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1. Introduction 

Throughout this paper we shall follow, with very few exceptions, the notation and 

terminology introduced by Professor B. Griinbaum in [5], and the reader is referred to 

this work for further information on the properties of convex polytopes. By an equi]acetted 

d-polytope we mean any d-dimensional convex polytope in Euclidean space whose facets 

(that is, faces of dimension d -  1) are all of the same combinatorial type. Many equifacetted 

polytopes are known, and we mention, by  way of example, three classes of polytopes 

which have been extensively studied: the regular polytopes [3], the simplicial polytopes 

[5, w167 4.5 and 9.2] and the cubical polytopes [5, w167 4.6 and 9.4]. This paper  is concerned 

with problems of the following kind: If  P is a given d-dimensional convex polytope, does 

there exist an equifacetted (d+l ) -poly tope  Q whose facets are all combinatorially equi- 

valent to P? If  the answer to this question is in the affirmative, then P will be called a 

d-/acet or a/acet ,  and if the answer is in the negative, then P will be called a d-non/acet 

or a non/acct. 

In  the literature only the case d = 2 has been mentioned, and the problem of charac- 

terising the 2-facets and 2-nonfacets is completely straightforward. I t  is well known (see, 

for example, [15, p. 149]) that  if a three-dimensional convex polytope Q has Pn 2-faces 

which are n-gons (n =3,  4 ... .  ) then 

3pa+2p4 +ps)12. (1) 

I t  is therefore impossible for all the 2-faces of Q to be n-gons with n >--6. On the other 

hand, the tetrahedron, cube, and regular dodecahedron are equifacetted 3-polytopes 

bounded by  triangles, quadrilaterals, and pentagons respectively, so we deduce: 

(1) Th i s  work  h a s  been  pa r t i a l ly  s u p p o r t e d  b y  t h e  Na t i ona l  Science F o u n d a t i o n  a n d  b y  t h e  

U n i t e d  S ta tes  Office of N a v a l  R e s e a r c h  u n d e r  R e s e a r c h  G r a n t  Nonr(G)  00013-66.  R e p r o d u c t i o n  in  

whole  or in p a r t  is p e r m i t t e d  for a n y  pu rpose  of t he  U n i t e d  S ta tes  G o v e r n m e n t .  
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(2) A convex n-gon is a 2-/acet i f  n = 3, 4, or 5, and is a 2-non/acet i / n  ~ 6. 

For d ~> 3 the problem of characterising facets and non-facets, or finding criteria to 

distinguish between them, seems to be extremely difficult. Here we shall establish some 

partial  results in this direction. Certainly there is no simple numerical criterion involving 

only the number  of vertices as in the case d = 2. In  w 2 we shall give some general theorems 

concerning facets, and in particular, prove that  every d-dimensional convex polytope 

with at most d + 2 vertices is a facet. In  w 3 we shall formulate some sufficient conditions 

for a d-dimensional convex polytope P to be a nonfaeet in terms of the numbers of faces 

of the (d-1)-dimensional  polytopes which arise by  orthogonally projecting polytopes 

eombinatorially equivalent to P on to hyperplanes. The case d =3,  where the problem 

seems to be of a slightly different nature from tha t  in higher dimensions, is discussed in 

w 4. In  particular, we shall show that  if no simple closed edge-circuit on P contains more 

than one third of the edges of P, then P is a 3-nonfaeet. In  w 5 we are concerned with the 

problem of determining whether regular polytopes are nonfaeets, and it will be shown 

tha t  the d-crosspolytope (generalised octahedron) is a nonfacet if d >~ 6. This is of interest 

since the other two regular polytopes in d ~> 5 dimensions (namely the d-simplex and the 

d-cube) are known to be facets. Since the octahedron is a 3-facet, the question whether 

the d-crosspolytope is a facet or not remains open only in the cases d = 4  and d = 5 .  In  

w 6 we shall consider the problem of finding, for given d/> 4, the smallest number  of ver- 

tices of a d-nonfacet. From the results of w 2 it is clear that  if P is a d-nonfaeet then it 

has at  least d + 3  vertices, and we conjecture tha t  for all d~>3 there exists a d-nonfaeet 

with exactly d + 3 vertices. This we can prove in the cases d = 6, 8, 9 and 10 only. We can 

show, however, that  for any  d>~4, a simplicial [�89 d-dimensional convex 

polytope with a large number  of vertices is a nonfacet. In  w 7 we shall find d-norgacets 

with a large number  of vertices and comparatively few/'-faces (1 ~</' ~<d- 1), and the paper  

concludes in w 8 with some general remarks and the statement of some unsolved problems. 

2. Theorems  o n  facets  

A s s t a t e d  in the introduction, many  equifacetted polytopes have been mentioned in 

the literature, and so it is simple to compile an extensive list of polytopes which are known 

to be facets. We shall not do this here, but  prove some general theorems on the construe- 

tion of facets, and, in particular, prove tha t  every d-dimensional convex polytope (more 

briefly, d-polytope) with at  most d +2  vertices is a facet. 

With the relation of inclusion, the set of all faces (proper and improper) of a polyiope 

P forms a lattice :~(P) [5, Exercise 2.4.6]. I f  F ~ is a vertex of a ( d + l ) - p o l y t o p e  Q, then 
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the faces of Q which include F ~ form a sublattice of 3:(Q) which will be denoted by :~(Q, F~ 

Let  H be any hyperplane which strictly separates F ~ from the remaining vertices of Q, 

and put  R = H  N Q. Then the correspondence which maps each ]-face F j of Q containing 

F ~ on to the ( j -  1)-face F j ~ H of R is a lattice isomorphism between ~(Q, F ~ and :~(R). 

The d-polytope R (or, more precisely, any polytope combinatorially equivalent to R) will 

be called a vertex ]igure of Q at 2 ,0 (compare [5, Exercise 3.4.8]) and will be denoted by  

Q(F~ Since the combinatorial type of a polytope is completely determined by its lattice 

of faces, we deduce from the above discussion that  the combinatorial type of the vertex 

figure Q(F ~ depends only on the combinatorial type of Q and the choice of E ~ and is 

independent of H. 

Let  Q* be a (d +l)-polytope dual to Q [5, w 3.4]. Then there exists a one-to-one cor- 

respondence y~ between the lattices :~(Q) and :~(Q*) which is inclusion reversing. Each 

]-face of Q corresponds to a (d- j ) - face  of Q*, and so, in particular, a vertex F ~ of Q cor- 

responds to a facet E ~ of Q*. We deduce that  ~0 maps the sublattice :~(Q, F ~ of :~(Q) onto 

the sublattice :~(F d) of 3:(Q*), and so F d is dual to Q(F~ Hence: 

(3) Let P be a d-polytope, Q be a (d + l )-polytope, and Q* be a (d + l )-polytope dual to Q. 

Then the facets of Q* are all combinatorially equivalent to P i /and only i /all  the vertex figures 

o/Q are dual to P. 

Statement (3) is useful since it is sometimes more convenient to consider polytopes 

with combinatorially equivalent vertex figures instead of polytopes with combinatorially 

equivalent facets. 

(4) Let G be any finite group o] a/fine trans]ormations o /E  ~ +1, and x E E ~+1 be any given 

point. Write G(x) ]or the orbit o / x  under G, that is, 

~(x) = {g(x) [g e a } ,  

and cony G(x) /or the convex hull o/the finite set G(x). Then any polytope dual to cony G(x) 

is an equi/acetted polytope. 

I t  is well known that  for each finite group G of affine transformations of E d§ there 

exists an affine transformation A of E ~+1 such that  the conjugate group {A-lgA]geG} 

is a group of orthogonal transformations (see, for example, [8, pp. 4748]) .  Remembering 

also that  the polar set Q* of a (d + 1)-polytope Q c E d § 1 containing the origin as an interior 

point is dual to Q [5, w 3.4], we see that  (4) is an immediate consequence of the following: 

(5) Let G be a finite group o/orthogonal trans/ormations o/ E ~+1 and let x e  E d§ be any 

point such that Q=conv  G(x) is a (d + l )-polytope. Then Q* (the polar set o/ Q) is an equi- 
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]acetted (d + 1)-polytope. Further, G is a group o] symmetries o/Q* and acts transitively on 

the/acets o/Q*, which are there]ore congruent d-polytopes. 

Proo] o/ (5). From the assumption that  Q is a (d+ 1)-polytope it follows easily tha t  

the origin is an interior point of Q, and therefore Q* is a (d + 1)-polytope. I f  g E G then 

gQ=Q and G acts transitively on G(x), which is the set of vertices of Q. Hence, by  the 

properties of polarity, gQ* =Q* for each g EG, and G acts transitively on the set of facets 

of Q*. Thus the facets of Q* are congruent, Q* is equifacetted, and (5) is proved. 

Statement  (5) motivates the following definition. A d-polytope P will be called a 

super/acet if there exists an equifacetted d-polytope Q, with all its facets combinatorially 

equivalent to P,  such tha t  the group of orthogonal symmetries of Q acts transitively on 

its facets. Although we shall be concerned almost entirely with the properties of facets, 

we shall mention briefly those cases where our assertions can be extended to superfacets. 

Statement  (5) enables us to construct arbitrarily many  superfacets (and therefore 

facets) in any dimension d/> 3. We illustrate this by  an example which seems to be of 

considerable intrinsic interest. 

Write g(O) for the orthogonal transformation of E 2n with matr ix  

- cos 0 - sin 0 0 0 0 0 

sin 0 co~ 0 0 0 0 0 

0 0 cos 20 - sin 20 0 0 

0 0 sin 20 cos 20 0 0 

0 0 0 0 cos nO -- sin nO 

0 0 0 0 sin nO cos nO 

and x(O) for the point with coordinate column vector 

(cos 0, sin 0, cos 20, sin 20 .. . .  , cos nO, sin nO) T. 

