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Abstract. We have created the first image search engine based entirely
on faces. Using simple text queries such as “smiling men with blond hair
and mustaches,” users can search through over 3.1 million faces which
have been automatically labeled on the basis of several facial attributes.
Faces in our database have been extracted and aligned from images down-
loaded from the internet using a commercial face detector, and the num-
ber of images and attributes continues to grow daily. Our classification
approach uses a novel combination of Support Vector Machines and Ad-
aboost which exploits the strong structure of faces to select and train on
the optimal set of features for each attribute. We show state-of-the-art
classification results compared to previous works, and demonstrate the
power of our architecture through a functional, large-scale face search
engine. Our framework is fully automatic, easy to scale, and computes
all labels off-line, leading to fast on-line search performance. In addition,
we describe how our system can be used for a number of applications,
including law enforcement, social networks, and personal photo manage-
ment. Our search engine will soon be made publicly available.

1 Introduction

We have created the first face search engine, allowing users to search through
large collections of images which have been automatically labeled based on the
appearance of the faces within them. Our system lets users search on the basis
of a variety of facial attributes using natural language queries such as, “men
with mustaches,” or “young blonde women,” or even, “indoor photos of smiling
children.” This face search engine can be directed at all images on the internet,
tailored toward specific image collections such as those used by law enforcement
or online social networks, or even focused on personal photo libraries.

The ability of current search engines to find images based on facial appear-
ance is limited to images with text annotations. Yet, there are many problems
with annotation-based search of images: the manual labeling of images is time-
consuming; the annotations are often incorrect or misleading, as they may refer
to other content on a webpage; and finally, the vast majority of images are
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(a) (b)

Fig. 1. Results for the query “smiling asian men with glasses,” using (a) the Google
image search engine and (b) our face search engine. Our system currently has over
3.1 million faces, automatically detected and extracted from images downloaded from
the internet, using a commercial face detector [1]. Rather than use text annotations
to find images, our system has automatically labeled a large number of different facial
attributes on each face (off-line), and searches are performed using only these labels.
Thus, search results are returned almost instantaneously. The results also contain links
pointing back to the original source image and associated webpage.

simply not annotated. Figures 1a and 1b show the results of the query, “smil-
ing asian men with glasses,” using a conventional image search engine (Google
Image Search) and our search engine, respectively. The difference in quality of
search results is clearly visible. Google’s reliance on text annotations results in
it finding images that have no relevance to the query, while our system returns
only the images that match the query.

Like much of the work in content-based image retrieval, the power of our
approach comes from automatically labeling images off-line on the basis of a
large number of attributes. At search time, only these labels need to be queried,
resulting in almost instantaneous searches. Furthermore, it is easy to add new
images and face attributes to our search engine, allowing for future scalability.
Defining new attributes and manually labeling faces to match those attributes
can also be done collaboratively by a community of users.

Figures 2a and 2b show search results of the queries, “young blonde women”
and “children outdoors,” respectively. The first shows a view of our extended
interface, which displays a preview of the original image in the right pane when
the user holds the mouse over a face thumbnail. The latter shows an example of
a query run on a personalized set of images. Incorporating our search engine into
photo management tools would enable users to quickly locate sets of images and
then perform bulk operations on them (e.g., edit, email, or delete). (Since current
tools depend on manual annotation of images, they are significantly more time-
consuming to use.) Another advantage of our attribute-based search on personal
collections is that with a limited number of people, simple queries can often find
images of a particular person, without requiring any form of face recognition.
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Fig. 2. Results of queries (a)“young blonde women” and (b) “children outside,” using
our face search engine. In (a), search results are shown in the left panel, while the right
panel shows a preview of the original image for the selected face. (b) shows search
results on a personalized dataset, displaying the results as thumbnails of the original
images. Note that these results were correctly classified as being “outside” using only
the cropped face images, showing that face images often contain enough information
to describe properties of the image which are not directly related to faces.

