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Abstract

We study a scheduling problem with changeover costs and capacity constraints. The

problem is NP-complete and combinatorial algorithms for solving it have not performed well. We

identify a general class of facets that subsumes as special cases some known facets from the

literature. We also develop a cutting plane based procedure and reformulation for the problem, and

obtain optimal solutions to problem instances with up to 1200 integer variables without resorting to

branch and bound procedures.



A key issue in scheduling is the effective allocation of shared resources to multiple

products, for instance, for a facility that incurs a changeover cost whenever it switches production

from one product to another. For example, in producing printed circuit boards, a plant might

include a machine that places a set of components on a board. Typically, the plant will produce

different types of boards, each with a different set of components. If it switches from one product

to another, the machine needs to change over to a new set of tools and thus incurs a fixed cost.

Each time it produces, the machine might also incur an additional set up cost for placing

components. The resource allocation problem in this product cycling model must trade off

changeover and set up costs against production and inventory holding costs.

We study the polyhedral structure of a dynamic, deterministic version of the problem. This

problem is NP-hard. As a result, the running time of all solution methods increases exponentially

with the number of time periods and products. In the next section, we present an integer

programming formulation of the problem. We then describe valid inequalities and facets for the

problem, solve the separation problem, and present computational results for problems with up to

4 products.

Magnanti and Vachani (1990), who give many further references to the literature on the

problem, developed a solution technique based on cutting planes for the constant capacity case.

This approach performed well on problems having up to 300 integer variables. Our results

generalize those of Magnanti and Vachani by providing a more extensive set of valid inequalities

and facets for the problem. We are able to solve larger problems to optimality with up to 1200

integer variables. For single item versions of these problems, the linear programming gaps (i.e.,

ratio of 100x(IP value - LP value)/IP value for a 'natural' formulation of the problem is between

75% and 83% and for multi item problems, the gaps are between 6% and 20%. In each case, we

are able to eliminate this gap completely by adding valid inequalities.

Several researchers have used a polyhedral cutting plane approach for the lotsizing problem

with start up costs. Wolsey (1989) used a cutting plane method that performed well for an



uncapacitated version of our model. Van Hoesel, Wagelmans and Wolsey (1994) described the

convex hull of this uncapacitated model. Van Hoesel (1991) and Van Hoesel and Kolen (1993)

studied a capacitated version of the problem with start-up costs, but without setup costs, which

they call the discrete lot sizing problem (DLSP) with start up costs. They introduced a class of

strong valid inequalities. Our results differ from those in Van Hoesel and Kolen in two ways (i) we

consider set up as well as changeover costs, and (ii) we derive valid inequalities and facets with

arbitrary integer coefficients whereas Van Hoesel and Kolen consider valid inequalities and facets

with 0-1 coefficients. Van Hoesel and Kolen (1994) also provide a complete linear description of

DLSP with start up costs and no set up costs using an enhanced set of variables.

Pochet and Wolsey (1994) provide a detailed survey of lot sizing algorithms and

reformulations. They provide many citations to the literature which we will not repeat. They

classify the problems into five categories (i) uncapacitated lot-sizing (ii) capacitated lot-sizing (iii)

lot-sizing with start-ups (iv) discrete lot-sizing and (v) multi-level lot-sizing. In this taxonomy, the

model we investigate is a discrete lot sizing problem.

1. Problem Formulation

We consider a single machine, multi-product, production planning model. Let T denote the

finite time horizon over which the facility is scheduled, P the number of products, dip the demand

in period i, and np the total demand for item p. We assume a constant capacity and follow a discrete

production policy, i.e, we either do not produce at all or produce to capacity in each time period.

This policy is reasonable when it is expensive to run the facility at less than full capacity, or when

demand is high and the facility is capacity constrained. It is also easily implemented. As shown in

Magnanti and Vachani (1990), without loss of generality we can assume that capacity in each

period is 1 unit and that demand is either 0 or 1.

We assume that the relevant costs for each product p in period i are the changeover cost Fpi,
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the fixed cost or the setup cost fpi, and the inventory holding cost gpi. Let zpi, Ypi and wpi denote the

0-1 changeover, setup, and production variables. We assume that demands are nonnegative, initial

production wp = 0, and no starting or ending inventory. The Changeover Cost Scheduling

Problem (CSP) can be formulated as follows:

3



(CSP) Minimize U = S=,P Si=1T{ gpiWpi + fpiYpi + FpiZpi}

subject to

Sj= Iwp > Sj= Idi for all p,i

Sj=lTwp = np for all p

Wpi-Yp; 0 for all p,i

Zpi+Ypi- -Ypi 2 0 for all p,i

Sp=, Ypi < 1 for all i

Wpi < 1, Ypi < 1, zpi < for all p,i

Wpi, ypi, Zpi > 0 and integer

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8).