:Let ~ =  be the cyclic group of order k (k >~ 2n + 1) generated by  g(2~z/k). Then cony G~ n (x(0)) 

is a cyclic polytope [5, w 4.7] with k vertices 

x(O), x(2~/~), ..., x ( 2 ~ ( k -  1)/k), 

(see [4, w 3] where cony G~n(x(O)) is called a regular cyclic polytope). From the proof of 

(5), all the vertex figures of this polytope are combinatorially equivalent. (This last state-: 

merit eaa  also be established for non-regular even-dimensional cyclic polytopes by  corn 

binatorial arguments based on Gale's evenness condition quoted below.) 
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C(4, 3) C(5, 3) C(6, 3) C(7, 3) 

Fig. 1 

(6) Let C(v, d) be a cyclic d-polytope with v >~d + 1 vertices. For any integer n >~2, the 

vertex figures o/ C(v, 2n) are o/ the same combinatorial type as C(v - 1 ,  2 n - l ) .  

Proo/. We need not assume that C(v, 2n) is regular, so take its vertices to be v points 

Pl ..... Pv in order on a suitable curve (for example the moment curve) in E en (see [4, p. 225] 

or [5, w 4.7]). Let H be a hyperplane which strictly separates the vertex Pv from the re- 

maining vertices of C(v, 2n), so that  C' = H  [I C(v, 2n) is a vertex figure of C(v, 2n) at p,. 

Since n~>2, each closed line segment [Pi, Pv] ( i=1 ..... v - l )  is an edge of C(v, 2n) 

and therefore the points q~=HN [P~,Pv] ( i=1 ..... v - l )  are the vertices of C'. Let I be 

any subset of {1 ..... v). Then by Gale's evenness condition [5, Theorem 4.7.2] the points 

Pt ( iEI)  are the vertices of a facet of C(v, 2n) if and only if I has 2n elements, and every 

two members of {1 ..... v} \ I  are separated by an even number of elements of I .  The 

facets of C' are the intersections of H with those facets of C(v, 2n) that  are incident with 

Pv, in other words, with those facets for which the index set I contains v. We deduce 

that if I '  is a subset of {1 ..... v - l ) ,  then the points qt ( iEI ')  are the vertices of a facet 

of C' if and only if I '  0 {v) has 2n members, and every two elements of {1 ..... v}\(I '  U {v)) 

are separated by an even number of elements of I '  U {v). This condition is equivalent to 

the statement that I '  has 2 n - 1  members and that every two members of {1 ..... v - 1 } \ I '  

are separated by an even number of elements of I'.  Again by Gale's evenness condition, 

and [5, Exercise 3.2.3], this implies that C' is a cyclic polytope C(v -1 ,  2 n - l ) .  Since we 

have already shown that the vertex figures at all the vertices of C(v, d) are combinatorially 

equivalent, (6) is proved. 

From (6) and (3) we deduce that  any polytope dual to C(v, 2n) is equifacetted, and 
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(0(4, 3))* (c(5, 3))* (~(o, 3))* (C'(7, 3))* 

Fig.  2 

all its facets are dual to C(v-1,  2 n - l ) .  In the case n = 2  (d=4) Gale's evenness con- 

dition enables us to determine the polytope C(v-  1, 2 n - l ) =  C(v-  1, 3), and therefore 

(C(v-1 ,  3))*, without difficulty. (See Figures 1 and 2 which represent the cases v=5 ,  6, 

7 and 8. In each case a drawing of the poly~ope and its Schlegel diagram [5, w 3.3] are 

given.) C(v, 3) may be described as the convex hull of a line segment and a plane (v -1) -  

gon situated in such a way that  an interior point of the segment coincides with a vertex 

of the polygon. (C(v, 3))* is called a wedge; two of its 2-faces are (v-1)-gons, two are 

triangles, and v - 4  are quadrilaterals. This construction therefore leads to an interesting 

infinite sequence of simple 3-facets which starts with the tetrahedron (v=4) and the tri- 

angular prism (v=5). I t  shows, incidentally, that  3-facets with arbitrarily many vertices 

exist, a fact that  is also established easily by other means. The construction of equifacetted 

4-polytopes bounded entirely by wedges can be traced back to Briiekner [2a, pp. I2-13]. 

The three dimensional diagrams constructed by Briickner are Schlegel diagrams of 4- 

polytopes dual to the cyclic polytopes P(v, 4). 

In the next  theorem we shall describe methods by which two or more facets can be 

combined to yield further facets. We require the following definitions. 

Let P 1 c  E~ and P 2 c  E~ be, respectively, a given r-polytope and a given s-polytope. 

If E~ and E~ are affine subspaces of E r+s which intersect in a single point z, then each 

point of E r+8 can be represented uniquely in the form x l+x  ~ with xlEE ~ and x~EE~. 

The (r + s)-polytope 

P1 • P2 = {xl + x2 [ x 1 EP 1, x2 EP2} 
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is called the cartesian product of P1 and P~. If, further, z belongs to the relative interiors 

of P1 and of P2, then the (r +s)-polytope 

PI| = cony (P1 U P~) 

is called the direct sum of P~ and Pa (see [5, Exercise 4.8.4]). If, on the other hand, E~ 

and E~ are independent affine subspaces of E ~+8+I (that is to say, they are disjoint and 

contain no parallel lines), then the (r +s  + 1)-polytope 

PI@P~ = conv (P1 U P2) 

is called the/ tee  join of Pl and P~ (see [5, Exercise 4.8.1] where P1QP~ is called a pyra- 

midoid). If  P1 is a line segment then Pt • is a prism, and PI| is a bipyramid. If P1 

is a single point, P1QP~ is a pyramid. In each case P~ is called the base of the figure. 

In the following, whenever we write P1 • PI| or P1QP2, we shall implicitly 

assume that  PI and P~ arc situated in such a way that  the polytopes P1 • P2, Pt| or 

PtQP~ exist. This convention is used in the statement and proof of the next theorem. 

(7) (i) I / P 1  is an r-/acet and P~ is an s-/acet, then Pt  @P~ is an (r + s + l )-/acet. 

(ii) I / P t  is combinatorially equivalent to each /acet o/ an equi/acetted (r + l)-polytope 

P~, then PI • P2 is a (2r + 1)-/acet and PI @P~ is a (2r + 2)-/acet. 

(iii) I / P 1  is an r-simplex and P2 is either an s-simplex or an s-cube, then Pt| is 

an (r + s)-/acet. 

Proo/s. (i) If Q1 and Q2 are equifacetted (r + 1)- and (s + 1)-polytopes with facets com- 

biaatorially equivalent to P1 and P~ respectively, then it is easy to verify that  the (r + s + 2)- 

polytope QI| is equifacetted and its facets are combiaatorially equivalent to P I @ P v  

(ii) Let P~ and F~ be (r + 1)-polytopes combinatorially equivalent to P2 and lying in 

linearly independent (r + 1)-dimensional linear subspaces of E ~r+2. Then it is easily verified 

that  the (2r + 2)-polytope P~ • is equifacetted, and its facets are combinatoriaUy equi- 

valent to P1 x Pv 

If, on the other hand, P~ and P~ are (r + 1)-polytopes combinatorially equivalent to 

P2 and lying in independent affine subspaees of E ~r+s, then it is easy to see that  P~@F~ 

is equifacetted and its facets are combiaatorially equivalent to PI@Pv  (An obvious 

extension of our argument shows that  if 

P =  P,@P2QP~@ ... @P(o k), 

. . . . .  p(k) or P = P I • 2 1 5  ^ 2 ,  

and P~, P~ ..... p~k) are combinatorially equivalent to P~, then P is a facet.) 
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(iii) Le t  Q be the r th  t runca t ion  of an  ( r + s + l ) - s i m p l e x  T r+s+l, t ha t  is to say, the  

convex  hull of the barycent res  of the r-faces of T r+8§ I n  [3, w 8.7] Q is denoted b y  38 

and  in Coxeter ' s  graphical  no ta t ion  [3, w167 11.6 and  11.7] it is represented  b y  a simple 

chain of r + s + l  nodes with the ( r + l ) s t  node ringed. The  coordinates vec tor  of the  

(r§247 
vert ices of Q m a y  be t aken  to be the  \ r + 1 pe rmuta t ions  of 

(1, 1, ..., 1, 0, O, ..., 0) 

in which 1 occurs r § 1 t imes and 0 occurs s + 1 t imes [3, w 8.7]. F r o m  these coordinates 

it is easily verified t ha t  each ve r t ex  figure of Q is a cartesian produc t  T r • T 8 (compare 

[3, w 11.7]) and  so, by  (3), Q* is an equifaeet ted po ly tope  whose facets  are combinator ia l ly  

equivalent  to 
(Tr • Ts) * = T r |  8. 

This proves  the first  pa r t  of s t a t emen t  (iii). 

For  the  second pa r t  we take  Q as the  r th  t runca t ion  of the regular  ( r + s + l ) - c r o s s -  

polytope.  I n  [3, w 8.7] Q is denoted b y  38_1, 4 " The coordinate vectors  of the vertices of 

Q m a y  be t aken  to be the 2 ~§ [ r + s  + 1) \ r + 1 pe rmuta t ions  of 

(___1, __1 . . . . .  4-_1,0,0 . . . . .  O) 

(in which ___ 1 occurs r + 1 t imes and  0 occurs s times) with all possible sets of ambiguous  

signs. Using these coordinates it is easily verified t h a t  each ver tex  figure of Q is a cartesian 

p roduc t  T r •  s where X s is an  s-crosspolytope (compare [3, w 11.7]). Thus  b y  (3), Q* is 

an  equffacet ted poly tope  whose facets are combinator ia l ly  equivalent  to 

(T  r • XS) * = T r o c  s, 

where C 8 is an s-cube. This completes  the  proof of (iii) and  also of (7). The  following is 

an  impor t an t  corollary: 

(8) Every  d-polytope P with at most d + 2 vertices is a d-/acet. 

