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Abstract

Allele-specific copy number analysis (ASCN) from next generation sequenc- ing

(NGS) data can greatly extend the utility of NGS beyond the iden- tification of mu-

tations to precisely annotate the genome for the detection of homozygous/heterozygous

deletions, copy-neutral loss-of-heterozygosity (LOH), allele-specific gains/amplifications.

In addition, as targeted gene panels are increasingly used in clinical sequenc-

ing studies for the detection of “actionable” mutations and copy number alter-

ations to guide treatment decisions, accurate, tumor purity-, ploidy-, and clonal

heterogeneity-adjusted integer copy number calls are greatly needed to more re-

liably interpret NGS- based cancer gene copy number data in the context of clin-

ical sequencing. We developed FACETS, an ASCN tool and open-source soft-

ware with a broad application to whole genome, whole-exome, as well as tar-

geted panel sequencing platforms. It is a fully integrated stand-alone pipeline

that in- cludes sequencing BAM file post-processing, joint segmentation of total-

and allele-specific read counts, and integer copy number calls corrected for tu-

mor purity, ploidy and clonal heterogeneity, with comprehensive output and inte-

grated visualization. We demonstrate the application of FACETS using the Can-

cer Genome Atlas (TCGA) whole-exome sequencing of lung adenocarci- noma

samples. We also demonstrate its application to a clinical sequencing platform

based on a targeted gene panel.
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1 Abstract

Allele-specific copy number analysis (ASCN) from next generation sequenc-
ing (NGS) data can greatly extend the utility of NGS beyond the iden-
tification of mutations to precisely annotate the genome for the detection
of homozygous/heterozygous deletions, copy-neutral loss-of-heterozygosity
(LOH), allele-specific gains/amplifications. In addition, as targeted gene
panels are increasingly used in clinical sequencing studies for the detection
of “actionable” mutations and copy number alterations to guide treatment
decisions, accurate, tumor purity-, ploidy-, and clonal heterogeneity-adjusted
integer copy number calls are greatly needed to more reliably interpret NGS-
based cancer gene copy number data in the context of clinical sequencing.
We developed FACETS, an ASCN tool and open-source software with a
broad application to whole genome, whole-exome, as well as targeted panel
sequencing platforms. It is a fully integrated stand-alone pipeline that in-
cludes sequencing BAM file post-processing, joint segmentation of total- and
allele-specific read counts, and integer copy number calls corrected for tumor
purity, ploidy and clonal heterogeneity, with comprehensive output and inte-
grated visualization. We demonstrate the application of FACETS using the
Cancer Genome Atlas (TCGA) whole-exome sequencing of lung adenocarci-
noma samples. We also demonstrate its application to a clinical sequencing
platform based on a targeted gene panel.
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2 Introduction

Large-scale sequencing studies including the Cancer Genome Atlas (TCGA)
and the International Cancer Genome Consortium (ICGC) projects have gen-
erated tens of thousands whole-genomes (WGS) and whole-exomes (WES) of
tumor-normal sample pairs. Allele-specific copy number analysis can greatly
extend the utility of sequencing data beyond the identification of mutations.
We present FACETS (which stands for Fraction and Allele-Specific Copy
Number Estimates from Tumor Sequencing), an ASCN analysis pipeline and
open-source software for next generation sequencing (NGS) data.

ASCN analysis has several major advantages over conventional total copy
number analysis. First, it provides a much more comprehensive identifi-
cation of copy number aberrations including copy-neutral LOH events not
detectable by analyzing total copy number alone. Thus genome-wide LOH
pattern can be systematically evaluated. In addition, while conventional
analysis typically converts total copy number ratio into qualitative copy num-
ber states (high versus low level gains, shallow versus deep losses, normal),
ASCN analysis can be used to precisely annotate the genome for the de-
tection of homozygous deletions, heterozygous deletions, copy-neutral LOH,
allele-specific gains and amplifications with corresponding integer copy num-
ber. Furthermore, ASCN analysis provides more accurate estimates of tumor
purity and ploidy. The output can be used for enhanced clonal heterogeneity
analyses of somatic point mutations.

Early ASCN methods were primarily developed for copy number array
platforms (Rasmussen et al., 2011, Sun et al., 2009, Van Loo et al., 2010,
Yau et al., 2010). More recently, a number of ASCN methods have been de-
veloped for next generation sequencing data, building on different analytical
strategies. Patchwork (Mayrhofer et al., 2013) segments the genome based
on total read count and then estimates the allele-specific copy number within
each segment. The limitation lies in that segmenting total read count alone
does not provide the complete picture and will inevitably miss certain events
such as copy neutral LOH (Figure 1). Falcon (Chen et al., 2014) provides
a joint segmentation procedure using a Binomial process for the allelic read
count from heterozygous SNP loci. Several other methods including TITEN
(Ha et al., 2014) further considered tumor purity and clonal heterogeneity to
enhance the accuracy of copy number analysis by using various probabilistic
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modeling approaches including Bayesian mixture model (Chen et al., 2013),
Hidden Markov Model (Ha et al., 2014) or other maximum likelihood meth-
ods (Li and Xie, 2014, Oesper et al., 2013).
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Figure 1: Joint segmentation identifies copy number neutral loss-of-
heterozygosity (LOH) event. Top panel shows copy number log-ratio of total
sequence read count in the tumor to that in the normal along genomic po-
sitions on chromosome 6 from a whole-exome sequencing of a lung cancer
patient sample. Second panel shows the allelic log-odds-ratio of the variant
allele read counts in the tumor/normal pair revealing a copy-neutral LOH
event on 6p.