Let CSP(L) denote the linear programming relaxation of CSP for this problem.

Constraints (2) and (3) are the demand constraints. Constraints (4) ensure that we can produce

only if the machine is set up. Constraints (5) ensure that if the machine is set up for product p in

period i (i.e., ypi = 1) but not in period i-1, then the changeover variable zi equals 1. Constraints

(6) ensure that we produce only one product in any period. Magnanti and Vachani (1990) give a

detailed formulation with all the underlying assumptions. They also show how to view this

problem as a specially structured network design problem.

To facilitate our discussion, we focus on the single product version of the problem.

Although a dynamic programming algorithm will solve this problem in polynomial time, we have

studied valid inequalities for the problem. There were two motivations for doing so. First,

generalizations of these inequalities apply to the multi-product problem (which is NP-complete) or

for problem settings with arbitrary demands and varying production capacity over time. Second,

the inequalities provide us with a better understanding of the polyhedral structure of the problem.

Let SCSP denote the single product version of the problem and SCSP(L) the linear
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programming relaxation of SCSP. Since this model has only one product, we drop the subscript

and superscript p. Let d(i,k) = St k dt denote the total demand in periods i through k, and tk denote

the kth time period in which demand dj = 1. If k<i, we define d(i,k) = 0. Since we do not produce

in periods after tn, we assume that t = T. The constraint Si=tkwi 2 Si= t"d implies the constraints

Si= twi 2 Si=ltdi for t = tk+l through tk+, - 1 because d i = 0 between these periods. Therefore, we can

drop the demand constraints for all periods except the periods t1, t2,... . ,tn. If the demand equals 1

in periods 1 through j, then yi = w; = 1 for all 1 < i < j. Consequently, the problem reduces to

finding a schedule for periods j+l through T. Therefore, to exclude uninteresting cases, we

assume that t, 2 2.

2. Valid Inequalities

We consider a general class of valid inequalities for SCSP. To motivate the discussion,

consider the following example. Assume that the costs F = F, f = 0 and g = 0 are constants and

that t = T. Then z = /T, yi = wi = 1/T for all i is an optimal fractional solution for SCSP(L).

This solution has a fixed cost of F/T instead of the optimal integer cost of F. If we let T approach

infinity, then the gap (ratio) between the optimal objective values of SCSP and SCSP(L)

becomes arbitrarily large. Note that since we must produce at least once up to period t, we must

turn on the machine at least once before t. Therefore, X.=,t'z 2> 1 is a valid inequality that cuts off

the fractional solution. We obtain this inequality by replacing the variable wi by z in the demand

constraint i=,t'wi > 1. In general, to develop valid inequalities we will substitute values of z;

and/or yi for w i in the demand constraints.

Suppose we replace any single term w; by z in the inequality w 1+w 2+...+wt, > 1. The

following feasible solution violates the inequality: turn the machine on in period i-1, keep it on for

the next period and produce in period i. To satisfy demand beyond t, we produce in periods after

t,. However, if we replace wi_, by z-1 or yi-, the feasible solution satisfies the inequality. Similarly,

if we use zi-_ and z in periods i- 1 and i, then we need to replace w_2 by Yi-2 or zi_2.
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Consider the inequality w,+w 2+....+wt2 2 2. Suppose we replace w i by zi for some i < t1 ,

and impose the condition that period i-i contains y or zi-1. In this case, we need to produce twice

to meet the demand up to period t2. The inequality is not valid: we can produce in periods i-i1 and i.

To obtain a valid inequality, we could replace wi2 by Yi-2 or zi-2 and wil by (Yi-l+zi-). Then if we

produce twice in the interval I i-2,..,i}, the lefthand side of the inequality equals at least two units,

and the inequality is valid.

In general, whenever any period i* contains the term z, we need to compensate for this

term by introducing appropriate terms in periods prior to this period. If we produce in period i*, we

need to turn the machine on in some period i'i* and keep it on in the interval { i',... ,i }. We want

to ensure that if we produce r times in this interval, then for any feasible solution, the terms in

periods i' through i in the inequality add up to at least r units. Recalling that tj denotes the period at

which the jth demand occurs, we next introduce some nomenclature that we will use throughout

our discussion.

Demand interval j. Demand interval j is the interval {tjl+l, tjl+2, ..., t}.

Contribution. We say that the sum of the terms on the lefthand side of any inequality

associated with some sequence of machine operations (or some set of time periods) is the

contribution of that set of operations (or time periods).