I f  P has d + 1 vertices then  it is a s implex and  so is t r ivial ly a facet.  I f  P has d + 2 

vert ices then  it is known [5, w 6.1] t h a t  ei ther  

(a) P = T r G T  8 ( r + s = d ) ,  or 

(b) P is a p y r a m i d  whose base is a ( d - 1 ) - p o l y t o p e  with d + l  vertices. 

I f  (a) holds then  P is a facet  by  (7) (iii). I n  case (b) we use an obvious induct ive argu- 

m e n t  on the dimension, recalling t h a t  b y  (7) (i) every  p y r a m i d  whose base is a facet  is 

itself a facet .  
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Statements (7) and (8) remain true if we replace 'facet' by 'superfacet' throughout. 

(In 7 (if) we have to add the condition that  the group of orthogonal symmetries of Pn 

is transitive on the set of facets of P2.) 

We conclude this section with a statement, the proof of which involves a process 

called adjoining one polytope to a facet of another. 

(9) Let P be any d-/acet (d > 0). Then there exists an enumerable infinity o/combinatorial 

types o/equi]acetted (d + l )-polytopes whose ]acets are combinatoriaUy equivalent to P. 

Proo/. Let Q be any equifacetted (d+l)-polytope in E a+l whose facets are combina- 

torially equivalent to P. Let  ~a+x be the projective space formed from E d+l by adjoining 

a hyperplane at infinity, and let H be the hyperplane containing one of the facets P1 of 

Q. Let  z be any point beyond P1 and beneath all the other facets of Q (see [5, w 5.2]). For 

any p < 0  define a p-transformation Tv of/~d+l as follows (see [13], where however, o is 

written in place of z). If x # z ,  x~H,  and the line lx joining x to z meets H in x', then x*Elx 

is chosen so that  the cross-ratio 

cr(z, x' ; x, x*) = p, 

T,(z) = z, v.(x') = x' and v~(x) = x*. 

and T~ is defined by 

The transformation ~v is a non-singular projective transformation leaving z and H point- 

wise fixed (it is a homology) so TvQ =Qp is combinatorially equivalent to Q [5, Theorem 

3.2.3], and P I = Q N H = Q v O H .  Since p < 0 ,  Q, lies in the pyramid with base Pl and 

apex z, from which we easily deduce that  Qv U Q is convex. Further it is equifacetted and 

all its facets are combinatorially equivalent to P. If Q has /d(Q) facets then Qv u Q has 

2/d(Q)-2>/a(Q) facets, and so, starting from any equifacetted polytope Q we can obtain 

arbitrarily many such polytopes by repeated application of the process just described. 

Whenever, as in the above proof, we have two convex polytopes Q and Q' such that  

Q u Q' is convex, Q N Q' =P1 is a facet of each, and every proper face of P1 is a face of Q u Q', 

then we shall say that  Q u Q' arises by adjoining Q' to the facet P1 of Q. This process, which 

has already been mentioned implicitly in the works of many authors, will turn out to he 

of considerable importance in the construction of nonfacets in the following sections. 

3. Theorems on nonfacets  

The purpose of this section is to establish criteria (sufficient conditions) for a given 

d-polytope P to be a nonfacet. These criteria will be stated in general terms, and will then 

be applied to interesting special cases in the remaining sections. The discussion will depend 
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heavily on [11], and we shall assume that  the reader is familiar with the results of that  

paper. For the most part, the same notation will be adopted. Thus for 0~.<j-~<d-1, the 

/.-faces of a d-polytope P will be denoted by F~ (i = 1 ..... /j(P)), r  F j) will denote the 

interior angle of P at the face F j, and Cj(P) will denote the sum of the interior angles of 

P at  all its ]-faces. We require the following lemma: 

(10) Let Q be a convex (d + l)-polytope (d>~2) and F j be a/.-/ace o / Q  (0~</'~<d-2). I /  

P1 ... . .  Ps are the/acets o / Q  containing F j, then the sum o / the  interior angles o /P1  ..... Ps 

at F j is strictly less than 1, that is, 

r F ' ) <  1. (11) 
r = l  

The case d =2, /. = 0 of this lemma is well known and widely quoted. I t  is simple to 

prove using the formula for the area of a spherical polygon in terms of its interior angles 

(see, for example, [1, pp. 37-38]). For general values of/" and d, two independent proofs 

will be published shortly (see [12] and [14]). Although we shall discuss the implications 

of (10) in the general case, in most proofs it will only be necessary to use the special value 

/. = d -  2. Here the statement can be established easily by applying the kaow~ case d = 2, 

/ '=0 to the three-dimensional section of Q by a 3-flat normal to F j ( / .=d-2)  and passing 

through a relative interior point of Y j. 

Let the facets of the (d+l)-polytope Q be denoted by P1 ..... Pt (t=]~(Q)). Then, if 

we sum (11) over all the/'-faces F~ (i = 1 ..... /j(Q)) of Q, we obtain 

t fi(O) t If(Q) 
r = ~ ,  r~l r F{)< ~ 1 =/j(Q), (12) 

r = l  = ~ i = l  

where j is any integer satisfying 0 4 / . 4 d - 2 ,  and Cj(Yr) is the sum of the interior angles 

of the d-polytope Pr at its/.-faces. (By definition r FJ)=0 if 2 's is not a face of Pr.) 

Let gjd(Q) be the number of incidences of ?'-faces of Q with facets of Q, that  is, the 

number of distinct ordered pairs (F~, Pr) for which F~cP~. Since each Pr is incident with 

exactly [~(PT) ]-faces we obtain 
t 

gj~(Q) = ~ /j(P~), 
r = l  

and since each ]-face of a (d+l)-polytope is incident with at least d + l - j  d-faces [5, 

Theorem 3.1.7], 
(d + 1 -/.) [j(Q) <~gjd(Q). 

Combining these relations we obtain the inequality 

t 

(d + 1 - j) It(Q) <r~=~/s(P~), 

and hence, using (12): 
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(13) For any~(d + 1)-polytope Q with/acets Pz ..... Pt, and/or any integer ] satis/ying 

0~<j~<d-2, 
t 1 t 

Cj(Pr) < d +  1 _ j ~/j(Pr).r=i (14) 
r = l  

This may be expressed verbally as follows: the average interior angle at a ?'-face of 

a (d +l)-polytope (the average being taken over all incident pairs of ?'-faces and facets) 

has a value strictly less than (d + 1 _ j ) - l .  We shall be particularly concerned with the 

case ?' = d - 2 ,  and in this case the average angle is strictly less than 1/3. 

As an example, consider (13) with d =2,  ] =0. If the convex 3-polytope Q has Pn n-gons 

(n=3,  4 . . . .  ) as facets, then, remembering that  the sum of the interior angles at the ver- 

tices of an n-gon is �89 inequality (14) becomes 

Z �89  2) pn < �89 ~ npn, 

which may be written ~ (6 - n) p,  > 0. 

This implies 3p a +2p4 +p~ > 0. 

Although this inequality is considerably weaker than (1), it is still sufficient to imply 

statement (2). In higher dimensions it seems as though inequality (14) becomes relatively 

stronger, and in any case, no analogue of (1) is known for d~>3. 

In  the remain3ng sections of this paper we shall repeatedly apply the contrapositive 

form of (13) to establish that  a given d-polytope P is a nonfacet. For this purpose it is 

necessary to estimate a lower bound for r and the methods of [11, w 3] enable us to 

do this. Let  P be any d-polytope and x be any unit vector parallel to the d-flat containing 

P but  not parallel to any proper face of P. If Px is the (d-1)-polytope that  arises by 

orthogona] projection of P on to a hyperplane normal to x, then Px is called a regular pro- 

?'ection of P. I t  can be shown [11, Theorem (10)] that  the angle sum r is a positive 

convex combination of the numbers �89 -[j(Px)) where Px runs through all the regular 

projections of P. Hence (compare [11, (23)]): 

~j(P) >/�89 - max 5(Px)). (15) 
x 

Thus, if we write Pr~ for the regular projection of Pr in direction x, we obtain from (14) 

and (15), 

(16) I / P 1  ..... Pt are the/acets o/ a (d + l)-polytope Q and 0~<~<d-2 ,  then 
t 1 t 

�89 r=l ~ ( / j (e~)-  max [j(P~x)) < ~  d +  1 - ?' ~ L(P')',=I= (17) 

d+ 1~. ~ 
or, equivalently, ~=1~/J(Pr) < d - 1  ~ max/j(P,~). (18) 



124 M. A.  P E R L E S  AI~D G. C. S H E P H A R D  

In both (17) and (18), max x/s(Prx) means the maximum value of/ j (Pr , )  as x ranges 

over all unit vectors parallel to the d-flat containing P ,  but  to none of the proper faces 

of Pr. 

In the case of an equifaeetted poly~ope Q, with facets combinatorially equivalent to 

P,  inequality (18) may be written in the simplified but  slightly weaker form 

d + l - ]  
]J(P) < d - 1 - ] mj(P), (19) 

where mj(P) means the maximum number of ]-faces that  occur among all the regular 

projections of all the d-polytopes eombinatorially equivalent to P. In w 4, inequality (19) 

will be used repeatedly in the particular case d =3, ] = 1: 

(20) I / P  is a 3-[acet, then there exists a polytope P '  combinatorially equivalent to P 

with the property that at least one o / the  regular projections P'x o / P '  is a polygon with more 

than �89 edges. 