FACETS provides several unique contributions over existing methods.
For one, we employ a nonparametric joint segmentation approach based on a
Hotelling T 2 statistic by directly combining the total and allele-specific read
counts which does not depend on any model assumption and provides a fast
implementation to search for change points in the genome.

ASCN analysis typically uses a SNP-based approach as allelic imbalance
can only be measured at heterozygous sites. Nearly all ASCN methods for
sequencing data uses read count information from heterozygous sites only.
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However, heterozygous sites are subject specific and sparse which leads to
information loss on total copy number. Thus a systematic enumeration of
allele specific read counts from all SNPs, be it heterozygous or homozygous,
provides full information on both total and allele specific copy numbers. Fur-
thermore we also use read counts from a set of pseudo-SNPs (non polymor-
phic loci) along the target intervals so that regions with large gaps between
consecutive SNPs are represented in total copy number analysis. In total
copy number analysis, a moving window approach in which the read depths
are averaged over all the loci within the window is used commonly. However,
since the independent units of measurement are DNA fragments this leads to
serial correlation as the same fragment contributes to read depth at several
loci. Our approach of using read counts at SNPs that are sufficiently spaced
from one another provide a way of obtaining information that have negligi-
ble serial correlation since each fragment is usually mapped to only one SNP
locus. To address the imbalance in the number of loci used for total and al-
lele specific copy numbers we introduce a weighting scheme that is inversely
proportional to the overall heterozygous rate in the patient’s genome which
further enhances the detection of allele-specific alterations.

In addition, the current sequencing analysis methods for allelic imbal-
ances based on B-allele frequency (BAF) has some inherent biases due to
differential mapping affinity between the reference and the variant allele. To
address this issue, we show that the allelic log-odds-ratio (logOR) metric
provides an unbiased estimate of the allelic ratio by leveraging the paired
tumor-normal sequencing design that cancels out the mapping bias. To ob-
tain allele-specific copy number calls, we devised a Gaussian-non-central χ2

mixture model. Tumor purity, ploidy, and clonal heterogeneity are factored
in the model to obtain accurate ASCN output and facilitates the identifica-
tion of subclonal events.

FACETS provides a complete analysis pipeline that include BAM file
post-processing steps including library size and GC-normalization, joint seg-
mentation of total and allele-specific signals, and integer copy number calls
taking into account of tumor purity, ploidy, and clonal heterogeneity, all
seamlessly integrated in a single workflow with comprehensive output, in-
tegrated visualization, with fast computation to facilitate large-scale appli-
cation. Figure 2 shows FACETS analysis of a TCGA chromophobe renal
cell carcinoma (chRCC) sample (TCGA-KL-8331), revealing multiple chro-
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mosomal losses including chromosomes 1, 2, 6, 10, 13, 17, 21 which are sig-
natures of chRCC genome alteration as characterized in the TCGA chRCC
study (Davis et al., 2014). In addition, two major subclonal clusters of losses
unique in this tumor sample were further identified that included chr 11, 18,
and 22 representing events occurring later in time.

Most existing methods are designed for WGS or WES. As targeted panel
sequencing is increasingly used in clinical settings to detect “actionable” mu-
tations and copy number alterations toward precision medicine, robust copy
number and clonal heterogeneity analysis tools such as FACETS for targeted
panel sequencing are needed to further increase the clinical utility of NGS.
The software is available at https://sites.google.com/site/mskfacets/.

In this paper, we benchmark our tumor purity and ploidy estimates us-
ing the TCGA whole-exome sequencing data in 286 lung adenocarcinoma
samples and compared with the estimates from the ABSOLUTE algorithm
(Carter et al., 2012). We show that FACETS can enhance the sensitivity
of identifying aneuploid tumors by joint modeling of total and allele-specific
pattern. In addition, as shown in Figure 2, FACETS facilitates systematic
identification of clonal and subclonal copy number events through a cellu-
lar fraction feature in the model. Moreover, accurate, purity-, ploidy-, and
clonal heterogeneity-adjusted, integer copy number calls will be essential to
reliably interpret NGS-based gene copy number calls in clinical sequencing
panels. We will demonstrate that using a clinical sequencing sample profiled
by the MSK-IMPACT platform (Cheng et al., 2015).