For example, suppose we turn the machine on in period 2 and keep it on until period 5, producing

in periods 3 and 4. Suppose the inequality in the interval from period 2 through 5 has the form:

..... +w 2+y 3+Z 4 +W 5+ ....

This set of operations (or the periods 2 through 5) contributes 1 unit, since w 2 = O, y3 = 1, z 4 = 0

and w5 = 0.

2.1 Partition Inequalities.

6



We begin by considering a class of valid inequalities, which we call the partition

inequalities (PI). Later, we introduce a more general class of inequalities and show how we can

tighten them to

obtain facets. We consider inequalities of the form

Siewi+SieYYi+SiezciZi+Sicyz(yi+ciZi)+Siewz(Wi+CiZi) > q

q= 1l,...,n ( PI)

obtained by replacing the terms w i in the demand constraints by the terms yi, cizi, Yi+ciz i, or

wj+cizi. Subsets W, Y, Z, YZ and WZ consist of periods i that contain the terms wi, Yi, Zi, yi+cizi,

and wi+cizi, respectively, for some integer cil. Let L = { 1 .... tq}. Then W, Y, Z, YZ and WZ

are disjoint subsets of L that partition L: that is, W>>Y>>Z>>YZ>>WZ = L.

Example

Suppose q=3 and t=5, t2=6 and t3=7. Then

y1+(Y 2+Z2)+(y 3+2z 3)+3z 4+2zs+z6+w 7 2 5

is a valid inequality.

Notice that if we produce in any three periods, the lefthand side equals at least 3. For instance, if

we turn the machine on in period 3, and produce in periods 3, 4, and 5, then periods 4 and 5 do

not contribute to the lefthand side. To compensate for this, period 3 contributes two extra units

beyond the one unit for producing in that period. In general, we need to specify integer coefficients

for the variables z in any partition inequality to ensure that it is valid.

2.2 Skip Inequalities

To generalize the partition inequalities (PI), we consider another class of inequalities,

which we call "skip" inequalities (SI). We say that an inequality extending up to period tq skips a

time period itq if iceW>>Y>>Z>>YZ>>WZ. Let S denote the set of all time periods skipped up to tq.

Then W>>Y>>Z>YZ>>WZ>>S = L I { 1....tq . Let b = Q2SQ denote the number of periods the

inequality skips. For any b < q, the skip inequality is of the form:

7



q = l,....,n.

The righthand side m(tq) of this inequality and the coefficients ci are constants whose values

we need to specify. We first introduce some notation. For ti, we define an [i,t] on-interval as

a sequence of periods i, i+l,..., t with zi = 1, y; = Yi+, =...= Yt=l, and zi+l =...= z = Yt+ = 0. By

definition YT+ = 0. For any period i and any period ti, let ny,(i,t), n,,(i,t), n,(i,t) and n(i,t)

denote the number of periods in Y>>YZ, W>>WZ, Z and S in the interval (i,i+l,...,t). We define

these quantities, as well as d(i,t), to be zero whenever t < i. For any on-interval [i;t], the n(i,t)

periods in Z other than period i and the ns(i,t) periods do not contribute anything to the inequality

even if we produce in these periods. Therefore, we need to compensate for these periods by

introducing a large enough coefficient ci for zi in period i. Let nW(i,t) denote the number of periods

in W>>WZ<<(i,i+l,...,t) with wj = 1.

Note that if for all periods 1 < i < tq, ci > nz(i,tq), then (SI) is valid since the contribution

ci+nw(i,t)+ny(i,t) in any on-interval [i,t] is at least n(i,t)+nw(i,t)+nyz(i,t), an upper bound on the

number of productions in the interval. Summing over all on-intervals in any feasible solution

shows that the inequality contributes at least q units and so if m(tq) < q, it is valid. Choosing the c

coefficients to satisfy the inequality c 2 nz(i,tq) gives a valid inequality, but one with coefficients

that are too large. We next define better bounds on these coefficients.

Consider any feasible solution, and let P(i,j) denote the number of productions in

nonskipped periods in the periods i through j. P(l,j) is at least d(l,j)-ns(l,j). Since P(l,j) P(l,k)

for j 2 k, P(l,j) m(j) | max {d(l,k)-ns(l,k): 0 < k < j}. Note that since d(1,0) = n(1l,O), m(j)

O0. The quantity m(tq) defines the righthand side of the skip inequality.

Notice that since d(l,k) > d(l,k-l) only if k = tr for some 1 < r < n, m(j) = max {m(tr): tr <
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j . Morevover, if m(tq) = m(tql) < d(l,tq)-ns(l,tq) = q-b, then the skip inequality for period tq_1

dominates the skip inequality for period tq. Therefore, we assume m(tq) = q-b.