Another useful form of (18) can be obtained as follows. Write ms(v, d) for the maxi- 

mum number of ]-faces of a polytope, the maximum being taken over all convex d-poly- 

topes with v vertices. (This number is denoted by #j(v, d) in [5, Chapter 10].) Then since 

Pr~ has at most [o(Pr) vertices, we deduce that  

max l~(P,x) <~ m~(/o(Pr) ,  d - 1 ), 
x 

d + l - ]  ~. 
and so, from (18), ]s(Pr) < mj(/o(Pr), d -  1). (21) 

r~: d - l - j r = :  

This form of (18) will be used in w167 5, 6 and 7, usually with the value ] = d - 2 .  If Q is equi- 

faeetted, then from (21) we obtain a relation identical with (19) except that  mj(/o(P), d - 1) 

is written in place of mj(P). This new inequality is weaker than (19), and in the three- 

dimensional case it is completely useless. Our discussion in w167 4 and 7 will be concerned 

essentially with showing that  certain polytopes P have the property that  every regular 

projection Px has strictly less than /o(P) vertices. In higher dimensions, however, (21) 

and deductions from it provide a very useful tool for finding nonfacets. 

We conclude with a theorem that, under certain circumstances, enables us to prove 

that  a polytope is a nonfacet by induction on the dimension. 

(22) Let P be a d-polytope dual to an equi/acetted polytope, and let S be a ( d -  1)-polytope 

combiuatorially equivalent to each vertex/igure o / P .  I]  S is a non/acet, then P is a non/acet. 
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Proo/. Suppose that  P is combinatorially equivalent to each facet of an equifacetted 

(d + 1)-polytope Q. Let  H be any hyperplane strictly separating one vertex F ~ of Q from 

the remainder, and let R = H  ~ Q. Then R is a d-polytope whose facets are the intersec- 

tions of H with the facets of Q meeting a t  F ~ Consequently R is equifacetted, and its 

facets are combinatorially equivalent to S. But  this is a contradiction since S is a non- 

facet, and so we deduce that  P is a nonfacet. This proves (22). 

4. Three-dimensional nonfacets 

Let P be a 3-polytope and suppose that  a certain regular projection P~ of P is an n-gon 

(3~n~</0(P)). The vertices and edges of Px are projections of some of the vertices and 

edges of P,  and the incidences of these vertices and edges are preserved under the pro- 

jection. We deduce that  the inverse image of the boundary of P~ under the projection is 

a simple closed pa th  of n edges on P, that  is, a simple closed circuit of length n in the 

1-skeleton, or graph, of P. Hence if we write h(P) for the number of edges in the longest 

simple closed edge-path on P, the inequality n <~h(P) must  hold. Consequently, in the 

notation of (19), ml(P ) <~h(P) and we deduce (see (19)): 

(23) I / P  is a 3-polytope and 

h(P) <~ �89 (24) 

then P is a non/acet. 

I f  P is simplicial (all its 2-faces are triangles) then / l (P)=3(/o(P)-2),  and (24) is 

equivalent to the s tatement  that  no simple closed edge-path on P contains more than  

/0(P) - 2  vertices. 

In  order to find 3-nonfacets, therefore, we look for 3-polytopes with short maximal 

simple closed edge-paths. In  constructing the following examples we have made use of 

the methods and results of T. A. Brown [2], J .  W. Moon and L. Moser [10] and B. Griin- 

baum and T. Motzkin [6] concerning edge-paths on 3-polytopes. 

Example 1. A 3-non/acet with 14 vertices and 24 triangular 2-/ace~. 

Let  X be a regular octahedron in E a, and let X '  be a polytope formed by  adjoining 

to each 2-face of X a triangular pyramid as described in w 2 (see Figure 3). X '  may  be 

regarded as the convex hull of X and eight points, each of which lies beyond one 2-face 

of X and beneath all the rest. These eight points must be chosen in such a manner tha t  

the line segment joining any  two of them intersects the interior of X. Then /o(X ' )  = 14, 

/I(X') = 36 and/2(X')  =24. We shall now show that  h(X')= 12. Following the terminology 
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Fig.  3 Fig.  4 

o f  [10], we refer to the six vertices of X as 0th stage vertices, and to the eight remaining 

vertices of X' as 1st stage vertices. Since no pa th  can join two 1st stage vertices without 

passing through an intermediate 0th stage vertex, and there are only six such vertices 

available, at  most six 1st stage vertices can occur in any  simple closed edge-path. We 

deduce that  h(X') <. 12. I t  is, in fact, easy to construct a simple closed edge-path contain- 

ing 12 edges, and so h(X')= 12 as claimed. Thus 

h(X') = 12 ~< ~. 36 = �89 

and therefore, by (23), X' is a nonfaeet. 

The next  two examples show the existence of 3-nonfacets with quadrilateral and 

pentagonal 2-faces. 

Example 2. A 3-non]acet with 38 vertices and 36 quadrilateral 2-/aces. 

Through each edge of X '  (Example 1) choose a supporting plane which meets X' 

only in tha t  edge. Each of these 36 planes bounds a closed half-space containing X', and 

the polytope X" is defined as the intersection of these 36 half-spaces. I f  X' and the sup- 

porting planes are properly chosen, then it is easy to see (Figure 4) that  /0(X")=38, 

/I(X") =72 and /~(X")=36, the 2-faces being quadrilaterals. We shall now show that  

h(X") =24. Fourteen of the vertices of X" are also vertices of X' ,  and we call these 0th 

stage vertices and 1st stage vertices as before. The 24 remaining vertices of X" will be 

called 2nd stage vertices. By  an argument similar to that  used in Example 1 we can show 

that  a simple closed edge-path on X" can contain at  most 12 vertices of stages 0 and 1. 

:Further, of the 24 2nd stage vertices, a t  most 12 can be included in a simple closed edge- 

pa th  since, as before, no edge-path can join two 2nd stage vertices without passing through 
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Fig. 5 Fig. 6 

an intermediate vertex of a lower stage, and there are only 12 such available. Thus 

h(X") ~<24. In  fact, equality holds since it is easy to find a simple dosed edge-path con- 

taining 24 vertices, and so 

h (X")=24~<�89  �89 ), 

and X" is a nonfacet by  (23). 

Example 3. A 3-non]acet with 542 vertices and 360 pentagonal 2.laces. 

To construct the polytope X ~ of this example we adjoin to each of the 24 2-faces 

of X '  an affine image of a polytope R'  defined below. 

Figure 5 represents a planar 3-connected graph. Define R to be any 3-polytope whose 

1-skeleton is combinatorially equivalent to this graph. Figure 5 can be thought of as 

representing a Schlegel diagram of such a polytope. That  R exists follows immediately 

from Steinitz' Theorem [5, Theorem 13.1.1], but even without using this theorem it is 

easy to construct R by  paring off three concurrent edges of a regular dodecahedron, and 

then cutting off one of the new vertices that  are formed (see Figure 6). 

I t  is apparent  from either Figure 5 or 6 tha t /o (R)  =25, /I(R)=39 and tha t  R has 

sixteen 2-faces of which fifteen are pentagons and one is a triangle. Let  z be any point 

beyond the triangular face of R and beneath the remaining 2-faces, and H be the plane 

containing the triangular face. Then if we apply a suitable p-transformation (see the proof 

of (9)) we obtain a polytope R'  of the same combinatorial type as R, which includes the 

triangular face H fi R and is entirely included in the triangular pyramid with base H fi R 

and apex z. By  a suitable affine transformation, the triangular face of R' can be made to 

coincide with any  one of the triangular faces F 2 of X' ,  and the point z can be made to 

l ie beyond F 2 and beneath all the other 2-faces of X' .  Thus we may  adjoin this copy of 

R '  to 2 '2. Repeating for each 2-face of X '  we obtain X ~ and it is clear from the construc- 

tion tha t  ]o(X~ /x(X~ and /2(X~ each 2-face being pentagonal. We 

shall now show tha t  h(X ~ 4276. 
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Fourteen of the vertices of X ~ belong to X'  and we call these 0th stage and 1st stage 

vertices as before. The remaining 24 • 22 =528 vertices of X ~ will be called 2nd stage 

vertices, and these lie in 24 sets (called clumps) of 22, each clump consisting of all those 

vertices of X ~ which lie beyond a particular 2-face of X'.  By an argument similar to that 

used in Example 1 we can show that a simple closed edge-path on X ~ contains at most 

12 vertices of stages 0 and 1. Any edge-path on X ~ which connects two 2rid stage vertices 

belonging to different clumps must necessarily pass through an intermediate vertex of a 

lower stage, and there are only twelve such vertices available. Hence we deduce that no 

simple closed edge-path on X ~ contains 2nd stage vertices belonging to more than 12 

different clumps, and therefore h(X ~ <~ 12 + 12.22 = 276. But then 

h(X ~ ~< 276 < �89 900 = �89176 

and so, by (23), X ~ is a non/acet. 

Example 4. A 3-non/acet which is simple. 

A d-polytope is said to be simple if exactly d facets are incident with each vertex. 

This example is of particular interest since no simple nonfacets are known in d > 3 dimen- 

sions (see w167 7 and 8). (1) 

Griinbaum and Motzkin have established [6, Theorem 1], for each even integer n ~> 4, 

the existence of a simple 3-polytope P~ with n vertices having the following property: 

every simple (open) edge-path on P~ contains less than 2n ~ vertices, where a = 1 - 2  -19. 

This implies that h(Pn) < 2n% and so, if we take n large enough, 

h(Pn) < 2n~ < �89 �89 " ~ n -  ~/l(Pn), 

and P~ is a nonfacet by (23). The smallest value of n for which 2n~<--.�89 is 22~~ alS'85a. 

Using the slightly smaller value ~ = 1 - 2  -18 mentioned in [6, p. 156] we can prove the 

existence of simple 3-nonfacets with as few as 2 ~1~ vertices, but this is still more than 

10a9, 456, so these polytopes are extremely 'large'. 

Example 5. To construct a 3-non/acet arbitrarily close to a given 3-polytope P. 