3 MATERIALS AND METHODS

In the next sections, we discuss our approach for sequencing bias corrections,
joint segmentation of total and allelic copy ratio, and methods for integer
copy number calls correcting for tumor purity, ploidy, and intratumor het-
erogeneity.

3.1 Total copy number log-ratio (logR).

Sequence read count information are first parsed form paired tumor-normal
BAM files (Figure 3A). A normalizing constant is calculated for each tu-
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mor/normal pair to correct for total library size. Subsampling within 150-
250bp intervals is applied to reduce hypersegmentation in SNP-dense regions
of the genome (Figure 3B). logR is then computed from the total read count
in the tumor versus normal for all SNPs that have a minimum depth of cov-
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Figure 2: Integrated visualization of FACETS analysis of whole-exome se-
quencing data from a TCGA chromophobe renal cell carcinoma sample
(TCGA-KL-8331). The top panel displays total copy number log-ratio
(logR), and the second panel displays allele-specific log-odds-ratio data (lo-
gOR) with chromosomes alternating in blue and gray. The third panel plots
the corresponding integer (total, minor) copy number calls. The overall tu-
mor ploidy is estimated to be 1.6, revealing a hypodiploid tumor genome
due to the whole-chromosomal losses of multiple chromosomes. The tumor
sample purity is estimated to be 0.89. The estimated cellular fraction (cf)
profile is plotted at the bottom, revealing both clonal and subclonal copy
number events.
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Figure 3: Pre-processing and joint segmentation. A. Parsing reference and variant allele
count for SNP sites from tumor-nomal sequencing BAM files. All SNP sites contribute
to total copy log-ratio (logR), and heterozygous sites contribute to allelic log-odds ratio
(logOR). B. Interval-sampling to reduce local serial dependencies in SNP-dense regions.
C. Joint segmentation logR and logOR and the detection of copy number aberrant regions
of the genome. D. Segment clustering to form groups with the same latent copy number
states.

erage in the normal. logR provides information on total copy number ratio.
Specifically, the expected value of logR can be expressed as

E[logR] = log{(m∗ + p∗)/2}+ w(·) + λ,

where m∗ = mφ + (1 − φ) and p∗ = pφ + (1 − φ) are parental copy number
in the tumor sample rising from a mixed normal (1,1) and aberrant (m,p)
copy number genotype with mixing proportion φ. We term φ as the cellular
fraction associated with the aberrant genotype, which is a function of tumor
purity and clonal frequency (for subclonal alterations). The term w(·) de-
notes systematic bias. Here we explicitly consider GC-content and use loess
regression of logR over GC in 1kb windows along the genome to estimate
the GC-effect on read counts and subtract it from logR. In addition, we note
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that logR quantifies relative copy number, hence we introduce a constant λ
for absolute copy number conversion which will be described in detail later.

3.2 Allelic copy number log odds-ratio (logOR).

Allelic imbalance analysis has been typically based on B-allele (or variant
allele) frequency (BAF) in the tumor which informs m∗/(m∗ + p∗). In se-
quencing data, it has been observed that there is a significant bias toward
higher mapping rates for the reference allele compared to those for the variant
allele at heterozygous loci (Degner et al., 2009). Such bias can significantly
impact allele-specific copy number inference if not corrected. To illustrate,
let r denote the relative mapping affinity of the variant allele to the reference
allele, and typically r < 1 (mapping biased in favor of the reference allele).
As a result, the normal genotype becomes (1,r) instead of (1,1) and the aber-
rant genotype becomes (m∗, rp∗) or (p∗, rm∗) (Table 1). Therefore it is easy
to see that in sequencing data, BAF in fact informs m∗/(m∗ + rp∗), which
is a biased estimate of B-allele frequency when r 6= 1. To address this issue,
we propose to use the log-odds ratio (logOR) of the variant-allele count in
tumor versus normal, which is an unbiased estimate of allelic copy ratio. In
particular,

E[logOR] = log(m∗/p∗) or log(p∗/m∗),

depending on which parental copy the variant allele resides on. Since we do
not have phased data, squared logOR is used to infer log2(m∗/p∗).

Table 1: Illustration of how differential mapping bias affects copy number
inference.

Reference allele on
maternal copy

Reference allele on
paternal copy

Reference Variant Reference Variant
Normal 1 r 1 r
Tumor m∗ rp∗ p∗ rm∗

3.3 Joint segmentation

Segmentation analysis identifies regions of the genome that have constant
copy number using change point detection methods. Conventional methods
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(e.g. BIC-seq (Xi et al., 2010), ExomeCNV (Sathirapongsasuti et al., 2011))
typically perform one-dimensional segmentation using logR alone, or sepa-
rate application of one-dimensional segmentation to logR and BAF. Yet a
truly joint segmentation can significantly improve the precision for change
point detection and downstream analysis for estimating tumor purity, ploidy
and allele-specific calls.

