

L. Aroyo et al. (Eds.): ESWC 2010, Part I, LNCS 6088, pp. 288–302, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Facet Graphs: Complex Semantic Querying Made Easy

Philipp Heim1, Thomas Ertl1, and Jürgen Ziegler2

1 Visualization and Interactive Systems Group (VIS), University of Stuttgart, Germany
{Philipp.Heim,Thomas.Ertl}@vis.uni-stuttgart.de

2 Interactive Systems and Interaction Design, University of Duisburg-Essen, Germany
Juergen.Ziegler@uni-due.de

Abstract. While the Semantic Web is rapidly filling up, appropriate tools for
searching it are still at infancy. In this paper we describe an approach that al-
lows humans to access information contained in the Semantic Web according
to its semantics and thus to leverage the specific characteristic of this Web.
To avoid the ambiguity of natural language queries, users only select already
defined attributes organized in facets to build their search queries. The facets
are represented as nodes in a graph visualization and can be interactively
added and removed by the users in order to produce individual search inter-
faces. This provides the possibility to generate interfaces in arbitrary com-
plexities and access arbitrary domains. Even multiple and distantly connected
facets can be integrated in the graph facilitating the access of information
from different user-defined perspectives. Challenges include massive
amounts of data, massive semantic relations within the data, highly complex
search queries and users’ unfamiliarity with the Semantic Web.

Keywords: Graph visualization, faceted search, query building, SPARQL,
hierarchical facets, pivot operation.

1 Introduction

Ten years ago, Tim Berners-Lee planted the seed for the Semantic Web [1] which
thereupon started to grow and expand over the years. At first, information was manu-
ally translated into semantic structures and added to the Semantic Web resulting in a
rather moderate growth. The automation of the translation process at a later date al-
lowed large amounts of existing information as available e.g., in encyclopedias, medi-
cal databases or in knowledge bases of other domains to be integrated in the Semantic
Web causing a rapid acceleration of its growth rate. Today, the Semantic Web con-
tains so much semantically annotated information that it seems ready for broader
exploration. Alone appropriate tools are missing.

In this paper, such tools are defined as something, which allows humans to access
information contained in the Semantic Web according to its semantic descriptions.
Finding the right information, however, requires the semantic of what should be
searched to be specified by the user. For this purpose it is not sufficient to enter words
in an input field as it is usual for search engines in the common Web since natural
language is ambiguous. A basic strategy to avoid the ambiguity of natural language

 Facet Graphs: Complex Semantic Querying Made Easy 289

are artificial query languages like SPARQL1 that are uniquely defined. A growing
amount of information in the Semantic Web (e.g. DBpedia [2] or the LOD cloud [3])
can be queried via SPARQL endpoints that are freely accessible over the Internet.
However, building search queries in such an artificial language, as for example possi-
ble with SNORQL2, requires the language to be learned by the user and is thus rather a
task for experts. The vast majority of users need intuitive interfaces to express search
queries that are semantically unique but do not require any extra knowledge.

A popular approach for such interfaces is based on the concept of faceted search [4].
In faceted search, the search space gets partitioned using orthogonal conceptual dimen-
sions whereas one acts as the result set and the others as facets. The facets can then be
used to filter the result set by different attributes that can be selected independently
from each other. Selecting an attribute in a facet adds it to the query and hence filters
the result set accordingly. Whenever the result set gets changed, all the facets are up-
dated to only those attributes that can be used for further filtering (Fig. 1). Therefore,
users always see only attributes that can cause a reduction of the result set, but can
never cause an empty set when selected. Moreover, since all attributes that can be used
for filtering are extracted from the semantic structures of the Semantic Web, all search
queries contain only uniquely defined objects, classes and properties and thus com-
pletely avoid ambiguity.

attribute

(2) filter (3) update

facet B

result set

facet Cfacet A(1) select

Fig. 1. In faceted search, selecting an attribute in a facet (1) filters the result set (2), which
thereupon updates all facets (3)

In order to support a better understanding of our theoretical explanations through-
out this paper, we use concrete examples and tasks from the field of football (soccer).
In this domain, a faceted search would allow, for example, football players to be fil-
tered by their clubs, their birthplaces, or their ages. Even so the concept of faceted
search is successfully applied in popular applications such as Apple’s iTunes3, using it
to seek information in the Semantic Web entails several new problems that are not yet
sufficiently solved. Most of the problems result from the vast number of objects,
classes and properties that are contained in the Semantic Web. According to [5], the
LOD cloud alone contained approximately two billion statements in 2008 already.

