still interesting to compare the two approaches. Hershey's process does not take into 
account the mutual information between adjacent pixels; rather, it compares mutual infor
mation for individual pixels, then combines the results by calculating the centroid. In con
trast, FaceSync asks what combination of audio and image data produces the best possible 
correlation, thus deriving a single optimal answer. Although the two algorithms both use 
Pearson's correlation to measure sychronization, FaceSync combines the pixels of the face 
and the audio information in an optimal detector. 

The performance of the FaceSync algorithm is dependent on both training and testing data 
sizes. We did not test the quality of our models as we varied the training data. We do the 
training calculation only once using all the data we have. Most interesting applications of 
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FaceSync depend on the testing data, and we would like to know how much data is neces
sary to make a decision. 

In our FaceSync application, we have more dimensions (pixels in the image) than exam
ples (video frames) . Thus, our covariance matrices are singular, making their inversion
which we do as part of canonical correlation - problematic. We address the need for a 
pseudo-inverse, while avoiding the increased dynamic range of the covariance matrices, 
by using an SVD on the (un squared) data matrices themselves (in place of an eigen

decomposition of the covariance matrices). 

We demonstrated high linear correlations between the audio and video signals, after we 
first found the optimal projection direction by using canonical correlation. We evaluated 
the FaceSync algorithm by measuring the correlation between the audio and video signals 
as we shift the audio data relative to the image data. MFCC, LPC, and LSF all produce 
sharp correlations as we shift the audio and images, whereas speech power and spectro
grams produce no correlation peak at all. 
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