To address this challenge, we extended the Circular Binary Segmentation
(CBS) algorithm (Olshen et al., 2004, Venkatraman and Olshen, 2007) to
a joint segmentation of logR and logOR based on a bivariate Hotelling T 2

statistic:
T 2 = max

1≤i<j≤n
T 2
1ij + cT 2

2ij

where T1ij is the Mann-Whitney statistic comparing the set of observed logR
denoted as {X1k : i < k ≤ j} and its complement {X1k : 1 < k ≤ i or j <
k ≤ n}. and similarly T2ij is the Mann-Whitney statistic comparing the
set of observed logOR denoted as {X2k : i < k ≤ j} and its complement
{X2k : 1 < k ≤ i or j < k ≤ n}. In the above, c is a scaling factor that is in-
versely proportional to the heterozygous rate which will be discussed shortly.

Here if the maximal statistic is greater than a pre-determined critical
value, we declare that a change exists and estimate the change-points as i, j
that maximize the statistic. The algorithm iteratively searches for change
points between any possible pair of breakpoints and its complement to iden-
tify regions of the genome that have constant allele-specific copy number.
For each segment, the logR data is summarized using the median of the logR
values x̃1 and the logOR data are summarized by x̃2

2 which takes the form∑
{x2

2 − s2)/s2}/
∑

{1/s2} where s2 is the estimated variance of logOR.

We point out that while logR is defined for all SNPs (both homozygous
and heterozygous loci), logOR is only defined for heterozygous loci (het-loci
or het-SNPs). This creates a large imbalance between the two in the com-
bined statistic. To address this issue, we introduce a weight that is inversely
proportional to the heterozygous rate to increase the het-SNP contributions
in subsequent segmentation analysis. Specifically, a scaling factor c is intro-
duced in the T 2 statistic. This is empirically set at 1/

√
4γ where γ is the

proportion of het-SNPs in the patient sample. Up-weighing the contribution
of logOR for het-SNPs increases the power of detecting allelic imbalances
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for regions with low frequency of het-SNPs. We denote this a “full model”
approach.

Our “full model” approach is distinct from the conventional method in
which both logR and BAF are computed for het-loci only. For the whole-
exome data we have analyzed, the genome-wide heterozygous rate typically
ranges from 10-15%. As such, the het-SNP approach can lead to substan-
tial information loss and reduced power for detecting alterations across the
genome. To illustrate, we conducted a down-sampling experiment using two
whole-exome samples with high and low tumor purity to assess the sensitivity
of detecting genome alterations between the full model and the typical het-
SNP approach (Supplementary Figure 1). For low purity tumor samples, the
het-SNP approach shows reduced sensitivity at the outset. As genome cov-
erage decreases by down-sampling, the sensitivity of het-SNP only approach
for detecting all the altered copy number segments quickly deteriorates while
the full model holds up substantially better.

After segmentation, we cluster the segments into groups of the same un-
derlying genotype. Figure 3D shows an example in which a total of 27 seg-
ments resulting from the joint segmentation were clustered into four distinct
genotype groups. Such clustering reduces the number of latent copy number
and cellular fraction states needed in subsequent modeling.

3.4 Determine the 2-copy state.

As mentioned earlier, logR estimates are proportional to the absolute total
copy number up to a location constant λ. For diploid genome, logR = 0
(library size normalized logR) is the location for the 2-copy state . However,
aneuploidy can lead to a location shift in the tumor. Therefore we need to
first determine the 2-copy state in a tumor genome and quantify the location
shift λ. Without adjusting for the location shift, absolute copy number calls
are not possible.

Let us denote the copy number states using total and minor integer copy
number (e.g., 1-0 denotes monosomy with total copy number 1 and minor
copy number 0). The estimate of λ should correspond to the logR level at
which the segments are in 2-1 (normal diploid) or 2-0 (copy-neutral LOH)
state. In order to estimate λ, we first note that normal diploid segments
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Figure 4: Joint analysis of total and allelic copy number pattern to more accurately
estimate tumor purity, ploidy and the precise genotypes of the copy number alterations.
Two examples (A, B) are presented here to illustrate the use of allelicly balanced segments
(log-odds-ratio close to zero) to determine the 2-copy state (purple line) and location shift
λ in total copy number log-ratio (logR) due to aneuploidy of the tumor. The expected
value of logR and logOR as a function of total and minor copy number and cellular fraction
φ are plotted to show the degree of separability among different copy number genotype and
cellular fraction (C). Each line traces the cellular fraction from low (0.1) at the original
point close to (0,0) to high (0.9) on the other end of the line. Triangles mark the cellular
fraction of 0.5 on each line. The colors represent the minor copy number: 0 is black, 1 is
red, 2 is green and 3 is blue. Line types change by total copy number.

should be allelically balanced. Thus candidate value for λ (referred to as λc)
will be obtained from x̃1 for segment clusters that have x̃2 values close to zero.