In this paper we introduce Facet Graphs, a new approach based on the concept of
faceted search which allows the intuitive formulation of semantically unique search
queries. Users can choose the result set as well as the facets to filter it and thereby

1 http://www.w3.org/TR/rdf-sparql-query/
2 http://dbpedia.org/snorql/
3 http://www.apple.com/de/itunes/

290 P. Heim, T. Ertl, and J. Ziegler

produce a personalized interface to build search queries. Facets and result set are
represented as nodes in a graph visualization and are connected by labeled edges that
fosters users’ understanding of the relationships between the facets and also allows
for an easy extension by further nodes and edges. The graph provides a coherent rep-
resentation of multiple, even distantly connected facets on one page that completely
avoids any browsing activities and hence prevents users from getting ‘Lost in Hyper-
space’. Each node contains a list that provides sorting, paging and scrolling function-
alities and thereby enables the easy handling of even large amounts of objects.

In Facet Graphs, users can build queries just by clicking certain objects in the
nodes. All filtering effects caused by such selections are highlighted by different col-
ors in the graph that can be used for both, a better understanding of the caused effects
or a better traceability of reasons for filtering effects on a certain node. Since users
may change their minds while searching, the result set can be changed at any time
enabling a rather exploratory search when the domain, the way to achieve the goal, or
the goal itself is not completely clear in advance. Altogether, the combination of
graph visualization with faceted search allows for an easy formulation of even com-
plex semantically unique search queries and thus to seek for information according to
its semantic without expert knowledge.

The rest of this paper is organized as follows. First we review related work and use
the identified weak points for the motivation of our approach of Facet Graphs. We
then describe our approach in detail and evaluate its usability in a comparative user
study. Since the problem of building semantically unique queries using intuitive inter-
faces based on the concept of faceted search is comparatively new and has not yet
been solved sufficiently, we then propose a list of requirements that need to be ful-
filled by such systems in order to support the information seeking process in general.
These requirements are then used to better discuss the advantages and limitations of
our own approach and those mentioned in the section about related work. Finally, we
give a conclusion and an outlook on future work.

2 Related Work

A number of approaches to build semantically unique search queries using faceted
search have been described in the literature. Most of the approaches display the facets
as well as the result set as lists at different positions on the screen. Examples are tools
like mSpace [6], Flamenco [4], Longwell [7] and Haystack [8]. Facets provided by
these tools are limited to directly connected ones exclusively. So, football players
could be filtered by facets containing the clubs they are playing for, the city they are
living in or the number on their shirts. By selecting, for example, the football club
‘FC Chelsea’ in the facet with all existing clubs, the result set with all football players
could be filtered to only those players that are playing for this club. Hierarchical fil-
tering, however, that allows also indirectly connected facets to be used for query
building (e.g. get only players playing for clubs in the Premier League) is not sup-
ported by these tools.

Tools like Parallax [9], Humboldt [10], Tabulator [11] and the Nested Faceted
Browser [12], by comparison, allow for hierarchical filtering. Therefore, football
players can be filtered by the cities where clubs they are playing for are located. Thus

 Facet Graphs: Complex Semantic Querying Made Easy 291

the possible options for building a query are not restricted to the direct periphery
around a result set but can include dimensions that are distantly connected by other
facets. Depending on the directness of their connections to the current result set, they
can be integrated in a hierarchy and are therefore called hierarchical facets.

Fig. 2. Screenshots of Parallax (left) and Tabulator (right)

In Parallax (Fig. 2, left), Flamenco and Humboldt, the hierarchy of facets is never
completely visible to the user but only parts of it. By providing ways to browse
through the hierarchy, users are able to include attributes of also distantly connected
facets in their search query. With the growth of the complexity of their queries, it is
getting more difficult for users to keep an overview of all included attributes since the
corresponding facets are often scattered over several different pages.

Tools like Tabulator (Fig. 2, right) and the Nested Faceted Browser, on the con-
trary, allow the whole hierarchy to be displayed on one page. By using a tree structure
to display all available hierarchical facets, users can open and close even distantly
connected facets in one coherent view and thus keep an overview of all attributes that
are included in their queries. Since tree structures are used to depict all kinds of tax-
onomies in a wide range of well known applications, users need no extensive period
of training to gain an understanding of how to use them.