Since all the coefficients in the skip inequality are nonnegative, to show that they are valid,

we can restrict our attention to production plans with exactly P(1,tq) = m(tq) = q-b productions in

nonskipped periods in the interval 1 to tq. We produce the remaining quantity for satisfying

demand in the periods 1 to tq in the b skipped periods and for the demand in the periods tq+l, tq+ 2 ,

... , T after tq. Since P(l,t) = P(1,j-l)+P(j,t) < m(tq) for any i < j < t, and P(l,j-1) m(j-l), P(j,t)

< m(tq)- m(j-l). Therefore, the required production in periods j through tq is at most D(j) m(tq)-

m(j-1), which is a derived "demand" for these periods.

We will use this observation to obtain a bound on the coefficients ci in the skip inequality.

For any two periods i < k, P(i,k) < nyz(i,k)+nz(i,k)+nw(i,k). Therefore, for any two periods i < t,

P(i,t) = P(i,j-l)+P(j,t)

< nyzij-l)+n(i,j - )+n(i,j- 1 )+min { D(j),

nyz(jt+n,t)+n(,t)+nW(jt) }

< nyz (i,j-1)+nw(i,t)+min {D(j),

nyz(j,t)+nz(j,t) }.

As a result, the contribution ci+ny(i,t)+nW(i,t) in periods i through t exceeds the production P(i,t) if

c1+ny,(i,t) > nyz(i,j- 1)+nz(i,j- 1)+min { D(j), nyz(j,t)+nz(j,t) }

for any i < j < t and, consequently, if

ci+nyz(i,t) N(i,t) I

min<j<t{ nyz(i,j- 1 )+n(i,j- 1 )+min { D(j), nyz(j,t)+nz(j,t) }.

The following three properties are consequences of the definition of N(i,t).

P 1. For any i < t, N(i,t) = nyz(i,t')+nz(i,t') for some i < t' < t.
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P2. For all t > i, N(i,t+l) 2 N(i,t) and N(i+l,t)+l 2 N(i,t) > N(i+l,t).

P3. Suppose N(i,t) = nyz(i,t')+n(i,t') for some i < t' < t. Then N(i,r) = N(i,t) for all t' < r t.

We establish these properties in Appendix 1.

We apply these properties to determine the coefficients ci. Let i* be the minimum value of t

satisfying the equation N(i,tq) = nyz(i,t)+nz(i,t). If N(i,tq) = 0, we define i* = i. We choose c =

nz(i,i*). We refer to i as the look ahead period for period i. Notice that if we define D(tq+l) =

0, then N(i,tq) = nz(i,i*)+nyz(i,i) = nz(i,j-l)+nyz(i,j-l 1)+D(j) for some period j i.

By property P3, for any t > i, N(i,t) = N(i,tq), and therefore ci+nyz(i,t) = nz(i,i )+nyz(i,t) >

nz(i,i*)+nyz(i,i*) = N(i,t). For t < i, ci+nyz(i,t) = nz(i,i*)+nyz(i,t) n(i,t)+nyz(i,t) 2 N(i,t).

Therefore, ci+n(i,t) > N(i,t) for all periods t i.

We restrict the class of skip inequalities to those that satisfy the following condition.

Compensation Condition. For any period i, ci = nz(i,i*).

We can interpret this condition as follows. Any on iterval [i,t] contains nz(i,t) periods in Z,

and except for period i, none of these periods contribute to the inequality even if we produce in

them. Therefore, the coefficient c must compensate for these periods. However, we need to

compensate only for periods up to i*, the look ahead period.

Example

Suppose q= 7, t = 2, t2 = 6, t3 = 7, t4 = 8, t5 = 14, t6 = 15 and t7 = 16, and we skip periods 3 and

4 so that b = 2. Then the following terms satisfy the compensation condition.

... +yS+(W6+z 6)+(w 7+z 7)+(w 8+z 8)+(y 9 +z 9 )+(y 10 +2z1 0 )+3z1 1+2Z1 2+Z1 3+...

For instance, for i = 6, N(6,16) = ny(i,8)+nz(6,8)+D(9) = 3. Therefore, i = 11, and c6 > nz(i,i*) =
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1.

Proposition 1. The skip inequality (SI) is valid if it satisfies the compensation condition.

Proof.

The compensation condition implies that ci+ny,(i,t)+nw(i,t) 2 N(i,t)+n'(i,t) for any on interval [i,t].