However, note that homozygous deletions (0-0) and balanced gains (4-2,
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6-3 etc.) are also allelically balanced and hence will have small x̃2. Since
large scale homozygous deletions of multiple genes will not be conducive to
cell survival we can eliminate non-focal segments with small x̃2 as being ho-
mozygous deletions. In addition, for the sake of simplicity we do not consider
higher order balanced gains states (6-3, 8-4 etc.) spanning a large part of the
genome. Finally, samples in which segments with allelic balance are a small
fraction of targeted regions will be flagged and will require a manual review
for their λ estimates.

In samples that have large allelically balanced segments, there can be
several x̃1 values from which λc can be chosen. The samples in Figures 2
and 3C have several balanced segments with x̃1 values with small variation
around a single level. The samples in Figures 4A and 4B have segments with
allelic balance at two distinct x̃1 levels (chr11q and chr18 in 4A and parts
of chr1 and chr8 in 4B). We group the balanced segments into either one or
two distinct levels. For the single level scenario the choice of λc is obvious
whereas in the two distinct levels scenario the higher level cannot be normal
diploid (since it would imply the lower level is large scale homozygous dele-
tion) and thus λc should the lower one.

We proceed by evaluating whether λc represents normal diploid state or
balanced 4 copy state using all segments that are reltive losses i.e. seg-
ments with x̃1 smaller than the candidate level. If it represents the 2-
1 state then the losses are at 1-0 state whereas if it represents the 4-2
state then the losses can be any of 3-0, 3-1, 2-0 or 1-0. We find the best
m, p, φ that fits λc − x̃1 = log(2 + 2 ∗ φ) − log{(m + p − 2)φ + 2} and
x̃2
2 = log{[(m − 1)φ + 1]/[(p − 1)φ + 1]}2. Segments at 3-1 and 2-0 states

in relation to 4-2 level with a clonal φ is indistinguishabe from segments at
1-0 in relation to 2-1 level with different φ. On the other hand single copy
loss from 2-1 cannot mimic the relationship between 4-2 and 3-0 or 1-0 states.
Thus λc will be considered to represent 4-2 state if best fit copy numbers for
some segments are at 3-0 or 1-0. If all the segments are assigned 3-1 or 2-0
then it will be considered to represent 4-2 if a clonal fit with single φ fits as
well as subclonal 1 copy loss from diploid with a single subclone fraction. If
λc represents 2-1 state then we set λ = λc and if it represents 4-2 state then
λ is estimated as the x̃1 value corresponding to the 2-0 state.

In Figure 4A the balanced segments at chr11q and chr18 represent the 2-1
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and 4-2 states and although there are several losses and gains the average
copy number of the sample is 2 and thus λ is estimated close to zero. In
Figure 4B however 2-1 state in parts of chromosome 1 is a small fraction of
the genome and chr8 at 4-2 is the dominant location of allelic balance. Even
ignoring the 2-1 segments in chr1 the procedure can estimate λ at the 2-0
state represented by chr10q since chr9 is at 3-0 state compare to 4-2 level in
chr8. The 2-copy state for this sample is significantly shifted below zero due
high average copy number of the tumor.

3.5 Integer copy number call.

In the next step, we obtain integer copy number (major and minor) and the
associated cellular fraction estimates for each segment cluster by modeling
the expected values of logR and logOR given total (t), and each parental
(m,p) copy as a function of a cellular fraction (cf) parameter φ, using a
combination of parametric and nonparametric methods. This allows us to
model both clonal and subclonal events. Figure 4C demonstrates the ex-
pected value of logR and logOR as a function of (m,p) and φ. Note that the
curves for most combinations of m and p are distinct and well separated in-
dicating that they can be estimated well provided the cellular fraction is high.

The procedure starts by first obtaining a moment estimate of t̂i, the total
copy number for segment cluster i, by ⌈2(1+x̄1i)⌉, where x̃1i denote the me-
dian logR for segment cluster i corrected for sequence bias and tumor ploidy
(λ-normalized). Once the total number is obtained we calculate the allele
specific copy numbers m and p and the cellular fraction φ using the fact that
the logOR summary measure x̃2 is a moment estimate of µ2 which equals
log2({mφ+ (1− φ)}/{pφ+ (1− φ)}).

To further refine the initial estimates, we employed a Gaussian-non-
central χ2 model with error terms to account for the noise with a clonal
structure imposed on the cellular fraction φ. Specifically, let X1ij denote the
logR for SNP loci j in segment cluster i (corrected for sequence bias and
location shift) and follow a normal distribution:

X1ij ∼ N(νig, τ
2
i ),

where νig is the expected value of logR given the underlying copy number

13

Hosted by The Berkeley Electronic Press



state g taking the form

νig = log2(2(1− φk) + tgφk)/2,

where tg = mg + pg denotes the total copy number (sum of the two parental
copy number) given the underlying copy number state g, φk denotes the
cellular fraction for clonal cluster k, and τ 2i is an independent variance pa-
rameter. In practice, it is quite reasonable to assume homoscedasticity and
set τ 2i = τ 2 ∀i.