Our search engine owes its superior performance to the following factors:
– A large and diverse dataset of face images with a significant subset

containing attribute labels. We currently have over 3.1 million aligned
faces in our database – the largest such collection in the world. In addition to
its size, our database is also noteworthy for being a completely “real-world”
dataset. The images are downloaded from the internet and encompass a wide
range of pose, illumination, imaging conditions, and were taken using a large
variety of cameras. The faces have been automatically extracted and aligned
using a commercial face and fiducial point detector [1]. In addition, 10 at-
tributes have been manually labeled on more than 17,000 of the face images,
creating a large dataset for training and testing classification algorithms.

– A scalable and fully automatic architecture for attribute classi-
fication. We present a novel approach tailored toward face classification
problems, which uses a boosted set of Support Vector Machines (SVMs) [2]
to form a strong classifier with high accuracy. We describe the results of this
algorithm on a variety of different attributes, including demographic infor-
mation such as gender, age, and race; facial characteristics such as eye wear
and facial hair; image properties such as blurriness and lighting conditions;
and many others as well. A key aspect of this work is that classifiers for
new attributes can be trained automatically, requiring only a set of labeled
examples. Yet, the flexibility of our framework does not come at the cost of
reduced accuracy – we compare against several state-of-the-art classification
methods and show the superior classification rates produced by our system.

We will soon be releasing our search engine for public use.
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2 Related Work

Our work lies at the intersection of several fields, including computer vision,
machine learning, and content-based image retrieval. We present an overview of
the relevant work, organized by topic.

Attribute Classification. Prior works on attribute classification have focused
mostly on gender and ethnicity classification. Early works such as [3]used neural
networks to perform gender classification on small datasets. The Fisherfaces
work of [4] showed that linear discriminant analysis could be used for simple
attribute classification such as glasses/no glasses. More recently, Moghaddam
and Yang [5] used Support Vector Machines (SVMs) [2] trained on small “face-
prints” to classify the gender of a face, showing good results on the FERET
face database [6]. The works of Shakhnarovich et al. [7] and Baluja & Rowley
[8] used Adaboost [9] to select a linear combination of weak classifiers, allowing
for almost real-time classification of faces, with results in the latter case again
demonstrated on the FERET database. These methods differ in their choice of
weak classifiers: the former uses the Haar-like features of the Viola-Jones face
detector [10], while the latter uses simple pixel comparison operators.

In contrast, we develop a method that combines the advantages of SVMs and
Adaboost (described in Sect. 4). We also present results of an extensive com-
parison against all three of these prior methods in Sect. 5. Finally, we note that
this is an active area of research, and there are many other works on attribute
classification which use different combinations of learning techniques, features,
and problem formulations [11,12]. An exploration of the advantages and disad-
vantages of each is beyond the scope of this paper.

Content-Based Image Retrieval (CBIR). Our work can also be viewed as
a form of CBIR, where our content is limited to images with faces. Interested
readers can refer to the work of Datta et al. [13] for a recent survey of this
field. Most relevant to our work is the “Photobook” system [14], which allows
for similarity-based searches of faces and objects using parametric eigenspaces.
However, their goal is different from ours. Whereas they try to find objects
similar to a chosen one, we locate a set of images starting only with simple
text queries. Although we use vastly different classifiers and methods for feature
selection, their division of the face into functional parts such as the eyes, nose,
etc., is echoed in our approach of training classifiers on functional face regions.

3 Creating the Face Database

To date, we have built a large database of over 3.1 million face images extracted
from over 6.2 million images collected from the internet. This database con-
tinues to grow as we automatically collect, align, and assign attributes to face
images daily. An overview of the database creation process is illustrated in Fig. 3.
We download images using two different methods – keyword searches and ran-
dom downloads. The first allows us to build datasets related to particular terms
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Fig. 3. Overview of database creation. See text for details.