The quantity N(i,t)+nW(i,t) is an upper bound on the production in nonskipped periods in the on

interval [i,t]. Adding over all on intervals in any feasible solution shows that the total contribution

of the skip inequality is at least as large as the total production in periods 1 through tq in

nonskipped periods. Since we skip b periods and produce at least q times up to period tq in any

feasible solution, we produce at least q-b times in nonskipped periods. Therefore, the skip

inequality is valid.

For example, suppose q=5 and t=4, t2=8, t3=9, t4=10 and t=12. If we skip periods 8 and

9, then b=2. The following inequality

Wl+Y 2+(Y 3+z 3)+(w 4+z 4)+(Ys+ Z5)+2z 6+z 7+w lo +y l l +z l 2 > 3

is valid.

Corrollary 1. Every feasible solution contributes at least m(t) units in the interval 1 through t.

Proof. The contribution of periods 1 through t is at least equal to the number of productions in

nonskipped periods up to period t, which in turn is at least equal to m(t).

The partition inequalities (PI) are special cases of the skip inequalities with b = 0.

The following partitioning inequalities (pi) of Magnanti and Vachani (1990) are special versions of

our inequalities (PI)
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S_=1w±SiJewi+Sieyi+SiezZi 2 q.

In this expression, tq l+l < j < tq (implying D(k) = 1 for all k > j) and the sets W, Y and Z are

subsets of {j, j+l,..., tq}. The inequalities (pi) confine periods ieZ to the interval {tql +2, ... , tq}

and do not contain any terms in YZ or WZ. Inequalities (PI) allow ieZ anywhere in the inequality.

Magnanti and Vachani impose the following conditions on inequalities (pi):

i) period joeZ, and

ii) if ieW, then i+ 1 eZ.

Since we include the periods up to j-l in W, condition (ii) implies (i), which in turn is

implied by the compensation condition for partition inequalities (PI): that is, if period i lies in the

interval {tq l+2 , .... , t and ieZ, then i-lceW. Otherwise, the look ahead period for period i-l is

period i and the sum of the coefficients of Yi-1 and zi-1 is zero which is less than one, the number of

periods in Z until the look ahead period.

Notice that the skip inequalities satisfy the property that in any on interval starting in period

i, if we produce k < N(i,tq) units then the on interval contributes k units. However, Van Hoesel

and Kolen (1993) have described a set of inequalities (hole and bucket inequalities) that do not

satisfy this property (a hole is a skipped period). For instance, if q = 3, and t = 4, t2 = 6 and t 3 =

7, then Yl+z 2+y 3+z 4+y5+z 6+z 7 > 2 is a valid hole and bucket inequality. If we produce twice in on

interval [1,2], then N(l,tq) = 2 but the on interval contributes only one unit. The hole and bucket

inequalities restrict the coefficient of zt to 0 or 1 in each period. Using the ideas developed in this

paper, it is possible to generalize the hole and bucket inequalities to obtain more general inequalities

with coefficients ci > 0. We will pursue this development in a subsequent paper.

3. Separation Problem

We solve the separation problem for special cases of the partition inequalities (PI) using a

linear programming based approach. Previously, in other problem contexts, Eppen and Martin
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(1987) and Pochet and Wolsey (1994) have used this approach, enabling them to state an expanded

reformulation of a problem that implicitly includes all valid inequalities that they use in the

separation problem.

There are two advantages of using a linear programming based approach. First, rather than

explicitly considering an exponential number of inequalities, this approach enables us to

reformulate the original problem (SCSP) as a linear program with a polynomial (in T) number of

variables and constraints. Second, this approach might have computational advantages: it might be

more efficient or simpler to solve the reformulated problem as one linear program rather than solve

a sequence of linear programs in a cutting plane based procedure, solving a separation problem

each time we encounter a fractional solution.

The separation problem can be described as follows. Given a fractional solution (w*, y*,

z*) to the linear programming relaxation of the problem SCSP, we want to determine if (w*, y*, z)

violates a particular set of valid inequalities. Let P denote the set of coefficients for the valid

inequalities in the sense that (g,d)(EP if and only if g(w, y, z) 2 d is one of the valid inequalities in

the set. Suppose we solve the following optimization problem

n = min g(w*, y*, z*) - d

s.t. (g,d) (E P

If n > 0, then g(w*, y*, z) > d for all the valid inequalities in our set. If n = g*(w, y, z*) < 0,

then g*(w*, y*, z) < d is the most violated inequality from this set.