Furthermore, let X2ij denote the logOR for SNP loci j in segment cluster
i and (X2ij/σij)

2 follow a non-central chi-squared distribution:

(X2ij/σij)
2 ∼ χ2(δijg),

where σ2
ij is the variance parameter for logOR and δijg = µ2

ig/σ
2
ij is the non-

centrality parameter in which

µ2
ig = log2

mgφk + (1− φk)

pgφk + (1− φk)
.

Assuming X1ij and X2ij are independent random variables given the under-
lying copy number state g, the joint data likelihood can then be written
as

ℓ =
∑

i

∑

j

∑

g

f(x1ij|νig, τ 2i , g)f(x2ij|δijg, g)P (g)

where P (g) is the prior probability of the latent copy number state g.

We apply an expectation-maximization (EM) algorithm to maximize the
joint data likelihood. It can be viewed as an estimation problem with the
latent copy number states as “missing” data. In the E-step of the EM proce-
dure, Bayes theorem is used to compute the posterior probability of segment
cluster i being assigned copy number state g given the parameter estimates
at the tth iteration:

p̂
(t)
ijg =

f(x1ij|ν̂(t)
ig , τ̂

2(t)

i , g)f(x2ij|δ̂(t)ijg)P (g)
∑

g f(x1ij|ν̂ig, τ̂ 2(t)i , g)f(x2ij|δ̂(t)ijg)P (g)
.
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In the M-step, we first update the normal and non-central Chi-square
distribution parameters

ν̂
(t+1)
ig =

∑
j p̂

(t)
ijg · x1ij

∑
j p̂

(t)
ijg

, τ̂2
(t)

i =

∑
j p̂

(t)
ijg(x1ij − ν̂

(t)
ig )2

∑
j p̂

(t)
ijg

,

µ̂2(t+1)

ig =

∑
j p̂

(t)
ijg · (x2

2ij − s2)/s2

∑
j p̂

(t)
ijg/s

2
,

where s2 is the sample variance estimate of logOR. After obtaining the

estimates of ν and then update the cellular fraction parameter φ
(t+1)
k given

ν̂
(t+1)
ig∗ = log

2(1− φk) + t∗gφk

2
, µ̂

(t+1)
ig∗ = log

m∗

gφi + (1− φk)

n∗

gφk + (1− φk)
,

where g∗ is the most likely genotype (with highest posterior probability)
given the data and current parameter estimates in the tth iteration. The
E-step and M-step are iterated until convergence.

A clonal structure is imposed on the cellular fraction φk. This is done in
a sequential approach where the algorithm starts with a single clonal cluster
(k=1) with cellular fraction parameter φ1. We then identify segment clusters
for which segment cluster-specific estimates is non-trivially lower (at least by
0.05) from the clonally constrained estimates that result in a suboptimal fit
under k = 1. These segment clusters with discordant cellular fraction esti-
mates then form a candidate subclonal cluster of events at a lower cellular
fraction φ2, and a model is fitted with the joint likelihood optimized under
k = 2. This procedure is iterated until no additional discordance in cellular
fraction estimates are found, or a specified maximum k is reached. In the
default parameter setting, a maximum k = 5 is allowed although user can
change it to a higher number if greater intratumor heterogeneity is expected.
In the output, φ̂1 is the cellular fraction eatimate for the clonal events and
also the tumor purity by definition, and φ̂k, k > 1 for any subclonal clusters
identified in the tumor sample.

Figure 5 plots the kernel density of the FACETS estimates of cellular
fraction for the copy number alterations detected in the chRCC sample
TCGA-KL-8831, revealing three major subclonal clusters. In this tumor
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sample, φ̂1 = 0.89 capturing the clonal alterations (losses of chromosomes
1,2,6,10,13,17 and 21). A subclonal cluster captured the subsequent loss of
chromosomes 11 at φ̂2 = 0.76, followed by additional losses of 18 and 22 at
φ̂3 = 0.65.
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Figure 5: Kernel density plot of estimated cellular fraction reveals clonal and subclonal
events.