(e.g., celebrity names and professions). The latter allows us to sample from the
more general distribution of images on the internet. In particular, it lets us
include images that have no corresponding textual information, i.e., that are
effectively invisible to current image search engines. Our images are downloaded
from a wide variety of online sources, such as Google Images, Microsoft Live
Image Search, and Flickr, to name a few. Relevant metadata such as image and
page URLs are stored in the EXIF tags of the downloaded images.

Next, we apply the OKAO face detector [1] to the downloaded images to
extract faces. This detector also gives us the pose angles of each face, as well as
the locations of six fiducial points (the corners of both eyes and the corners of
the mouth). We filter the set of faces by resolution and face pose (±10◦ from
front-center). Finally, the remaining faces are aligned to a canonical pose by
applying an affine transformation. This transform is computed using linear least
squares on the detected fiducial points and corresponding points defined on a
template face. (In future work, we intend to go beyond near frontal poses.)

We present various statistics of our current face database in Table 1, divided
by image source. We would like to draw attention to three observations about
our data. First, from the statistics of randomly downloaded images, it appears
that a significant fraction of them contain faces (25.7%), and on average, each
image contains 0.5 faces. Second, our collection of aligned faces is the largest
such collection of which we are aware. It is truly a “real-world” dataset, with
completely uncontrolled lighting and environments, taken using unknown cam-
eras and in unknown imaging conditions, with a wide range of image resolutions.
In this respect, our database is similar to the LFW dataset [15], although ours is
larger by 2 orders of magnitude and not targeted specifically for face recognition.
In contrast, existing face datasets such as Yale Face A&B [16], CMU PIE [17],
and FERET [6] are either much smaller in size and/or taken in highly controlled
settings. Even the more expansive FRGC version 2.0 dataset [18] has a limited
number of subjects, image acquisition locations, and all images were taken with
the same camera type. Finally, we have labeled a significant number of these im-
ages for our 10 attributes, enumerated in Table 2. In total, we have over 17,000
attribute labels.

4 Automatic Attribute Classification for Face Images

Our approach to image search relies on labeling each image with a variety of
attributes. For a dataset as large as ours, it is infeasible to manually label every
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Table 1. Image database statistics. We have collected what we believe to be the largest
set of aligned real-world face images (over 3.1 million so far). These faces have been
extracted using a commercial face detector [1]. Notice that more than 45% of the
downloaded images contain faces, and on average, there is one face per two images.

Image Source
# Images

Downloaded

# Images

With Faces
% Images

With Faces

Total #

Faces

Found

Average #

Faces Found

Per Image

Randomly Downloaded 4,289,184 1,102,964 25.715 2,156,287 0.503

Celebrities 428,312 411,349 96.040 285,627 0.667

Person Names 17,748 7,086 39.926 10,086 0.568

Face-Related Words 13,028 5,837 44.804 14,424 1.107

Event-Related Words 1,658 997 60.133 1,335 0.805

Professions 148,782 75,105 50.480 79,992 0.538

Series 7,472 3,950 52.864 8,585 1.149

Camera Defaults 895,454 893,822 99.818 380,682 0.425

Miscellanous 417,823 403,233 96.508 194,057 0.464

Total 6,219,461 2,904,343 46.698 3,131,075 0.503

Table 2. List of labeled attributes. The labeled face images are used for training our
classifiers, allowing for automatic classification of the remaining faces in our database.
Note that these were labeled by a large set of people, and thus the labels reflect a group
consensus about each attribute rather than a single user’s strict definition.

Attribute/

Options
Number

Labeled

Attribute/

Options
Number

Labeled

Attribute/

Options
Number

Labeled

Gender 1,954 Smiling 1,571 Race 1,309

Male 867 True 832 White 433
Female 1,087 False 739 Black 399

Age 3,301 Mustache 1,947 Asian 477
Baby 577 True 618 Eye Wear 2,360

Child 636 False 1,329 None 1,256
Youth 784 Blurry 1,763 Eyeglasses 665
Middle Aged 815 True 763 Sunglasses 439
Senior 489 False 1,000 Environment 1,583

Hair Color 1,033 Lighting 633 Outdoor 780
Black 717 Flash 421 Indoor 803
Blond 316 Harsh 212 Total 17,454

image. Instead, we use our large sets of manually-labeled images to build accurate
classifiers for each of the desired attributes.