In Tabulator and the Nested Faceted Browser, every attribute defines its own sub-
tree that can be expanded by the user in order to see distantly connected facets and
their attributes, which again can be expanded and so on (cp. Fig. 2, right). So for the
football players, one of the clubs they are playing for (e.g. ‘FC Chelsea’), could be
expanded by the user to see, for example, the city of its location (here: ‘London’).
Selecting ‘London’ would cause the list of players to be filtered to only those that are
playing for ‘FC Chelsea’ or any other club located in this city. A combined list of all
the cities that could be selected in order to filter the clubs and also the players, how-
ever, is not provided by the tree structure. The cities are partitioned in different sub-
trees, each for every club, that all need to be expanded in order to see all available
cities. Having many subtrees opened, however, places attributes that actually belong
to one facet at many different positions in the tree, leading to an increased tree struc-
ture that can possibly not be displayed on one screen. If an attribute is shared by more
than one object (e.g. many clubs are located in London), it also occurs repeatedly in
different subtrees.

292 P. Heim, T. Ertl, and J. Ziegler

Altogether, a tree structure is a well known paradigm to visualize and interact with
hierarchical data; however, when used for hierarchical facets, it tends to produce large
and highly subdivided structures that cannot easily be overviewed by users. In this
paper we therefore propose an alternative, graph-based approach to visualize and inter-
act with hierarchical facets that aims at preventing large and confusing tree structures
and hence facilitates an easy generation of semantically unique queries by the user.

3 Facet Graphs

In Facet Graphs, facets and result set are represented as nodes in a graph visualiza-
tion. The semantic relations that exist between facets and result set as well as facets
and other facets are represented by labeled directed edges between the nodes. Fig. 3
shows gFacet4, a prototypical implementation of our approach of Facet Graphs.

Fig. 3. In gFacet, the result set is defined by the user (A) and represented by the initial node in
the graph (B). By selecting properties out of drop-down-lists (C), facets can be added as new
nodes (D) that get connected by labeled edges (E).

In gFacet, the node representing the result set is marked by a darker background
color (cp. Fig. 3, B) to better distinguish it from the nodes representing facets. The at-
tributes of each facet are not located at different positions on the screen but are grouped
within one single node (e.g. the cities where football venues are located in Fig. 3). Every
node in the graph contains a list that can be scrolled, paged and sorted by the user allow-
ing even large amounts of objects to be clearly arranged. If an attribute is shared by
more than one object (e.g. several players are born in Poland) it still occurs only once in
the list in comparison to the tree-based approaches described in related work.

4 A description of an early version of this prototype with limited functionalities and access to

dummy data only can be found in [13].

 Facet Graphs: Complex Semantic Querying Made Easy 293

The graph can interactively be expanded by additional nodes with further facets
that are not represented yet. For each node in the graph, facets that can be added are
available via a drop-down list (e.g. facets for the ‘First Bundesliga Footballers’ in Fig.
3, C). The facets in the drop-down lists are ordered by the number of their attributes,
with the largest numbers presented first. Selecting one of the facets in a list (e.g. the
one containing the countries where footballers are born), adds this facet as a new node
to the graph and connects it to the existing node by a labeled edge (cp. Fig. 3, D).
Thus, the user can iteratively add and remove facets to the graph and hence produce a
personalized interface to build search queries.

The nodes in the graph are positioned in an aesthetically pleasing way by perform-
ing a force-directed layout algorithm [14]. This can cause the nodes to often change
their position, possibly making it hard to maintain visual focus and thus confusing the
user. We therefore apply a pinning mechanism that forces nodes to hold their position.
When a new node is added to the graph, the pinning of this node is executed after a
short time period. This delay allows the force-directed algorithm to position new
nodes in an appropriate way and at the same time prevents already existing informa-
tion to change their location. Whether a node is pinned or not is indicated by the color
of the needle symbol at the upper right corner of each node (cp. Fig. 3, F). This pin-
ning can also be controlled by the user by clicking at the needle symbol. Thus, the
user can decide whether a node should stay on a fixed position or should be rear-
ranged by the force-directed algorithm in order to improve the overall appearance of
the graph.

The general benefits of representing hierarchical facets as nodes in a graph are:

1. The attributes for each facet are grouped into one node.
2. All nodes are shown in a coherent presentation on one page.
3. Semantic relations between the nodes are represented by labeled edges (Fig. 3,

E).
4. Facets can be added and removed by the user (Fig. 3, D).