In certain cases, we can describe the set P as a polyhedron (or a projection of a polyhedron

with additional variables). For example, suppose we consider the subset of partition inequalities

that partition only the last demand interval (tq- +l,...,tq) for some q = 1,2,...,n. In this case, m(tq)

= q and D(i) = 1 for any period tq-l+l < i < tq, and, therefore, the coefficients in the resulting

partition inequality are all less than or equal to one. The compensation condition reduces to the
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following condition: any period iEZ, i tq-l+2, in this interval must be preceded by period i-

i(EY>>Z. For this set of inequalities, we can describe the set P = {(g,d = (a,b,e,d)} by the

constraints in the following separation problem.

(SEP)

Min n = Inq=l[tqi=tq- 1+ { wi aiq+yi*biq+zi*eiq} - dq] (9)

subject to:

aiq+biq+eiq - dq = 0 tq l+l < i < tq-l 1 < q < n (10)

bjq+ejq - ei+l,q 0 tq4l+l < i < tq- 1 < q < n (11)

Inq=ldq < 1 (12)

all aiq, biq, eiq, dq (E {0, 1}.

Constraint (12) ensures that dq = 1 for at most one value of q. If dq = 1, constraint (10)

ensures that exactly one of the three variables aiq, biq, or eiq equals 1 for each period tq l+l < i < tq.

When dq = 1 the last period in the inequality is tq. Constraint (11) ensures that the inequality

satisfies the compensation condition, i.e., if period i+l(EZ, then period i(EY>>Z.

If the solution (w*, y*, z*) violates any inequality, then by setting set aiq = 1 for iCEW, biq =

1 for iEY and eq = 1 for iEZ, and dq = 1, we see that Ji=lq-'Wi '+i(EWWi +iEYYi +i(EZi* < q.

Since i=,t-'w* > q-1 in any fractional solution, iEwi*+iEYYi *+iEzzi* < 1, and so n < 0. If the

point (w*, y, z) satisfies all the inequalities, then n > 0. Since the solution with all variables a, b,

m and d equal to zero is feasible, n < 0. Therefore, n = 0 if and only if (w*, y*, z*) satisfies all of

the inequalities.

Suppose we drop the constraint Inq=ldq < 1. If we subtract equation (10) from equation

(11), then each variable aiq, biq and Ciq appears in at most two constraints, and if in two, with

opposite signs. Therefore, the constraint matirix is unimodular and we can eliminate the integer
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constraints and solve the integer program as a linear program. Notice that if we drop the constraint

Inq=ldq < 1, then n is unbounded from below if and only if the solution (w*, y*, z) violates any

inequality since we can set dq to an arbitrarily large value. Therefore, the following dual problem

has a feasible solution if and only if the solution (w*, y*, z*) satisfies all the inequalities.

(D) Max O

subject to

Pi < W;i

Piq+riq < Yi

Piq+riq-ri-l,q < zi

E qi=tq+liPiq = 1

r 0O.

tql+l <i tq, 1 q<n

tq-l+l <i <tq, 1 <q<n

tql+l < i< tq, 1 <q<n

1 <q<n

We have shown that a fractional solution (w*, y*, z*) satisfies all of the inequalities that

partition the last interval if and only if this problem is feasible. Therefore, if we append these

constraints to SCSP(L), the linear programming relaxation of SCSP, the following reformulation

implicitly includes all such valid inequalities.

(R) Minimize U = Si=lT{ giwi+fiyi+Fizi}

subject to

Piq < tq+l <i< tq, 1 q < n

Piq+riq< Yi tql+l << tq, 1 q < n

Piq+riq-ri-l,q < Zi tql+l < i tq, 1 < q < n

J=i=tql+Piq = 1 1 < q < n

Ii=lTwi = n, w i < Yi, yi-l+zi > yi, w, y, z, r > 0.

Let l(q) = tq-tql1+l. The demand interval q has 0 (2 '(q)) partition inequalities since each time
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period can be in W, Y or Z subject to the condition that i(EZ implies that i-l(EY>>Z. If 2' = max

(2 '(q): l<q<n), then the problem has 0(2') inequalities. However, the reformulation contains only

O(T2) variables and constraints.

The approach we have just developed applies to more general inequalities. We say that the

sequence of periods i, i+l, ..., j is a {i,j} yz structure if it satisfies the following properties:

(i) period i-l(EW>>S and period i(EY,

(ii) period j(EZ, cj = 1 and period j+I(EW>>Y>>S,

(iii) period t(EYZ>>WZ>>Z for i+l < t < j.

We consider a special class of partition inequalities called single sequence partition

inequalities. These inequalities satisfy two properties.