Suppose that we wish to find a non~acet P~ whose Hausdorff distance ~ from P is 

less than e (~ >0). First construct a simplicial 3-polytope P1 with at least eight triangular 

faces such that  Q(P, P1)<�89 Adjoin to each triangular face of P1 a tetrahedron as in 

Example 1, and denote the resulting polytope by P2. I t  is clear that  this can be done so 

that  ~(P1, P2)<�89 and then Q(P, P~)<~. We shall now show that P2 is a non~acet. 

(1) See the note at the end of this paper. 
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Since P1 is simplicial we have 

/o(P1) = n + 2, /1(P1) = 3n, /2(P1) = 2n 

for some integer n ~> 4, and 

/o(P2) = 3n  + 2, h (P~)  = 9n,  /~(P~) = 6n. 

By an argument similar to that  of Example 1 (ia which the vertices of P1 axe used as 

0th stage vertices and the remaining vertices of P2 as 1st stage vertices), we caa show 

that  h(P~) ~<2/0(P1) =2(n 32). But, for n >~4, 

- 1  p h(P2) ~ 2(n + 2) ~< �89 9n - ~/1(3), 

and so P~ is a nonfacet by (23). This example leads immediately to the following state- 

ment: 

(25) I n  the set ~3 o /a l l  3-polytopes in E a, the subset consisting o] simplicial non/acets 

is dense with respect to the Hansdor//  metric. 

Example 5 can be modified (following Examples 2 and 3) to prove similar assertions 

regarding the density of nonfacets with quadrilateral 2-faces or with pentagonal 2-faces. 

5. Regular polytopes which are nonfacets 

In the following list of regular d-polytopes we have marked those known to be facets 

by  a star (*) and those known to be nonfacets by a dagger (t)- 

d = 2 :  triangle*; quadrilateral*; pentagon*; n-gon* (n>~6). 

d = 3 :  tetrahedron*; cube*; octahedron*; dodecahedron*; icosahedron. 

d = 4: 4-simplex*; 4-cube*; 4-crosspolytope; 24-cell; 120-cell; 600-cell. 

d>~5: d-simplex*; d-cube*; d-crosspolytope. 

Here we prove two additional results, namely: 

(26) The d-croespolytope X d is a non/acet i / d  >~ 6. 

(27) The 600-cell is a 4-non/acet. 

The first of these statements is of particular interest for the following reason. The 

equifacetted (d+l)-polytopes whose facets are d-simplexes and those whose facets are 

eombinatorially equivalent to d-cubes have been widely studied and have many interest- 

ing properties. Statement (26) shows that  there is no analogous theory for (d + 1)-polytopes 

with facets combinatorially equivalent to d-crosspolytopes, at least for d~>6. We con- 

jecture that  X 4 and X 5 are also nonfacets but  our methods do not seem to be powerful 

8 t -- 672908 Acta  mathematica. 
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enough to prove this. l~Iore generally it seems plausible that  every regular poly%ope in 

the above list that  is not asterisked is a nonfacet, but  whether or not this is so is certainly 

a difficult question. By (9) we know that  if P is any regular d-polytope asterisked in the 

list, then there exist infinitely many combinatorial types of equifacetted (d + 1)-polytopes 

Q whose facets are combinatorially equivalent to P. Recently a stronger result has been 

proved [13], namely that  every (d + 1)-polytope can be approximated arbitrarily closely 

by  such a polytope Q. 

We now prove (26). Since all the vertex figures of a d-crosspolytope are ( d -  1)-cross- 

polytopes, we deduce from (22) that  in order to establish (26) it is sufficient to prove: 

(28) The 6.crosspolytope X n is a non~acct. 

The proof is by contradiction. Assume that  X ~ is a 6-facet, then by (19) with d=6 

and ] = d - 2 = 4 ,  
h(X s) < 3m4(X6). (29) 

for O<.]<~d-1, /J(Xd)=2J+l(id l ) ( s e e '  for example, [5, w 4.3]), so tha~]o(X')=12, Now, 

/ l (Xe)=60 and h(Xn)--192. Let  X~ be any regular projection of X 6. Since, for 0 < ] < 4 ,  

each ]-face of Xx 6 is the image of a ]-face of X e under the projection, X~ is simplicial. By 

the solution of the Dehn-Sommerville equations for simplicial 5-polytopes [5, w 9.5], we 

deduce 
h(X~)  = 2/1(X~) - 6/0(X~) + 12. (30) 

This equation will enable us to estimate /a(X~) and therefore md(X~). The number of 

vertices of X~ is at least six (since it is a 5-polytope) and at most 12 (=/0(XS)). We dis- 

tinguish three cases: 

(a)/o(X~) =12. Then/I(X~) <~/I(X e) =60, and so by (30), 

/,(X~) <2" 60 - 6 . 1 2  + 12 =60. 

(b)/o(X~) =11. One vertex of X + projects into the interior of X~, and the projections 

of the ten edges incident with this vertex do not lie on the boundary of X~, and so are 

not edges of X~. We deduce that  [I(X~) <50, and so by  (30), 

/~(X~) ~< 2.50 - 6.11 + 12 = 46. 

(c) 6 <.]o(X~) <~ 10. At least two vertices of X e project into the interior of X~ and there 

are at least 19 edges incident with these vertices. The projections of these edges of X a 

are not edges of X~, and so h(X~) <41. Hence by (30), 

h(X~) ~<2.41 - 6.6 § 12 = 58. 
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In  all three cases/4(X~) <~ 60, and so, if P is any polytope eombinatorially equivalent 

to X s, every regular projection of P has at most 60 4-faces. Therefore m4(X 6) ~<60. But  

/4(X ~) = 192 > 180 >~ 3m4(Xe), 

which contradicts (29). We deduce that  (28) is true, and so (26) is established. 

The argument we have used does not seem capable of modification to deal with the 

values d = 4  and d = 5 ,  and so these two eases remain open. 

We now prove  (27). Let P be any polytope eombinatorially equivalent to the regular 

600-cell, so that /0(P)  = 120, ]I(P)= 720, ]~(P)= 1200 and/a(P)  =600 (see [3, p. 292]). Since 

each 2-face of P is a triangle, every regular projection Px of P is simplieial, and so ]2(Px) = 

2(/0(Px)-2). But/o(P~) ~</o(P)=120, therefore/2(P~) ~<2. (120-2 )  =236 and consequently 

ms(P) <<-236. But then 

/z(P) = 1200 > 3- 236 ~> 3m2(P); 

so (19) does not hold, and P is a nordaeet. This establishes (27). 

Consulting the list of regular polytopes given at the beginning of this section, it 

will be seen that  there are still five undecided eases. The first is that  of the ieosahedron 

in E a, and in this ease we can obtain a partial result only. We can show that  if K is a 

polytope projeetively equivalent to the regular ieosahedron, then every  regular projection 

of K has a t  most ten edges. (As the proof of this s ta tement  is ra ther  long it is omitted). 

Since ]I(K)=30, it follows from (18) that  there exists no 4-polytope Q all of whose facets 

are projectively equivalent to the regular ieosahedron. On the other hand, Dr. L. Danzer 

constructed an example of a polytope eombinatorially equivalent to the regular ieosa- 

hedron, one of whose regular projections is a regular 12-gon (This is represented in Figure 7. 

The dodeeagonal projection is shown and the number  by  each vertex is the height of tha t  

vertex above the plane.) Thus (19) holds, and our criterion breaks down. We are therefore 

unable to decide whether the regular ieosahedron is a facet or a nonfacet. 

9 -  672908 Acta mathematica. 119, I m p r i m ~  le 17 n o v e m b r e  1967. 
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6. Nonfacets  in  d >i 4 d imens ions  wi th  a min ima l  number  o f  vertices 

A d-polytope P is said to be k-neighbourly if every k vertices of P are the vertices 

of a (k-1)-face of P. I t  can be shown that,  unless P is a simplex, it cannot be k-neigh- 

bourly for k > [�89 and that,  when d is even, every (�89 d)-neighbourly d-polytope is simptieial. 

The cyclic polytopes are examples of [�89 d-polytopes. For proofs of these 

assertions, as well as other properties of neighbourly polytopes, the reader is referred 

to [5, w 4.7 and Chapter 7]. I t  is conjectured that  within the class of all d-polytopes with 

v vertices, the simplicial [�89 d]-neighbourly d-polytopes with v vertices have the maximum 

possible number of ]-faces for l ~ < ] < d - 1 .  I t  is for this reason that  we consider such 

polytopes here; by maximising/s(P) it is simpler to establish that  inequalities such as (19) 

and (21) fail to hold, and therefore P is a nonfacet. In  addition there is the technical ad- 

vantage that  for simplicial [�89 d]-neighbourly d-polytopes P with v vertices, the numbers 

/s(P) are known explicitly as functions of v and d (see [5, Theorem 9.6.1] and (34) below). 

Denote by v(d) the smallest integer v for which the fo l lo~ng statement is true: If 

Q is a (d+l)-polytope whose facets P1 ..... Pt (t=/d(Q)) are simplicial [id]-neighbourly 

d-polytopes, then/o(Pr) <~v for at  least one r (1 <~r<~t). We put  v(d)= ~ if this statement 

is false for all v. We already know that  v(1)=2, v(2)=5 and v(3)~>6 (since there exist 

4-polytopes bounded entirely by oetahedra having 6 vertices). Also, by (8), v(d)>~d+2 

for d ~>4. From the definition of v(d) we deduce: 

(31) A simplicial [�89 d]-neighbourly d.polytope P with/o(P) >v(d) is a non/acet. 

Because of (31) it is of interest to determine upper bounds for v(d), and we shall 

now do this. We conjecture that  for all d>~4, v(d)=d+2. If this conjecture is true, then 

(31) will imply the existence of d-nonfacets with d +3 vertices. In  fact we shall be able 

to establish that  v(d)=d+2 only for d =6 ,  8, 9 and 10; for all other values of d~>4, the 

problem of determining v(d) remains open. We summarise our results in the next theorem. 