In creating a classifier for a particular attribute, we could simply choose all
pixels on the face, and let our classifier figure out which are important for the
task and which are not. This, however, puts too great a burden on the classifier,
confusing it with non-discriminative features. Instead, we create a rich set of local
feature options from which our classifier can automatically select the best ones.
Each option consists of four choices: the region of the face to extract features
from, the type of pixel data to use, the kind of normalization to apply to the
data, and finally, the level of aggregation to use.

Face Regions. We break up the face into a number of functional regions, such as
the nose, mouth, etc., much like those defined in the work on modular eigenspaces
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Fig. 4. The face regions used for automatic feature selection. On the left is one region
corresponding to the whole face, and on the right are the remaining regions, each
corresponding to functional parts of the face. The regions are large enough to be robust
against small differences between individual faces and overlap slightly so that small
errors in alignment do not cause a feature to go outside of its region. The letters in
parentheses denote the code letter for the region, used later in the paper.

[19]. The complete set of 10 regions we use are shown in Fig. 4. Our coarse divi-
sion of the face allows us to take advantage of the common geometry shared by
faces, while allowing for differences between individual faces, as well as robust-
ness to small errors in alignment.

Types of Pixel Data. We include different color spaces and image derivatives
as possible feature types. These can often be more discriminative than standard
RGB values for certain attributes. Table 3 lists the various options.

Normalizations. Normalizations are important for removing lighting effects,
allowing for better generalization across images. We can remove illumination
gains by using mean normalization, x̂ = x

µ
, or both gains and offsets by using

energy normalization, x̂ = x−µ

σ
. In these equations, x refers to the input value, µ

and σ are the mean and standard deviation of all the x values within the region,
and x̂ refers to the normalized output value.

Aggregations. For some attributes, aggregate information over the entire re-
gion might be more useful than individual values at each pixel. This includes
histograms of values over the region, or simply the mean and variance.

To concisely refer to a complete feature option, we define a shorthand nota-
tion using the format, “Region:pixel type.normalization.aggregation.” The re-
gion notation is shown in Fig. 4; the notation for the pixel type, normalization,
and aggregation is shown in Table 3.

4.1 Classifier Architecture

In recent years, Support Vector Machines (SVMs) [2] have been used success-
fully for many classification tasks [20,21]. SVMs aim to find the linear hyper-
plane which best separates feature vectors of two different classes, so as to
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Table 3. Feature type options. A complete feature type is constructed by first convert-
ing the pixels in a given region to one of the pixel value types from the first column,
then applying one of the normalizations from the second column, and finally aggregat-
ing these values into the output feature vector using one of the options from the last
column. The letters in parentheses are used as code letters in a shorthand notation for
concisely designating feature types.

Pixel Value Types Normalizations Aggregation

RGB (r) None (n) None (n)

HSV (h) Mean-Normalization (m) Histogram (h)

Image Intensity (i) Energy-Normalization (e) Statistics (s)

Edge Magnitude (m)

Edge Orientation (o)

simultaneously minimize the number of misclassified examples (training error)
and maximize the distance between the classes (the margin).

As with many classification algorithms, SVMs perform best when given only
the relevant data – too many extraneous inputs can confuse or overtrain the
classifier, resulting in poor accuracy on real data. In particular, if we would like
to train a classifier for an attribute that is only dependent on a certain part
of the face (e.g., “is smiling?”), giving the SVM a feature vector constructed
from all the pixels of the face is unlikely to yield optimal results. Given the
large number of regions and feature types described in the previous section,
an efficient and automatic selection algorithm is needed to find the optimal
combination of features for each attribute. Following the successes of [10,7,8,11],
we use Adaboost [9] for this purpose.