3.1 Extracting Hierarchical Facets

In order to provide facets in drop-down lists to expand the graph, they first have to be
extracted from the underlying data structure. In gFacet, we build SPARQL queries on
the client side, send them to SPARQL endpoints using HTTP requests and extract the
facets from the resulting XML data. The client-server communication as well as the
graphical user interface are implemented in Adobe Flex5 and thus compiled to a Flash
movie, which runs in all Web browsers with Flash Player installed. An exemplary
implementation of gFacet that uses DBpedia's SPARQL endpoint is accessible
online6. Since gFacet does not need any modification on the server side, it can be used
to access information from other SPARQL endpoints as well.

Our general strategy of how to extract facets from semantic structures by querying
SPARQL endpoints is based on the links within these structures. The links are defined
by properties like ‘plays for’ and connect objects like ‘Franck Ribéry’ with, for ex-
ample, ‘FC Bayern Munich’. So given a list with several objects including ‘Franck

5 http://www.adobe.com/products/flex
6 http://gfacet.semanticweb.org

294 P. Heim, T. Ertl, and J. Ziegler

Ribéry’, a possible facet to filter this list would be the football clubs at least one of the
objects in the list are playing for. Other facets representing other properties of even
other objects could also be used for filtering. With all the objects that exist in the
underlying data structure (e.g. DBpedia) put together in one list, however, would
result in so many possible facets to filter this list that they could not be read by the
users. So, before selecting facets to filter the list, the users first have to restrict the list
to only objects that are of a certain ontological class. This is always the first task
when searching with gFacet and defines the result set for the current search.

By entering words in an input field, users can search for ontological classes that
meet their interests (e.g. ‘German football’ in Fig. 3, A). The corresponding SPARQL
query, which returns all the classes with labels containing the words entered by the
users (here: “German Football”), is given in the following:

SELECT DISTINCT ?class ?label COUNT(?o) AS ?numOfObj
WHERE { ?class rdf:type skos:Concept .
?o skos:subject ?class .
?class rdfs:label ?label .
?label bif:contains "german and football" .
FILTER (lang(?label) = "en") }
ORDER BY DESC(?numOfObj) LIMIT 30

The found classes are shown in a list and are initially ordered according to the num-
bers of objects contained in each class, with the largest counts presented first. One of
the suggested classes can then be selected by the user to become the first node in the
graph and also the current result set (e.g. ‘German football clubs’). The first node
contains all the objects of the selected class and is the starting point for all further
nodes in the graph (cp. Fig. 3, B).

Based on the properties of the objects in the result set, available facets to filter
them are extracted automatically and are displayed in a drop-down list next to the
result set. Each facet in the drop-down list consists of a property (e.g. ‘ground’) and
one class of objects this property is leading to (e.g. ‘Football venues in Germany’). So
it is possible to have several facets with the same property but with different classes,
or different properties but with the same class. The corresponding query looks like the
following:

SELECT DISTINCT ?prop ?newClass
COUNT(DISTINCT ?objNewClass) AS ?numOfObj
WHERE {
?objCurrClass skos:subject <URIofGermanFootbalClubs> .
?objCurrClass ?prop ?objNewClass .
?objNewClass skos:subject ?newClass .
?newClass rdf:type skos:Concept .}
ORDER BY DESC(?objNewClass) ?prop ?newClass LIMIT 40

Similarly to adding first order facets to the result set, also facets of second or higher
order can be added to the graph and thus used for filtering. The number of visible
objects in higher order facets is restricted to only those that are connected to objects in
other visible facets that are in turn directly or indirectly connected to objects in the
result set. Fig. 4 shows a result set on the left, a first order facet in the middle and a

 Facet Graphs: Complex Semantic Querying Made Easy 295

Fig. 4. Only objects that are connected to the result set are visible in the hierarchical facets:
Here the national teams for which players of German clubs are playing

second order facet on the right together with a schematic representation of the visible
and invisible objects. Black dots are visible objects and gray dots are invisible objects.
The gray dots in the schematic representation of the second order facet represent ob-
jects that are of the same class but are not connected to an object in the result set and
therefore not visible for the users. In this way, all the facets in the graph only contain
objects that can be used for filtering but will never result in an empty result set.