(32) Theorem. For l <~d<~lO, and d=~3, the number v(d) defined above satis/ies the 

/oUowing equalities and inequalities: 

d =  1 2 I 4 5 6 7 8 9 10 
I 

I 
v(d) = 2 5 I 8 10 11 12 
v(d) ~ ] 7 9 10 

(33) 

For d =3  we have no information except that  v(3)~>6. The cases d>~ 11 will be dis- 

cussed later. 
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Proo/. As in w 3, we write mj(v, d) for the maximum value of/j(P),  the maximum being 

taken over all d-polytopes P with v vertices. Let /j(v, d) be the number of ?'-faces of a 

cyclic d-polytope with v vertices (or of any [-~ d]-neighbourly d-polytope with v vertices, 

see [5, w 9.6]). Then by [5, Theorem 9.6.1], 

and 

/r 2n)=t=xi\~v~v-i-l]i_l ](? '-~+1)'  

~ ?.+2 ~ v - i - 1 )  
/J(v' 2n + l ) = ~=o i ~  \ i (?. i + 1  

- i + 1 ) '  

(34) 

for 0~<j<~d-1 and d=2n or 2 n + l  (n>~l). In particular, for j = d - 1  we obtain 

From (34) it follows that 

/,(v, 2n-1)=],(v, 2 n + l ) - ~ n ~ l ( V - : - l ) ( ~ n : l l )  

for 1 ~< ?. < 2n - 2, and so, in particular, 

i,v (:)_ (v-:-,) 

The upper bound conjecture [5, w 10.1] states that 

mj(v, d) = b(v, d) 

(35) 

(36) 

(37) 

for all j, v and d satisfying 0 < j < d < v .  Let us denote by UBC(j, v, d) the assertion that  

(37) holds. Then UBC(?', v, d) has been proved [5, Theorem 10.1.3] in the following cases: 

Ca) d<8,  

(b) d = 2 n ,  i = d - 1  and v>~n 2 - 1 ,  or 
(38) 

d = 2 n + l ,  ? . = d - 1  and v>~n2+2n-1, 

(c) d = 2 n + l ,  ? '=n and v>~�89 

as well as for certain other values of ?', v and d. 
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Let  Q be a convex ( d + l ) - p o l y t o p e  whose facets P1 . . . . .  P~ (t=]d(Q)) are simplicial 

[ �89 d-polytopes,  and  write /0(Pr)=Vr for r = l ,  .... t. B y  (21) wi th  j = d - 2  

we obta in  

t t 

]a-,(v,., el) = ~ /a 2(Pr) < 3 ~. ma-~(vr, d - 1). 
r = l  r = l  r - 1  

Hence,  for a t  least  one value of r we have  

]a_2(v, d) < 3ma_~(vr, d - 1). 

Choose such an r and  write v =vr. Each  ( d - 2 ) - f a c e  of P ,  is incident  with two facets  of 

P ,  and  since each facet  is a ( d -  1)-simplex, it is incident  with exac t ly  d (d -2 ) - f aces .  Thus,  

2/d_2(v, d) = ga-~. a-l(P~) = d/a-l( v, d), 

and  so, f rom these equalities and  inequalities, 

d]d_l(V, d) < 6ma_~(v, d - 1). 

I f  d < 9  then  b y  (38a) U B C ( d - 2 ,  v, d - l )  is true,  t h a t  is 

ma_2(v , d - l )  = ]d_~(v, d - - l ) ,  

and  therefore,  d]a_l(V, d ) <  6/a_~(v, d -  1). (39) 

We  now consider separa te ly  the  cases where d is even and  where d is odd. 

(a) d = 2 n  is even. Subst i tu t ing  in (39) f rom (35) we obta in  

n n - 1  ' 

or,  simplifying, v(v - 2n - 5) + 6n < 0. 

This  inequal i ty  holds whenever  v = 2n + 1 or 2n + 2. I t  also holds for v = 2n + 3 if and  only 

if n ~< 2. I t  never  holds for v t> 2n + 4. We deduce t h a t  

m i n v r ~ < v ~ S  2 n + 3 = d + 3  if n = l , 2 ,  

l_<r_<t [ 2 n + 2 = d + 2  if n = 3 , 4 .  

These  inequalities hold for every  (2n + 1)-polytope Q whose facets  are simplicial n-neigh- 

hour ly  2n-polytopes ,  and so 

$ 2 n + 3  if n = l , 2 ,  
v ( 2 n )  / 

( 2 n + 2  if n = 3 , 4 .  
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Hence we obtain the entries in table (33) for d =2 ,  4, 6 and 8. (Equal i ty  holds when d =2 ,  

6 and 8 since v(2)>~5, and v(d)>~d + 2  for d>~4 by  (8).) The value of v(10) cannot  be deter- 

mined in this manner  since UBC(8, v, 9) has no t  been proved for all v >~ 10. 

(b) d =2n § 1 is odd. Substi tut ing in (39) f rom (35) we obtain 

n - 1  n ( V n  

or, simplifying, v<2n +3 +3(n -1 )  -x 

for n > 1. Hence for n = 2 we obtain v ~< 9, for n = 3 we obtain  v ~ 10, and for n = 4 we obtain  

v ~<11. These values lead to the entries in table (33) corresponding to d=5, 7 and 9. 

The value v (1 )=2  is obvious and so we have proved all the assertions of the theorem 

except tha t  v(10) = 12. This will follow from: 

(40) I / n > ~ 2 ,  then v(2n) < v ( 2 n - 1 )  §  

Proo/. Let  Q be a (2n + 1)-polytope with facets Px ..... Pt (t =]2n(Q)) which are simpli- 

cial and n-neighbourly. Suppose that/o(P~) = vr for 1 ~< r ~< t. Le t  F ~ be a ver tex of Q, and 

suppose tha t  P1 ... . .  Ps are the facets of Q incident with F ~ A n y  vertex figure Q(F ~ of 

Q at F ~ is a 2n-polytope whose facets ( (2n-1)- faces)  are ver tex  figures P r ( F  ~ of P~ at  

F ~ (r = 1 . . . . .  s). Now it is easy to show (see (6)) t ha t  each P~(F ~ is a simplicial ( n - 1 ) -  

neighbourly (2n - 1)-polytope with vr - 1 vertices (since n/> 2). Hence 

v(2n - 1) >~ min (vr - 1) >~ rain (vr - 1) = min vr - 1. 
l_<r~<s l<r<_t l<_r<_t 

But  Q is an arbi t rary  (2n + 1)-polytope bounded by  simplicial n-neighbourly facets. There- 

fore, by  the definition of v(d), 

v(2n) <.v(2n- 1) + 1, 

and (40) is proved. 

If  we pu t  n=5,  s ta tement  (40) leads to the value v(10)=12 since we already know 

tha t  v(9)= 11, and the proof of Theorem (32) is completed. 

Examina t ion  of the above proof shows tha t  if U B C ( d - 1 ;  v, d) were known to be 

true for all v>d~>10,  then our methods would establish tha t  v(d)=d+2 for all d~>8. 

(We only need the upper  bound conjecture for even d because of (40).) The conjecture 

s tated earlier in this section would then be proved for d = 6 and all d >~ 8, and only the 

cases d = 4, 5 and 7 would remain open. Unfor tuna te ly  our methods seem to be too weak 

to establish the result for these three values of d. (The case d = 3, which is not  included 

in the conjecture, is completely open.) 
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If ,  on the  o ther  hand,  we use only  the  pa r t s  of the  uppe r  bound  conjecture  t h a t  have  

been  proved,  in pa r t i cu la r  (38b), t hen  i t  is s imple to establ ish,  b y  reasoning s imilar  to  

t h a t  used in the  proof  of (32), t h a t  

v(2n)<~n~-3, a n d  v(2n+1)<~n2-2, 

for all  n ~> 4. Using the  case d = 2n, ] = n -  1 of (21), (38 e) and  (36) we can show in a s imilar  

manner  t h a t  

v(2n) ~< l(n~ + 3n - 8) 

for  n/> 14. The  computa t ions  in this  case are  somewha t  more  involved,  however ,  and  to  

o b t a i n  the  numer ica l  resul ts  in the  cases n = 14, 15, 16, 17 we had  to consul t  tab les  of 

b inomia l  coefficients [9]. 

I f  d = 2n/> 10 and  2n + 3 < v < n ~ -  1, t hen  we cannot  prove  t h a t  m,~_l(v, d)=/d_l(v, d), 

b u t  a t  leas t  we know t h a t  m,~_l(V,d)<md_l(n2-1, d)=/,~_l(n~, l, d). Using this  and  

s imilar  facts  one can improve  the  uppe r  bounds  for v(d) sl ightly.  This  involves  a con- 

s iderable  a m o u n t  of computa t ion ,  which we omit ,  and  we mere ly  summar i se  the  resul ts  

as follows: 

F o r  11 ~<d~<30, the  tab le  below gives the  bes t  inequal i t ies  t h a t  we have  been  able  

to  prove  for v(d). 

d = 11 12 13 14 15 16 17 18 19 20 

v(d) <~ 21 22 30 31 41 42 54 55 69 70 

d = 21 22 23 24 25 26 27 28 29 30 

v(d)~ 85 81 104 92 124 103 146 115 170 131 

Also, for n ~> 14, v(2n)~< �89 3 n -  8), a n d  for  eve ry  e > 0  there  exis ts  an  n0(~ ) such t h a t  

for  n >no(e), v(2n) ~< �89 + 3  + l o g  (1 - e  -s) +e)  where  log (1 - e - ~ )  -~- -0 .1454 .  F o r  n/> 5, 

v(2n + 1) < n  2 - n((n - 2) log �89 + l )  - 1) (n + log �89 + 1)) -1 = n  2 - n log n + o(n log n). 