Adaboost is a principled, iterative approach for building strong classifiers out
of a collection of “weak” classifiers. In each iteration of Adaboost, the weak
classifier that best classifies a set of weighted examples is greedily picked to
form part of the final classifier. The weights on the examples are then adjusted
to make misclassified examples more important in future iterations, and the
process is repeated until a given number of weak classifiers has been picked. A
major advantage of Adaboost is that it is resistant to overtraining [22,23].

We combine the strengths of these two methods by constructing a number of
“local” SVMs and letting Adaboost create an optimal classifier using a linear
combination of them. We create one SVM for each region, feature type, and SVM
parameter combination, using the LibSVM library [24]. Normally, Adaboost is
performed using weak classifiers, which need to be retrained at the beginning
of each round. However, we rely on the fact that our local SVMs will either be
quite powerful (if created using the relevant features for the current attribute),
or virtually useless (if created from irrelevant features). Retraining will not sig-
nificantly improve the classifiers in either case.

Accordingly, we precompute the results of each SVM on all examples, one
SVM at a time. Thus, our classifiers remain fixed throughout the Adaboost
process, and we do not need to keep a large number of SVMs in memory. Once
all SVM outputs have been computed, we run our Adaboost rounds to obtain the
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Table 4. Error rates and top feature combinations for each attribute, computed by
training on 80% of the labeled data and testing on the remaining 20%, averaging over
5 runs (5-fold cross-validation). Note that the attribute-tuned global SVM performs as
well as, or better than, the local SVMs in all cases, and requires much less memory and
computation than the latter. The top feature combinations selected by our algorithm
are shown in ranked order from more important to less as “Region:feature type” pairs,
where the region and feature types are listed using the code letters from Fig. 4 and
Table 3. For example, the first combination for the hair color classifier, “H:r.n.s,” takes
from the hair region (H) the RGB values (r) with no normalization (n) and using only
the statistics (s) of these values.

Attribute

Error Rates

for Attribute-

Tuned Local

SVMs

Error Rates

for Attribute-

Tuned Global

SVM

Top Feature Combinations in

Ranked Order

Each combination is represented

as Region:pixtype.norm.aggreg

Gender 9.42% 8.62%
W:i.m.n| W:o.n.n| W:i.n.n|
W:i.e.n

Age 17.34% 16.65%
W:i.m.n| W:i.n.n| H:r.e.n|
E:r.m.n| H:r.e.s| W:o.n.n

Race 7.75% 6.49%
W:i.m.n| E:r.e.n| C:o.n.n|
M:r.m.n| W:o.n.n

Hair Color 7.85% 5.54%
H:r.n.s| W:i.m.n| E:r.m.n|
H:r.n.n| W:i.n.n| H:r.m.n

Eye Wear 6.22% 5.14%
W:m.n.n| W:i.n.n| K:o.n.h|
W:m.m.n| N:r.n.n

Mustache 6.42% 4.61% U:r.e.n| M:r.m.n

Smiling 4.60% 4.60%
M:r.m.n| M:r.n.n| M:r.e.n|
W:i.n.n| W:i.e.n| M:i.n.n

Blurry 3.94% 3.41%
W:m.m.n| H:m.n.n| W:m.n.n|
H:m.m.n| M:m.m.n

Lighting 2.82% 1.61%
W:i.n.n| W:i.e.n| K:r.n.n|
C:o.n.n| E:o.n.n

Environment 12.25% 12.15%
N:r.m.n| K:r.e.n| K:r.m.n|
W:r.m.n| E:r.m.n

weights on each SVM classifier. We use the formulation of Adaboost described in
[8], with the modification that errors are computed in a continuous manner (using
the confidence values obtained from the SVM classifier), rather than discretely
as is done in [8]. We found this change improves the stability of the results,
without adversely affecting the error rates.