Fig. 5. Hierarchical facets can be used for filtering

3.2 Building Search Queries

Having chosen at least one facet to be represented as node in the graph, it can be used
to build semantically unique search queries. By selecting one of the objects in a facet,
the result set can be filtered to only objects that are directly or indirectly connected to
the selected one. E.g. the selection of ‘Germany national football team’ in the second
order facet in Fig. 4 filters the football clubs to only those with players playing for
this national team (see the new result set in Fig. 5). If a selection actually filters the
result set, all lists get updated within a few seconds.

To support the traceability of filtering effects we use color-coding. Every node has
a certain color assigned to, which marks all filtering effects caused by selections in
this node. If an object gets selected by the user, the selected object itself, all the fil-
tered nodes and all the edges between them are marked with the same color (Fig. 5).

296 P. Heim, T. Ertl, and J. Ziegler

Nodes containing the same number of objects after and before the selection are not
filtered and hence are not marked additionally. This way, the colors in the graph sup-
port an understanding of not only what effects are caused by certain selections but
also what reasons exist for certain restrictions. For every restricted node, all relevant
selections can be traced back by the user just by following the colors in the graph
even long after the selections took place.

Fig. 6. Multiple selections are possible

This is especially useful in case of multiple selections in different facets because
every selection gets marked by a different color and thus supports users to distinguish
between the different filtering effects in the graph7. As can be seen in Fig. 6, filtered
nodes get surrounded by colored rings for each selection that affects them. Like tree-
rings, new colored rings are added around the existing ones and thus allow users to
understand all filtering effects by looking at the colored ring growth patterns in the
graph. However, unlike tree-rings, clicking at an already selected object deselects it
and reverses the corresponding filtering effects with all their color-coding including
also rings around nodes. In the current implementation, multiple selections are con-
nected by a logical ‘AND’ and thus narrow down the result set to only objects that are
connected to all selections. Thus by selecting a certain ground, the clubs in the result
set in Fig. 6 are restricted to only those that have players playing in a certain national
team and are tenants of a certain venue.

3.3 Pivot Operation

While choosing facets to add them to the graph or selecting objects to filter the result
set, users may change their minds about what they want to search. When, for exam-
ple, searching for ‘German football clubs’, users could realize that they rather want to

7 A screencast of a typical usage scenario is available at
http://gfacet.semanticweb.org

 Facet Graphs: Complex Semantic Querying Made Easy 297

search for ‘First Bundesliga footballers’ and want to use the football clubs to filter the
footballers instead of the other way around. This operation is called pivot operation
since it allows leaving the used path and following another direction. The pivot opera-
tion is based on the operation in data drilling [15], where data can be represented
according to different dimensions.

The Nested Faceted Browser [12] and Humboldt [10] are the only tools mentioned
in the section about related work that allow users to perform a pivot operation and
thus to change the focus of their search. In Humboldt, the user can replace the current
result set, displayed in the centre of the screen, by one of its visible facets, arranged
among each other on the right-hand side. The chosen facet becomes the new result set
and vice versa, the replaced result set becomes a new facet. In Humboldt, only
directly related facets are shown next to the result set and thus hierarchical facets can
only be reached by operating pivots. Whenever a pivot is operated and a new result
set is shown in the centre of the screen, the list of directly related facets is updated
accordingly. This way, information is partitioned over multiple pages, placing sub-
stantial cognitive load on the users to keep track of former result sets and facets,
which are not visible yet.

Fig. 7. Hierarchical facets can be used for filtering

Our graph-based approach, by contrast, allows a pivot operation to be performed
without any changes of the displayed information structure and thus reduces the cog-
nitive load to keep track of them. Clicking the ‘RS’-Button (RS = result set) next to
the pinning needle of any of the facets represented in the graph turns this facet into
the new result set (e.g. ‘First Bundesliga footballers’ in the middle of Fig. 7) and vice
versa the current result set into a new facet. Whereas other approaches have to rebuild
their complete interface to keep the displayed facets up to date, in our approach even
distantly related information can be shown on one page and hence can remain at their
position while operating pivots. The only aspect that can change in gFacet when oper-
ating a pivot is the number of objects in both the result set and the visible facets.