(i) they contain no terms of the form wi+cizi for c; 2> 1 and do not skip any periods (therefore, D(i)

= q-r if i(E {tr+l, ... , tr+l }); and

(ii) each yz structure contains one set of contiguous periods from Y>>YZ followed by a sequence of

periods in Z, and has a form like

Yi+(Yi+l +Zi+l)+(Yi+2+Zi+2)+(Yi+3+Zi+3)+Zi+4

Yi+(Yi+l +Zi+l)+(Yi+2+2zi+2)+(Yi+3+2zi+3)+2Zi+4+Zi+5,

or yi+(Yi+l+Zi+l)+(Yi+2+2zi+2)+(Yi+3+3 i+3)+4zi+4+3 i +6+zi+7

Note that the coefficients of z, in the leading Y>>YZ terms are increasing up to some period

at which point they remain the same until the last period in Y>>YZ. The coefficients of z, in the Z

terms are decreasing. If t is the last period in Y>>YZ (and so t+l is the first period in Z), then the

coefficients also satisfy the one of the following conditions: (i) c+1 = ct < D(t), or (ii) c+1 = ct+1 =

D(t).

To model these inequalities, we must specify not only the coefficients aq, bq of w i and y as
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before, but also the coefficients of the terms in the more elaborate yz structures. To do so, we let,

(i) biq(k,j) be a 0-1 variable that indicates whether or not the inequality extending up to

period tq contains a term of the form (yi+ciz;) with ci = k in period i, which is in the jth

position after the first period t(EY in the yz structure. In particular, bq(0,1) indicates

whether the inequality contains the term yi.

(ii) eiq(k,j) be a 0-1 variable that indicates whether or not the inequality extending up to

period tq contains a term of the form ciz, with c i = k 2> 1 in period i, which is in the jth

position after the first period tEY in the yz structure.

Given a fractional solution (w*, y*, z*) we can solve the separation problem by solving the

following linear program.

Min nq=l[Xtq= wi*aiq+Yi kO )j=k)biq(k) k=( =D(i) l 2D(i) eiq(k,j) }-dq]

subject to:

aiq+.k= D(i)-j=k+l D()biq(kj)+k=l D(i)j=D(i)+l 2D()eiq(kj)
- dq = 0

1 <i<tq; 1 <q<n (1)

bbq(k- l ,j- l)+bq(l,(k,j) > 0

1 < k <j-1 < D(i)-i (2)

bjq(k,D(i)) - e+l,q(k,D(i)+l) > 0

1 < k <D(i)-l (3)

bq(D(i)- 1,D(i)) - ej+l,q(D(i),D(i)+l) > 0 (4)

e iq(k+l,j-l)- ei+,q(k,j) > 0

1 < k < D(i)-l; D(i)+2 < j < 2D(i) (5)

Enq=Idq < 1 (6)
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ajq, biq(k,j), eiq(k,j), dq (E {0,1 }.

Constraints (1) ensure that we choose at most one of the terms aiq, biq(kj) or eiq(k,j) for

each period i. Constraints (2) ensure that if period i+l has the coefficient bi+1,q(k,j), i.e., the

inequality has the term (yi+l,,+kzi+l,,) in the jth position, then it has the term (yi+kzi) or the term

(yi+(k-l)zi) in period i for k < j-l < D(i)-l. Constraints (3) ensure that if period i+l(EZ, j = D(i)+l

and k < D(i)- 1, then period iEY>>YZ and the coefficients of zi and zi+1 are the same. Constraints (4)

ensure that if period i+l(EZ and j-l = k = D(i), then period i(EY>>YZ and the coefficient of zi is

D(i)-l. Constraints (5) ensure that if period i+l(EZ in position j 2 D(i)+2 has coefficient k, then

period i(EZ has coefficient k+l in position j-l. Constraint (6) ensures that gq is one for at most one

value of q, i.e., the linear program chooses at most one inequality.

Using an approach similar to the one we used before, we could formulate an integer

program for the separation problem for these inequalities with a unimodular constraint matrix, i.e.,

a constraint matrix equivalent to a network flow problem. This enables us to reformulate a model

that contains all of the single sequence partition inequalities as a linear program with a polynomial

number of variables and constraints. That is, the model will contain additional dual variables and

by projecting out the variables, we would obtain all these inequalities. The model contains O(n4 )

variables and O(n4 ) constraints.

4. Computational Results

Karmarkar and Schrage (1985) report computational experience for a continuous

production policy version of the product cycling problem that allows production of any amount

between zero and the production capacity. They use Lagrangean relaxation to solve problem

instances of up to 4 products and 8 time periods. In our model, we use a discrete production policy

in which we produce either zero or one unit in each period. Magnanti and Vachani (1990) report
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computational results for this model, and solving problem instances of up to 5 products and 15

time periods.

We use the same approach as Magnanti and Vachani (1990) to generate problem instances.