The error rates of these “attribute-tuned local SVMs” are shown in the second
column of Table 4. The rates were computed by dividing the labeled examples
for each attribute into 5 parts, using 4 parts to train and the remaining one to
test, and then rotating through all 5 sets (5-fold cross-validation). Note that in
most cases, our error rates are below 10%, and for many attributes, the error rate
is under 5%. (The higher error rates for age are due to the fact that different
people’s labels for each of the age categories did not match up completely.)
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(a) (b)

(c) (d)

Fig. 5. Illustrations of automatically-selected region and feature types for (a) gender,
(b) smiling, (c) environment, and (d) hair color. Each face image is surrounded by
depictions of the top-ranked feature combinations for the given attribute, along with
their corresponding shorthand label (as used in Table 4). Notice how each classifier
uses different regions and feature types of the face.

We emphasize the fact that these numbers are computed using our real-world
dataset, and therefore reflect performance on real images.

A limitation of this architecture is that classification will require keeping a
possibly large number of SVMs in memory, and each one will need to be evalu-
ated for every input image. Furthermore, one of the drawbacks of the Adaboost
formulation is that different classifiers can only be combined linearly. Attributes
which might depend on non-linear combinations of different regions or feature
types would be difficult to classify using this architecture.

We solve both of these issues simultaneously by training one “global” SVM
on the union of the features from the top classifiers selected by Adaboost. We do
this by concatenating the features from the N highest-weighted SVMs (from the
output of Adaboost), and then training a single SVM classifier over these features
(optimizing over N). In practice, the number of features chosen is between 2
(for “mustache”) and 6 (e.g., for “hair color”). Error rates for this algorithm,
denoted as “Attribute-Tuned Global SVM,” are shown in the third column of
Table 4. Notice that for each attribute, these rates are equal to, or less than,
the rates obtained using the combination of local SVMs, despite the fact that
these classifiers run significantly faster and require only a fraction of the memory
(often less by an order of magnitude).

The automatically-selected region and feature type combinations for each at-
tribute are shown in the last column of Table 4. Listed in order of decreasing
importance, the combinations are displayed in a shorthand notation using the
codes given in Fig. 4 and Table 3. In Fig. 5, we visually illustrate the top feature
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Table 5. Comparison of classification performance against prior methods. Our
attribute-tuned global SVM performs better than prior state-of-the-art methods. Note
the complementary performances of both Adaboost methods versus the full-face SVM
method for the different attributes, showing the strengths and weaknesses of each
method. By exploiting the advantages of each method, our approach achieves the best
performance.

Classification Method Gender Error Rate Smiling Error Rate

Attribute-Tuned Global SVM 8.62% 4.60%

Adaboost (pixel comparison feats.) [9] 13.13% 7.41%

Adaboost (Haar-like feats.) [8] 12.88% 6.40%

Full-face SVM [6] 9.52% 13.54%

combinations chosen for the gender, smiling, environment, and hair color at-
tributes. This figure shows the ability of our feature selection approach to iden-
tify the relevant regions and feature types for each attribute.

5 Comparison to Prior Work

While we have designed our classifier architecture to be flexible enough to handle
a large variety of attributes, it is important to ensure that we have not sacrificed
accuracy in the process. We therefore compare our approach to three state-
of-the-art methods for attribute classification: full-face SVMs using brightness
normalized pixel values [5], Adaboost using Haar-like features [7], and Adaboost
using pixel comparison features [8]. Since these works have mostly focused on
gender classification, we use that attribute as our first testing criteria.

The error rates for gender classification using our training and testing data on
all methods are shown in the second column of Table 5. We note that our method
performs slightly better than the prior SVM method and significantly better than
both Adaboost methods. The difference between the Adaboost and SVM methods
may reflect one limitation of using linear combinations of weak classifiers – the
classifiers might be too weak to capture all the nuances of gender differences.