4 Results

4.1 Sequencing data source.

We applied FACETS to 268 TCGA lung adenocarcinoma whole-exomes.
The sequencing bam files were downloaded from the Cancer Genomics Hub
https://cghub.ucsc.edu/. Each bam file is about 15 GB in size. A pre-
processing module that generates sequence count matrix from the sequencing
bam file uses samtools/perl/c++ scripts to ensure scaleable and paralleliz-
able implementation. Model fitting, analysis and visualization is done in
R statistical programming language which provides a unified front end for
analysis and visualization. The ABSOLUTE calls from SNP6.0 array profil-
ing data for the same set of tumor samples published in Zack et al. (2013)
(Zack et al., 2013) were obtained from Synapse https://www.synapse.org/
\#!Synapse:syn1703335. The MSK-IMPACT targeted panel sequencing
data are obtained from Paik et al. (2015) (Paik et al., 2015).
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Figure 6: FACETS analysis of whole-exome sequencing of 286 TCGA lung
adenocarcinoma samples. A. total number of segments per sample from stan-
dard CBS segmentation of total copy number versus FACETS joint segmen-
tation of total and allele-specific copy ratios. B. Proportion of concordantly
detected segments between two methods. C. Comparing FACETS and AB-
SOLUTE tumor purity estimates. D. Comapring FACETS and ABSOLUTE
ploidy estimates. E. Bubble plot of FACETS and ABSOLUTE integer copy
number calls. The number of concordant (diagonal) and discordant (off di-
agonal) alterations called are indicated inside each bubble.

4.2 Data pre-processing

The input data for FACETS analysis pipeline are aligned sequence bam file
with standard base and mapping quality filter. Reference and variant allele
read counts were extracted from the bam file for germline polymorphic sites
catalogued in the dbSNP and 1000genome database (∼ 1.9 million polymor-
phic positions). For whole-exome seq, we include SNPs in target intervals
expanded 50-bases on each side (target overhang). Positions with total read
count below a lower depth threshold (e.g., < 25 in 50× coverage experiment)
or exceed an upper threshold (> 1000) (excessive coverage) in the matched
normal were removed.

Analysis of the data from HapMap project has revealed that SNPs are
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not distributed at random across the human genome, but are clustered. Re-
gions with increased local variability and SNP clustering has been associated
with recombination hotspots. In high-throughput genotyping arrays, such
variation has been correlated with elevated rates of genotype failure and al-
lele dropout (Koboldt et al., 2006). In high-throughput sequencing, we show
that SNP-dense regions in the genome can cause strong local dependencies
in read counts and lead to hyper-segmentation of the genome (Figure 1). To
address this issue, we scan all positions by 150-250 bp interval to space out
SNP-dense regions and effectively avoid local patterns of strong dependen-
cies. This serial correlation in read counts can cause hyper-segmentation in
the downstream steps if not removed.

Read depth ratio between tumor and normal gives information on total
copy number. The variant (non-reference) allele frequency at heterozygous
loci (germline variant allele frequency greater than 0.25 or less than 0.75) con-
tain information on allelic imbalance. This pre-processing procedure on aver-
age yields ∼ 350, 000 SNP loci that pass these quality filters, and ∼ 10−15%
of them are heterozygous. Homozygous positions will be kept in our analy-
sis to inform total copy number which increases the precision for genotype
calls. The MSK-IMPACT platform target all exons and selected introns of
410 cancer genes (< 1 million bases) with high uniformity of coverage across
targets. The pre-processing procedure yields on average ∼ 15, 000 SNP loci
with a similar ∼ 10− 15% heterozygous rate.

4.3 Application to TCGA whole-exome sequencing data.

Previous TCGA projects have utilized the ABSOLUTE algorithm (Carter
et al., 2012) to determine tumor ploidy and purity. This paradigm works
by combining segmented copy number output, together with pre-computed
models of recurrent cancer karyotypes, and allelic fraction values for somatic
point mutations. We compared FACETS output with the ABSOLUTE out-
put reported in the original TCGA studies (Zack et al., 2013).

We first looked at the concordance of the segmentation analysis. Here
platform and method differences need to be taken into consideration. First,
SNP6.0 array has more even coverage across the genome while whole-exome
sequencing may be more sensitive for detecting intragenic changes. The
coverage differences have the most effect on the detection of focal changes.
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Therefore in this analysis we excluded segments less than 1Mb. Secondly,
CBS segmentation which segments total copy number was applied in the Zack
et al. study (Zack et al., 2013) for ABSOLUTE input, whereas FACETS
implements a joint segmentation of total and allele-specific copy ratios. Bi-
variate segmentation is more comprehensive and can detect events such as
partial chromosomal cn-neutral LOH events that may be missed by a total
copy number segmentation approach.

Figure 6A shows the number of segments per tumor sample is relatively
comparable between the two methods. Figure 6B further shows the segments
are over 90% concordant for segments over 10 Mb in length and less so for
smaller segments due to platform and method differences as discussed earlier.
In this analysis, we define a segment is concordantly detected by both meth-
ods if there is more than 70% overlap between the stat and end positions of
two segments.

Figure 6C and 6D show that purity and ploidy estimates are highly con-
cordant between the two methods. FACETS identified additional cases of
aneuploidy in about 6% of the tumors (green) by incorporating LOH pattern
in determining ploidy. Figure 4B is one of such cases where the total and
allelic copy ratio together provide evidence for an aneuploidy tumor that was
not identified in the original study based on total copy ratio alone. For a
small fraction of tumors that FACETS called lower ploidy than that called
by ABSOLUTE (orange), they tend to be lower purity samples.