In Fig.7, the current result set has moved from the node on the left to the node in
the middle. Therefore, the number of objects in the new first order facet containing
‘German football clubs’ decreased from 467 (cp. Fig. 4) to 17 in Fig. 7. This is be-
cause the new result set contains only first Bundesliga footballers and thus the number
of clubs is limited to only those of the first division (i.e. some of the dots are gray in
the schematic representation of the left facet in Fig. 7). Because the data provided by

298 P. Heim, T. Ertl, and J. Ziegler

DBpedia is automatically extracted from Wikipedia and thus entails some minor er-
rors, not all first Bundesliga footballers are connected to a German football club and
therefore only 176 players were visible in Fig. 4 as it was a first order facet. Since this
facet became the new result set, all German football players got visible without any
restrictions and so the number of objects increased to 1165 (i.e. all dots are black in
the schematic representation of the new result set in Fig. 7).

4 User study

In order to evaluate our approach and thus get a first opinion about its usability, we
conducted a user study that compared gFacet with another tool that supports the build-
ing of semantically unique search queries based on the concept of faceted search. For
both tools we measured to what extent participants were able to solve the following
three task types of different levels of difficulty:

1. Find two players who are playing for a certain club.
2. Find two cities where players who are playing for a certain club are born.
3. Find one player who is playing for a certain club and is born in a certain city.

We applied a 2x3 (tool type x task type) within-subject design to compare gFacet with
Parallax [9]. To control learning effects, each participant was assigned to one of two
groups. Participants in the one group used gFacet first and then Parallax, while par-
ticipants in the other group used Parallax first and then gFacet. After completing all
three tasks with one tool, the participants were asked to fill out an evaluation sheet to
rate this tool. In a final questionnaire, participants had to directly compare both tool
types with each other.

Ten participants took part in the study, with an average age of 28.3 (ranging from
24 to 31). Eight of them were male; two were female with all ten participants having
normal or corrected to normal vision and no color blindness. Education level of the
participants was at least general qualification for university entrance and they were all
familiar with computers. The functionalities of both, gFacet and Parallax were intro-
duced by videos in which sample tasks were solved.

4.1 Results

Overall, gFacet performed very well for complex tasks. However, it performed less
well for rather simple tasks that could also be accomplished just by following links.

The left bar chart in Fig. 8 shows the number of right solutions for each of the three
different task types using the two different tool types. For task 1 and task 2, Parallax
performed equally or even better than gFacet. This was mainly because in Parallax
participants could accomplish both tasks just by following links and did not have to
filter at all. In gFacet, by contrast, they had to filter despite the simplicity of the first
two tasks and hence did not accomplish task 2 in four cases. The unfamiliar approach
of graph-based facets seemed partly too complex to be properly used in average
exploratory tasks. However, in order to find the right solution for more complex tasks,
as for example for task 3, gFacet performed significantly better than Parallax. It was
almost impossible so to find the right solution for task 3 just by following links in

 Facet Graphs: Complex Semantic Querying Made Easy 299

Fig. 8. Number of right solutions to the given tasks (left) and comments to the statements ‘It
was difficult to understand the relations between the information’ (right)

Parallax. All the links had to be checked in a trial-and-error method to actually find
the player that is born in the given city. Since this is quite time-consuming, partici-
pants were forced to apply filters in Parallax as well.

To find the right solution to task 3, participants had to filter the list of all football
players to only players that are playing for a certain club and are born in a certain city.
Even though Parallax generally supports applying multiple filters, participants felt
uncertain about the solutions they found. A reason for this is the strict separation in
Parallax between exploration, which can be realized by clicking links on the right side
of the content, and filtering, which can be done by clicking links on the left side (cp.
Fig. 2, left). If users explore a list of objects (e.g. cities where players are born) these
objects cannot be used for filtering.

On the other hand, if users look at the filter options on the left side, they cannot
further explore these options for hierarchical filters. To filter hierarchically, users first
have to explore objects via links on the right side (e.g. cities where players are born)
and then have to filter this list via links on the left side (e.g. to only cities located in
Germany). Having to change from one side to the other can confuse users and thus
can decrease their confidence in the found solutions. Moreover, clicking links to ex-
plore objects completely replaces the current content as well as the links at both sides.
That way information gets partitioned over multiple pages and thus hampers users’
understanding of the relations that exist between information (cp. right bar chart in
Fig. 8). In gFacet, by contrast, all objects in all lists can be used for both filtering and
the exploration of further facets and are all visible on one page.