To see how these methods do on a localized attribute, we also applied each
of them to the “smiling” attribute. Here, while once again our method has the
lowest error rate, we see that the Adaboost methods perform significantly better
than the prior SVM method. This result highlights the power of Adaboost to
correctly find the important features from a large set of possibilities, as well as
the degradation in accuracy of SVMs when given too much irrelevant data.

6 The FaceTracer Engine

We have trained attribute-tuned global SVM classifiers for each attribute listed
in Table 4. In an offline process, all images in our database are sent through the
classifiers for each attribute, and the resulting attribute labels are stored for fast
online searches using the FaceTracer engine.
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(a) (b)

Fig. 6. Results of queries (a) “older men with mustaches” and (b) “dark-haired people
with sunglasses” on our face search engine. The results are shown with aligned face
images on the left, and a preview of the original image for the currently selected face
on the right. Notice the high quality of results in both cases.

For a search engine, the design of the user interface is important for enabling
users to easily find what they are looking for. We use simple text-based queries,
since these are both familiar and accessible to most internet users. Search queries
are mapped onto attribute labels using a dictionary of terms. Users can see the
current list of attributes supported by the system on the search page, allowing
them to construct their searches without having to guess what kinds of queries
are allowed. This approach is simple, flexible, and yields excellent results in prac-
tice. Furthermore, it is easy to add new phrases and attributes to the dictionary,
or maintain separate dictionaries for different languages.

Results are ranked in order of decreasing confidence, so that the most relevant
images are shown first. (Our classifier gives us confidence values for each labeled
attribute.) For searches with multiple query terms, we combine the confidences
of different labels such that the final ranking shows images in decreasing order of
relevance to all search terms. To prevent high confidences for one attribute from
dominating the search results, we convert the confidences into probabilities, and
then use the product of the probabilities as the sort criteria. This ensures that
the images with high confidences for all attributes are shown first.

Example queries on our search engine are shown in Figs. 1b, 2, and 6. The
returned results are all highly relevant, and the user can view the results in a
variety of ways, as shown in the different examples. Figure 2b shows that we can
learn useful things about an image using just the appearance of the faces within
it – in this case determining whether the image was taken indoors or outdoors.

Our search engine can be used in many other applications, replacing or aug-
menting existing tools. In law enforcement, eyewitnesses to crimes could use our
system to quickly narrow a list of possible suspects and then identify the actual
criminal from this reduced list, saving time and increasing the chances of finding
the right person. On the internet, our face search engine is a perfect match for
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social networking websites such as Facebook and Myspace, which contain large
numbers of images with people. Additionally, the community aspect of these
websites would allow for collaborative creation of new attributes. Finally, users
can utilize our system to more easily organize and manage their own personal
photo collections. For example, searches for blurry or other poor-quality images
can be used to find and remove all such images from the collection.

7 Discussion

In this work, we have described a new approach to searching for images in large
databases and have constructed the first face search engine using this approach.
By limiting our focus to images with faces, we are able to align the images to a
common coordinate system. This allows us to exploit the commonality of facial
structures across people to train accurate classifiers for real-world face images.
Our approach shows the power of combining the strengths of different algorithms
to create a flexible architecture without sacrificing classification accuracy.

As we continue to grow and improve our system, we would also like to ad-
dress some of our current limitations. For example, to handle more than just
frontal faces would require that we define the face regions for each pose bin.
Rather than specifying the regions manually, however, we can define them once
on a 3D model, and then project the regions to 2D for each pose bin. The other
manual portion of our architecture is the labeling of example images for train-
ing classifiers. Here, we can take advantage of communities on the internet by
offering a simple interface for both defining new attributes and labeling example
images. Finally, while our dictionary-based search interface is adequate for most
simple queries, taking advantage of methods in statistical natural language pro-
cessing (NLP) could allow our system to map more complex queries to the list
of attributes.
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