To compare the integer copy number calls, we focused on samples with
concordant ploidy calls (difference in ploidy estimates less than 0.5), tumor
purity greater than 30%, and segments length greater than 10 Mb. Figure
6E shows a high concordance of the integer copy number calls.

4.4 Application to targeted cancer gene panel sequenc-
ing.

Figure 7 shows a FACETS application to the MSK-IMPACT clinical sequenc-
ing platform, a hybridization capture-based next-generation sequencing assay
for targeted deep sequencing of all exons and selected introns of 410 key can-
cer genes in FFPE tumor samples (Cheng et al., 2015). This is a stage IV
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lung squamous cell carcinoma (LUSC) patient sample. This patient genome
is highly altered. Some key events include homozygous deletion of CDKN2A,
copy-neutral LOH of chromosomes 9, 11 and 17p. Notably from the FACETS
output, high level amplification of known oncogenes including CCND1 and
PPM1D, both are druggable targets, are annotated with estimated integer
copy number. This tumor also showed aneuploidy with an average ploidy
estimated at 3.0.

The FACETS estimate of integer copy number (purity-, ploidy-corrected)
for PPM1D is 10. By contrast, a conventional PPM1D copy number call
based on logR ratio (in this case logR=1.3) without adjusting for purity and
ploidy would be around 5. This difference is potentially clinically signifi-
cant as to unambiguously identify amplified cancer genes to guide treatment
decisions.

5 DISCUSSION

Comprehensive identification of allele-specific copy number alterations will
be invaluable in the search for genomic correlates of clinical outcome and
therapeutic targets. In this study, we present FACETS, a unified analysis
pipeline and software for joint segmentation and allele-specific copy num-
ber analysis with broad applications to NGS platforms. Our method has
a number of unique features. We point out that the conventional B-allele-
frequency based on sequencing read counts has inherent bias due to mapping
affinity toward reference allele. We propose the logOR metric which over-
comes such reference bias to provide unbiased estimates of the allelic ratio.
The joint segmentation of logR and logOR we developed allows more accu-
rate identification of change points in the genome by directly combing the
total and allele-specific read counts. Existing methods use read counts infor-
mation from heterozygous SNP sites only. We included all SNPs sites. with
a weighting scheme that is inversely proportional to the overall heterozygous
rate in the patient genome. The combined approach increases the sensitivity
and precision for detecting copy number aberrations in the genome especially
in low purity samples. Clonal heterogeneity is explicitly considered in our
method by introducing a cellular fraction feature associated with segment
clusters to allow more accurate inference of ASCNs and facilitate the identi-
fication of subclonal events. A normal-non-central χ2 mixture model is used
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Figure 7: FACETS analysis of a lung squamous cell carcinoma from MSKCC profiled by
MSK-IMPACT targeted cancer gene panel sequencing revealed several putative oncogenic
drivers and druggable targets. Tumor purity-, ploidy-corrected FACETS analysis provides
more accurate integer copy number calls for the driver genes. Integer copy number above
10 are plotted in log10 scale.

to jointly model the total and allelic copy ratio that iterates between im-
puting the underlying copy number genotype for each segment clusters and
updating the model parameters.

FACETS provides a complete ASCN analysis pipeline. This is distinct
from most existing methods which often require separate software pack-
ages for GC-normalization, sequencing bias adjustment, and/or segmenta-
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tion analysis. An integrated analysis pipeline from start to finish will provide
more consistent results.

Supplementary Table 1 provides a feature-by-feature comparison between
FACETS and other ASCN methods for sequencing data including TITAN
and FALCON. Here we highlight several important differences. First, TI-
TAN and FALCON are both based on heterozygous SNP loci which can lead
to more rapid loss of sensitivity for detecting copy number alterations when
applied to low resolution data (e.g., targeted panel sequencing) and/or low
purity tumor samples as we demonstrated in Supplementary Figure 2 using
down-sampling approach of whole-exome samples. The output of TITAN and
FALCON are presented in Supplementary Figure 1, along with the FACETS
output for the chromophobe sample (TCGA-KL-8331) whole-exome.

Average FACETS running time for a whole-exome sample takes ∼ 20
minutes for parsing read counts from each pair of tumor-normal BAM files,
and 1-3 minutes for subsequent steps including GC-normalzation, joint seg-
mentation and ASCN analysis on a single Intel Xeon E5-2640 core processor.
The fast computation facilitates large-scale application. Finally, an applica-
tion to targeted panel sequencing of clinical samples is also demonstrated.
Accurate, purity- and ploidy-corrected, integer copy number calls provided
by FACETS will be essential to more reliably interpret NGS-based cancer
gene copy number data in the context of clinical sequencing. This may pave
the way for the incorporation of NGS-based copy number calls into future
updates of these clinical guidelines.
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