5 Discussion

In order to better comprehend the advantages and limitations of our approach and also
to better compare it to the existing approaches described in the section about related
work, we go through the general information seeking process (ISP) as described in [16]
and determine whether the different approaches are suitable to support it or not. The ISP
from a human’s perspective can be described in six stages: task initiation, selection,
exploration, focus formulation, collection and presentation [16]. In a user study de-
scribed in [16], different tasks were revealed that are considered most appropriate by

300 P. Heim, T. Ertl, and J. Ziegler

Table 1. A list of system requirements in order to support the six stages of the information
seeking process and their fulfillments by the different approaches

ISP
Stages

Task
initiation

Selec
-tion

Exploration Focus formulation Collec-
tion

Presenta
-tion

Require-
ments R

1.
1

R
1.

2

R
2.

1

R
2.

2

R
3.

1

R
3.

2

R
3.

3

R
3.

4

R
3.

5

R
4.

1

R
4.

2

R
4.

3

R
4.

4

R
4.

5

R
4.

6

R
5.

1

R
5.

2

R
6.

1

mSpace - - - - + + - - - + + + - - - - - -

Humboldt - - - - / - - - - + + + + - + - - -

Parallax - - - + + - + + - + + + + - - - - -

Tabulator - - - + / - + + - - - + + - - - - +

gFacet - - - + + + + + - + + + + + + - - -

users to move the process on to the subsequent stage of the ISP. In the following, we
identify for each of these tasks requirements to support humans in accessing information
in the Semantic Web and mark for each approach in Table 1 whether it is fulfilled or
not.

The first stage of the ISP, the task initiation, begins with awareness of lack of
knowledge and leads to a concrete definition of the problem and its relation to prior
experience and knowledge. Requirements are: A continuous support of the whole ISP
including the problem definition (R1.1) and, based on this definition, suggestions on
how to address the information need considering previously operated ISPs (R1.2).

The next stage, the selection, includes tasks like the identification and selection of
the general topic to be investigated. Requirements are: An overview of all available
topics (R2.1), for instance in form of a map that can be zoomed in and out, together
with automatic suggestions of topics (R2.2) based on the entered problem description,
entered keywords or an auto complete functionality. Both requirements aim at lower-
ing the barrier to start an ISP.

The selection is followed by the exploration stage. It includes the investigation of
the general topic, locating information and relating it to what is already known. Re-
quirements are: A graphical representation of information that can be understood by
the user (R3.1), interaction possibilities that are self-explanatory and easy to use
(R3.2), the accessibility of details on demand (R3.3), sorting and paging techniques to
handle large datasets (R3.4) and zooming functionalities that are capable of showing
information in different levels of detail (R3.5).

The focus formulation includes tasks like the identification and the selection of hy-
potheses that result in the formulation of certain filters and thus allows a focused
perspective of the topic. It is rather an iterative process than one that is strictly linear.
Requirements are: The interactive and intuitive formulation and change of filters
(R4.1), their immediate execution on the data (R4.2), the combination of different
filters (R4.3), the possibility to build hierarchical filters (R4.4), the traceability of
effects caused by each of them (R4.5) and a possibility to change the focus (R4.6).

 Facet Graphs: Complex Semantic Querying Made Easy 301

After the focus formulation, the collection takes place. Tasks are to gather and se-
lect information related to the focused topic. Requirements are: Easy mechanisms to
select interesting findings (R5.1) and to export the selected information for further use
in other systems (R5.2).

The last stage of the ISP, the presentation, consists of the task to present the found
information. Requirements are: A broad range of opportunities to visualize the find-
ings (R6.1).

Especially obvious in the pattern shown in Table 1 is the lack of all approaches to
fulfill requirements regarding the first and the last stages of the ISP. Besides these
pre- and post-processing stages, requirement R3.5 is also not fulfilled by any of them.
Even so gFacet fulfills more requirements than every other approach listed in Table 1,
not fulfilling requirement R3.5 is particularly problematic for our approach since its
graph tends to get too large to fit on one screen and thus needs to be scrolled by the
users. Therefore an appropriate zooming technique along with a better support for the
pre- and post-processing would be highly preferable.

5.1 Conclusion and Future Work

In this paper we described Facet Graphs, a new approach for building semantically
unique queries based on the concept of faceted search in combination with graph
visualization. In addition to the general advantages of faceted search, the visualization
of facets as nodes in a graph allows the direct representation of relationships between
nodes by labeled edges and thus a connected presentation of the result set together
with all relevant facets on one page. The user can add and remove facets to the graph
to produce a personalized interface including even distantly connected and multiple
facets that can be used to filter the result set from different user-defined perspectives.
All caused filtering effects are color-coded in the graph making them better under-
standable and traceable for users.