W e  conclude this  sect ion wi th  a t heo rem which is the  analogue  of (25) for d ~>4 dimen-  

sions. I t  is inc luded here because the  me thod  of proof  is ve ry  s imilar  to t h a t  of Theo- 

rem (32). 

(41) Theorem. In  the set Od o/all  d.polytopes in E d (d >~ 4), the subset consisting o/sim- 

plicial non/acets is dense with respect to the Hausdor// metric. 
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Proo/. Since the set of all simplicial d-polytopes in E a is dense in ~ ,  it suffices to 

show that  for every simplicial d-polytope p c  E d and for any given e > 0  there exists a 

simplicial d-nonfacet P 1 c  E a such that  if(P, P1) <e. 

As in w 2 we denote by C(v, d) a cyclic d-polytope with v vertices. Using the procedure 

described in the proof of (9) we adjoint to one facet of P a projective copy of C(v, d). 

This copy may be chosen in such a way that  the resulting polytope, which we denote by 

P(v), satisfies the condition Q(P, P(v)) <~. P(v) is clearly simplicial. If P(v) is a facet, then 

by (21) with j = d - 2 ,  

]a_~(P(v) ) < 3ma_2(/o(P(v) ), d - 1). (42) 

Writing ]o(P)= a and/a_l(P) = b, we obtain 

/o(P(v)) =/o(C(v, d)) + [o(P) - d  = v + a - d ,  

and /d-2(P(v)) = Id[~-l(P(v)) 

= 1 d(/a_l(C(v ' d)) +/a_l(P) - 2) 

= id(/a_~(v, d) +b -2 ) .  

Also, if v is large enough (say v>~d~) ,  by (38b) UBC(d-2 ,  [o(P(v)), d - l )  holds and so 

m,~_2(/o(P(v) ), d -  1) =/~_2(/o(P(v)), d - 1). 

Substituting these values in (42) we obtain the equivalent inequality 

d(/d_l(v, d) +b - 2 )  < 6/d_~(v + a  - d ,  d - 1). (43) 

Using the expressions for ]d_l(v, d) given in (35) we observe that  if d =2n  is even, then the 

left side of (43) is a polynomial of degree n in v with a positive leading coefficient, and 

the right side is a polynomial of degree n -  1. On the other hand, if d = 2n + 1 is odd, then 

both sides of (43) are polynomials of degree n in v, the leading coefficient on the left being 

2(2n + 1)(n!) -1, and that  on the right being 6(n!) -1. But 

2(2n + 1) (n!) -1 > 6(n!) -1 

since n/>2. Therefore in either case, if v is chosen sufficiently large, say v =v 1, then (43) 

fails to hold. We deduce that  P(vx) is a nonfacet, so that  P1 =P(vl) has the required pro- 

perties, and Theorem (41) is proved. 
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7. Nonfacets with a small nnmher of  j - faces  

In the last section we considered the problem of constructing d-nonfacets which 

were 'minimal' in the sense that  they had the smallest possible number of vertices. On 

the other hand, these nonfacets P usually had the (conjectured) maximum possible number 

of ]-faces for the given number of vertices, and our proofs depended essentially on the fact 

that  /d_t(P) was relatively large. We begin this section by constructing simplicial d-non- 

facets P with a large number of vertices, for which the ratio/~(P)//o(P) is arbitrarily close 

t o ( ~ )  (for l <~ j <<.d- 2) and to d - 1  (for j = d - 1 ) .  These ratios are, in a sense, the smallest 

possible in view of the lower bound conjecture (LBC) which states the following: 

I / P  is a simplicial d-polytope with v vertices, then 

/'(P)>I [ ~  ? for l < ] < d - 2 ,  

and /a_l(P) >~ (d - 1)/0(P ) - (d + l)(d -2) .  (44) 

(See [5, w 10.2] for the history of this conjecture and an account of those cases for which 

it has been proved.) Thus the LBC implies that  for any e >0, 

/j(P)//o(P)>~(~)-e for l ~ j  <<.d-2, 

and /~_I(P)//o(P) >~ d - 1 - ~, 

whenever P is simplicial and/o(P) is sufficiently large. 

A d-polytope P is said to be of type A(k) (k~>d+l) if it is simplicial, has k vertices, 

and equality holds in each of the relations (44). That d-polytopes of type A(k) exist for 

all d ~> 2 and all k ~>d + 1 is clear from the following construction. Firstly it is immediate 

that  a d-simplex is of type A(d+l ) .  Secondly, if P is a d-polytope of type A(k) and d>~2, 

then the convex hull of P and a point which lies beyond one of its facets and beneath all 

the others is a d-polytope of type A(k+ 1). (In other words, adjoining a d-simplex to any 

facet of a d-polytope (d ~> 2) of type A(k) in the manner described in the proof of (9) pro- 

duces a polytope of type A(k+ 1).) 

(45) Theorem. For each d >~4 there exists an in/inite sequence o/simplicial d-non/acets 

(Pk : d + l  ~<k< ~ }  such that 

lim ]o(Pk)= c~, 
k-->~ 
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and 
k--~ oo 

lim (fd l(Pk)//o(Pk)) = d - 1 .  
k--~ oo 

Proo/. Let P be a simplicial [�89 d]-neighbourly d-polytope with v vertices (an appr O- 

priate value of v will be determined later), and let m =/d_l(P) be the number of facets of 

P.  Construct a simplicial polytope P k by adjoining d-polytopes A1 .... , Am, each of type 

A(k), successively to all the m facets of P in the manner described in w 2. Then, using 

T d-1 to denote the (d-1)-simplex, 

/,(Pk) = /j(P) + m(/j(A1) - f,(T~-~)) = /j(P) + m (  (~) k - ( ~ + + 1 1 ) j - ( j  d l )  ) 

for 0 ~</" 4 d - 2, and 

f d _ l ( P k )  = m ( f a _ l ( A 1 )  - 1)  = m((d - 1)k - (d + 1)(d - 2 )  - 1). 

In  particular/0(Pk) =v + m ( k - d ) .  Thus, for any fixed value of v, 

lim (/j(P~)//o(Pk))=(d.l for 0~<?'~<d-2, 
k--~or \ ? /  

and lim (/d_l(Pk)//o(Pk)) = d - 1. 

To complete the proof of (45) we need only show that  if v is chosen appropriately, 

each polytope Pk is a noafacet. We use the notation vert K for the set of vertices of a 

polytope K, and write 

V = vert  P, 

W~ = vert A ~ v e r t  P (i = 1, ..., m), 

so that  vert Pk is the disjoint union of the sets V, W 1, ..., Win. I t  is clear that  any edge- 

path connecting a point of W~ to a point of Wj (j =~i) must contain a point of V, in other 

words, V separates the sets W~ in the graph of Pk. 

Let  Pkx be a regular projection of Pk. Each vertex or edge of Pkx is the projection 

of a unique vertex or edge of Pk, and we denote by Vx, WI~, ..., Wmx the sets of vertices 

of P~ which are images under the projection of vertices in V, W1 ..... Wm respectively. 

Then V~ separates the sets W~x in the graph of Pkx. Let  v, v z denote the number of vertices 

in the sets V, Vx respectively, and let wz be the number of sets W~z which are not empty. 

Then, by [5, Theorem 11.4.1] or [7, p. 1040], 
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<<.md_2(v~,d-1)<<.m,~_~(v,d-1) if vx>~d, 

w~ ~<2 if v z = d - 1 ,  

=1  if v ~ < d - 1 ,  

using the notation mj(v, d) introduced in the proof of (32). Since each set Wiz contains 

at  most k - d  vertices of Pk~, it follows that  

/o(P~x) <~ vx + (k - d) w~ <~ v + (k - d) m~_2(v, d - 1). 

This inequality holds not only for every regular projection Pk~ of the polytope Pk, but, 

by the same argument, for every regular projection of any d.polytope combinatorially 

equivalent to Pk. Hence we deduce that  

mo(Pk) <~v + (k -d)ma_~(v, d - 1). 

In order to show that  Pk is a nonfacet it is sufficient, by  (19), to establish that  

(d + 1) m0(P~) 4 (d - 1)/0(Pk), (46) 

or, substituting the values we have obtained above, 

(d + 1) (v + (k - d) ma_~(v, d - 1)) <~ (d - 1) (v + m(k - d)) = (d - 1) (v + (k - d)/a_l(v, d)). (47) 

By (38b) we may choose v sufficiently large for U B C ( d - 2 ,  v , d - 1 )  to hold. Then 

md_~(v, d -1)=]a_2(v ,  d - 1 )  and inequality (47) is equivalent to 

(k - d)(d + 1) 

_ _  d-1  
2v +/d_2(v,d_l)<~_~_i l]~_l(V,d)"  (48) 

We shall show that  this inequality holds for sufficiently large v in the special case k =d  + 1; 

it will then hold generally since the left side is a decreasing function of k for fixed v and 

k > d .  Substitute in (48) the values of [d_~(v, d - l )  and ]a_l(v, d) from (35). If d is even 

(d =2n  ~>4) then the left side is a polynomial of degree n -  1 in v and the right side is a 

polynomial of degree n with positive leading coefficient. If d is odd ( d = 2 n + l  ~>5) then 

both sides of inequality (48) are polynomials of degree n in v, the coefficient of v = on the 

left being (n!) -1 and on the right 2 ( d - 1 ) / ( d + l ) n ! .  Since d~>4, ( n [ ) - l < 2 ( d - 1 ) / ( d + l ) n  !. 