We introduced gFacet, a prototypical implementation of our approach that can
query arbitrary SPARQL endpoints (e.g. DBpedia) to access information according to
its semantics. We conducted a user study to compare gFacet with Parallax and found
out that our tool is especially applicable in scenarios where multiple aspects from
different domains need to be integrated in order to find certain information. Such
scenarios seem to be particularly interesting for querying the Semantic Web because
of its huge variety of domains with each containing large amounts of different classes,
objects and properties. This opens up new and outstanding opportunities for users to
access information; however, controlling such powerful opportunities remains a chal-
lenging task.

Future work includes the integration of appropriate zooming functionalities in
combination with a focus and context technique to foster users to retain an overview
even when using massive amounts of facets in one graph. Another interesting idea is
to provide an opportunity to save especially helpful combinations of facets and share
such search interfaces with other users. This would further lower the barrier of accep-
tance for using gFacet since users can load existing search interfaces that are built by
more experienced users and thus do not need to start from scratch.

302 P. Heim, T. Ertl, and J. Ziegler

References

1. Berners-Lee, T., Fischetti, M.: Weaving the Web: The Original Design and Ultimate Des-
tiny of the World Wide Web by its Inventor. Harper, USA (1999)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A Nu-
cleus for a Web of Open Data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-
I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735.
Springer, Heidelberg (2007)

3. Bizer, C., Heath, T., Kingsley, I., Berners-Lee, T.: Linked data on the Web. In: Proc.
WWW 2008 Workshop: LDOW (2008)

4. Hearst, M., English, J., Sinha, R., Swearingen, K., Yee, P.: Finding the Flow in Web Site
Search. Communications of the ACM 45(9), 42–49 (2002)

5. Hausenblas, M., Halb, W., Raimond, Y., Heath, T.: What is the size of the Semantic Web?
In: Proc. I-SEMANTICS’08, JUCS, pp. 9–16 (2008)

6. Schraefel, m.c., Smith, D., Owens, A., Russell, A., Harris, C., Wilson, M.: The evolving
mSpace platform: Leveraging the Semantic Web on the trail of the memex. In: Proc. Hy-
pertext 2005, pp. 174–183. ACM Press, New York (2005)

7. Longwell RDF Browser, SIMILE (2005), http://simile.mit.edu/longwell/
8. Quan, D., Huynh, D., Karger, Haystack, D.: A Platform for Authoring End User Semantic

Web Applications. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 738–753. Springer, Heidelberg (2003)

9. Huynh, D., Karger, D.: Parallax and companion: Set-based browsing for the Data Web
(2009)

10. Kobilarov, G., Dickinson, I.: Humboldt: Exploring Linked Data. In: Proc. WWW 2008
Workshop: LDOW (2008)

11. Berners-Lee, T., Hollenbach, J., Lu, K., Presbrey, J., Prud’ommeaux, E., Schraefel, m.c.:
Tabulator Redux: Browsing and writing Linked Data. In: Proc. WWW 2008 Workshop:
LDOW (2008)

12. Huynh, D.: Nested Faceted Browser (2009),
http://people.csail.mit.edu/dfhuynh/projects/nfb/

13. Heim, P., Ziegler, J., Lohmann, S.: gFacet: A Browser for the Web of Data. In: Proc.
SAMT 2008 Workshop: IMC-SSW, CEUR-WS, pp. 49–58 (2008)

14. Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. In: Softw.
Pract. Exper. 1991, pp. 1129–1164. John Wiley & Sons, Chichester (1991)

15. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data cube: A relational aggregation op-
erator generalizing group-by, cross-tab, and sub-totals. In: Proc. ICDE 1996, pp. 152–159.
IEEE, Los Alamitos (1996)

16. Kuhlthau, C.C.: Developing a model of the library search process: cognitive and affective
aspects. Reference Quarterly, 232–242 (1988)

	Facet Graphs: Complex Semantic Querying Made Easy
	Introduction
	Related Work
	Facet Graphs
	Extracting Hierarchical Facets
	Building Search Queries
	Pivot Operation

	User study
	Results

	Discussion
	Conclusion and Future Work

	References