In both cases we conclude that  inequality (48) holds if v is sufficiently large. This implies 

(46) and so Pk is a nonfacet. (Closer inspection shows that  (47) always holds if d = 2 n ~ 1 2  

and v>~n~-2,  or d = 2 n + l  ~>13 and v>~n~- l ;  slightly larger values of v are required if 

d ~< 11.) This completes the proof of Theorem (45). 
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The method of constructing nonfacets Pk used in the above proof may  be modified 

as follows. Instead of adjoining to the facets of P d-polytopes A 1 ..... A m of type A(k), 

we may  adjoin d-polytopes B 1 . . . .  , B m of any combinatorial type, so long as one facet 

(at least) of each B~ is a (d-1)-s implex.  Then an argument  similar to tha t  given above 

will establish that  if all the B~ have the same number  of vertices and v is sufficiently 

large, the resulting polytope is a nonfacet. 

For d = 4  we get sharper results. Let  Q be a 5-polytope with facets P1 ..... Pt (t =/a(Q)) 

and let/0(Pr) =vr for 1 <~r<~t. Then by  (18) with i = l ,  2 and d=4 we obtain 

t t 

/I(P~) < 6 ~ (v~- 2), 
r ~ l  r = l  

t (49) 

/~(Pr) < 6 ~ (vr - 2). 
r = l  r = l  

I f  all the facets of each Pr are simplexes, then we can substitute/2(Pr) =2(/1(P~)-v~) in 

(49) (see [5, w167 9.5 and 10.1]) and obtain, after simplification, 

t t 

fl(P~) < ~ (4v r -  6). 
r ~ l  r = l  

This implies the following theorem (which includes (27) as a special case): 

(50) Every simplicial 4-polytope with v vertices and more than 4 v - 7  edges is a non]acet. 

Since no simplicial 4-polytopes with v vertices and less than 4 v -  10 edges are known, 

s tatement  (50) is rather strong. Further,  using the techniques described earlier, it is pos- 

sible to find simplicial 4-nonfacets with v vertices and as few as 4v - 10 edges. For example, 

a simplicial 4-nonfacet with 22 vertices and  78 edges may  be constructed as follows: 

Let  P0 be a simplicial 4-polytope of type A(8), so that  ]o(Po) = 8, ]l(Po) = 22, ]~(Po) = 28 

and/a(P0) = 14. Let  P be the result of adjoining successively 14 4-simplexes, one to each 

facet of P0, in the manner described in w 2. Then P is a simplieial 4-polytope of type A(22) 

with/o(P) = 2 2 , / I ( P )  =78, ]~(P)=112 and/a(P)  =56. We shah now show tha t  P is a non- 

facet. Removing the eight vertices of P0 from the graph of P completely separates the 

remaining 14 vertices of P. I t  follows, as in the proof of (45), that  a regular projection of 

P (or of any polytope combinatorially equivalent to P) has at most 8 +m~(8, 3) =8  + 12 =20 

vertices and therefore mo(P ) <~ 20. But  all the regular projections of a simplicial 4-polytope 

are simplicial 3-polytopes, so tha t  

ms(P ) = 2(m0(P ) - 2 )  < 2 ( 2 0 - 2 )  = 36 <�89 112 = �89 

and we conclude that  P is a nonfacet by  (19). 
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Using similar methods we can construct 4-nonfacets of type A(k) for every b >/22. 

(If ]c=8+14s+r>~22, where s>~l and 0~<r~<13, then a 4-nonfacet P~ of type A(k) can 

be obtained, for example, by adjoining r 4-polytopes of type A(s+5)  and 1 4 - r  4-poly- 

topes of type A(s +4) to the 14 facets of a 4-polytope of type A(8).) 

As remarked earlier, we have been unable to find any examples of simple noafacets 

in d ~> 4 dimensions. However we can find d-nonfacets which are simple at  most of their 

vertices, that  is to say, most of their vertices are included in exactly d facets. Such poly- 

topes may be constructed as follows: 

Let  P be a (fixed) simplieial [�89 d]-neighbourly d-polytope (d ~ 4) with v vertices and 

m =/~_l(v, d) facets. Let Rk be a simple d-polytope with k facets, and R~ be a d-polytope 

obtained by truncating R~ at one of its vertices. Then R;~ is simple and has k + 1 facets, 

one of which is a simplex. Let  Qk be a polytope that  results from adjoining successively, 

to the m facets of P,  projective images of R;~ as described in w 2. Then Qk is a d-nonfaeet 

if v is chosen large enough. (The required size of v does not depend upon k but is a function 

of d only.) Q~ has mk facets and is simple at all but  v of its vertices, these exceptional 

vertices being the vertices of P. In fact, however large k may be, at  most 

( d -  1) mg_~(v - 1, d - 1) 

facets of Q~ are incident at each exceptional vertex. 

In particular, if we choose Rk to be a polytope dual to a simplicial [1 d]-neighbourly 

d-polytope with k vertices, we obtain 

/o(Q~) = v  + m( /~_ l (k ,  d) - 1), 

)r =/j(v, d)+m/d_l_t(k, d) for 1 ~<j~<d-2, 

and /a-l(Qk) = mk. 

Hence, by taking k large compared with v, it is possible to find a d-nonfacet Qk which is 

simple at all but  a small fraction of its vertices and for which the ratio/j(Qk)//a-l(Qk) 

(0 ~<] ~<d-2) is extremely large. 

8. Remarks and open problems 

In the previous sections we have already mentioned a number of open problems con- 

cerning the characterisation of facets and nonfacets. Here we collect these together and 

indicate possible extensions and generalisations of our results. We remark, however, that  

many of these questions are likely to remain unanswered until the discovery of techniques 

more powerful than those based on angle sums that  have been used here. 

We begin with the problem discussed in w 6: 
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(i) What is the smallest number o/vertices possessed by a d-non/acet, /or each value o/ 

d>~ 3? 

We conjectured that  the  answer to this question is d +3,  and could prove this if 

the upper bound conjecture were true, except in the cases d = 3, 4, 5 and 7. The case d = 3 

deserves particular mention. Of the seven combinatorial types of 3-polytopes with six 

vertices [5, Figure 6.3.1], only three are known to be facets; it is unknown whether the 

other four are facets or  nonfacets. Consequently, although we have been unable to find 

3-nonfacets with less than 14 vertices (w 4, Example  1), it is possible that  3-nonfacets 

with as few as six vertices may  exist. 

Statements (25) and (41) suggest the following question: 

(ii) Is  the set o/al l  d-/acets in E ~ dense in the set ~)z o/al l  d-polytopes in Ed? 

Clearly (2) implies that  the answer is in the negative for d=2,  and we guess that  it 

is also in the negative for all d > 2. However, this will probably not be established using 

the methods of this paper. 

Other problems arise if we restrict at tention to certain classes of polytopes. Consider, 

for example, simplicial polytopes. For each d>~2 we know one example of a simplicial 

d-facet with d + 3  vertices, namely the pentagon if d = 2 ,  and the direct sum C2| d-~ 

of a square and a (d-2)-s implex if d~>3 (see (7) (iii)). We know of no simplicial d-facets 

with more than d + 3 vertices, so it is natural  to ask the following question: 

(iii) For every value o / d  >~ 3, does there exist a finite number s(d) with the property that 

every simplicial d-polytope with s(d) or more vertices is a d-non/acet? 

In  particular, is s(d)=d +4 such a number? 

Again the case d =3  deserves mention. On the one hand it is possible that  s(3) may  

not exist, so that  there are simplicial 3-facets with arbitrarily many  vertices. On the other 

hand, if, in the notation of w 6, v(3)=6, then this would imply that  s(3)=7.  Both extreme 

possibilities are compatible with the results we have obtained so far. 

We know even less about the class of simple nonfaeets. We have asked (see w 4 and 

w 7) the following question: 

(iv) Are there any simple d-non/acets /or d >~ 4? 

The existence of simple 3-nonfacets is shown in w 4. Generally we guess tha t  the answer 

to (iv) is in the affirmative,for all d ~> 4, but it seems tha t  the construction of such polytopes 

will be extremely difficult until more powerful techniques become available.(1) 

A related problem (suggested by the referee ) is as follows: 

(1) See t h e  n o t e  a t  t h e  e n d  of t h i s  p a p e r .  
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(v) I / P  is a simple d-/acet, does there always exist an equi/acetted simple (d + 1)-polytope 

whose/acets are combinatorially equivalent to P? 

The answer is obviously in the affirmative in the ease d = 2. 

The discussion of w 2 suggests the following question: 

(vi) Are there any/acets which are not super/acets? 

Again it seems likely tha t  the answer to this question is in the affirmative, though 

so far we have been unable to discover any  facet which is not also a supeffacet. 

Finally we mention a generalisation of the concept of a facet which may  be of some 

interest. Define a d-polytope P to be a (?', d)-]ace (?'~>1) if there exists a ( j+d)-polytope 

Q all of whose d-faces are combinatorially equivalent to P. Thus the proper ty  of being a 

(1, d)-face is the same as tha t  of being a d-facet. Many results of this paper  concerning 

facets lead to analogous questions concerning (?', d)-faces. In  particular, the following 

seem to be of interest: 

(vii) I /  j>~2, every (~, d)-]ace is obviously a ( ] -1 ,  d)-/ace. Formulate necessary and 

su//icient conditions/or the converse statement to be true. 

(viii) d-simplexes and d.cubes are (~, d)-]aces /or all ~ ~ 1. Are there any other polytopes 

having this same property? 

(ix) The 2-laces o / a  regular 120-ceU are pentagons, so that the pentagon is a (2, 2).lace. 

Is  it a (~, 2).lace/or any ] > 2 ?  

(x) Is  the 3-oetahedron a (2, 3)-lace? 

The reader will be able to formulate many  similar problems for himself in what is, 

at  present, a completely unexplored field of research. 

Added in proo/. Recently, using an extension of the methods described in w 4, D. W. 

Bamette  has established the existence of an enumerable infinity of simple 4-nonfaeets. 

Details will be published. 
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