For all problem instances, we assume that the initial inventory is zero, and that the machine is in

the off state at the start of the time horizon.

For the multi-item problems, the cost parameters Fpi and fp; are the same for all products,

and are constant over the time horizon. The inventory holding cost function gi = 20(T-i) assumes a

uniform inventory holding cost per unit per time period. We tested two categories of problems:

1) The single item problem. We tested problems of up to 100 time periods and 30

demands. The largest problem instance had 300 original (or natural) variables (100 each of the wi

production variables, y setup variables and z; changeover variables).

2) The four item problem. We tested problems of up to 100 time periods and 15 demands

for each item. The largest problem instance had 1200 natural variables (300 variables for each

item).

For both problem categories, we used only a subset of the single sequence partition

inequalities. For any inequality extending up to period tq, we partition only the last 5 demand

intervals tq5 through tq for inequalities with c; < 2. We did not use any of the skip inequalities (SI).

If we partition only the last r intervals, the reformulation has O(r2T2) variables and constraints. The

largest problem instance we solved, therefore, contained more than 250,000 variables and

constraints. We performed our computations on a IBM 4341 computer using the GAMS package.

Let v(IP) and v(LP) denote the optimal objective function values of the original integer
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program SCSP and its linear programming relaxation SCSP(LP). Let v(LAST) denote the

optimal objective function value of SCSP (LP) that includes only the inequalities partitioning the

last demand interval and let v(ss) denote the optimal objective function value of SCSP (LP) that

includes the single sequence partition inequalities. We define gap (LP) = (v(IP)-

v(LP))*100/v(IP), gap (LAST) = (v(IP)-v(LAST))*100/v(IP) and gap (0) = (v(IP)-

v(0))*100/v(IP). Tables I and II summarize the computational results.
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Table I

Single machine, single item problems

# of v(LP) v(LAST) v(SS) gap(LP) gap(LAST) gap(SS)
demands

3 26.7 146.7 160 83.3 8.3 0.0

5 56.7 267 300 81.1 11.1 0.0

10 117.8 497 540 78.2 8.0 0.0

15 195.6 746.7 840 76.7 11.1 0.0

20 282.2 1047 1160 75.7 9.8 0.0

25 340 1277 1440 76.4 11.3 0.0

30 371 1496 1680 77.9 10.9 0.0

Notes: Constant turn on and setup cost
Inventory holding cost = g*(T-i)



Using the single sequence partition inequalities, we obtained optimal integer solutions for

all the test problem instances. The gaps between the optimal objective function value of the linear

programming relaxation and the optimal integer program objective function value are large for the

single item, single machine problem, varying between 75% and 83%. A small subset of the

partitioning inequalities that partition only the last demand interval reduces the gap considerably to

between 8% and 11%. However, we still obtain fractional solutions, and need to introduce the

more complex single sequence partitioning inequalities to reduce the gaps to zero. For multi-item

problems, gap(LP) is much smaller and varies between 6% and 21%. For this class of problems,

the linear programming relaxation with the single sequence inequalities optimally solves problem

instances with up to 1200 variables.
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Table II

Four Item Problems

Turn on cost F = 100

# of v(LP) gap(LP) v(SS) v(IP) gap(SS)
demands

3 1453.3 15.51 1720 1720 0

5 4700 16.37 5620 5620 0

10 13569 5.77 14400 14400 0

15 32278 4.56 33820 33820 0

Turn on cost F = 200.

3 1520 20.83 1920 1920 0

5 4820 20.72 6080 6080 0

10 13787 9.06 15160 15160 0

15 32633 6.07 34740 34740 0

Notes: Constant turn on and setup cost
Inventory holding cost = g*(T-i)



5. Facets

It is possible to tighten the skip inequalities if we impose restrictions on them in addition to

the compensation condition. In this section and in Appendix 2, we describe these conditions and

show that they are necessary for these inequalities to be facets of the underlying integer

polyhedron. (The conditions are also sufficient for the inequalities to be facets, but we will not

prove this fact).

Suppose for any period i, D(i) = q-b-m(i-l) = 0. Then N(i',t) = N(i',i-l) for any period t >

i. If tr+l < i < tr+l, we can drop all the terms in periods tr+l through tq from the inequality and

obtain a tighter inequality. Therefore, assume that D(i) = q-b-m(i-l) > 0 for every period i < tq.

We impose the following conditions on the skip inequalities and show in Appendix 2 that

the conditions 1 through 5 are neccessary for the inequality to be a facet.

Condition 1. If W { 1, 2,..., tq }, then every facet defining skip inequality consists of a set of

yz structures separated by periods in W>>S. In particular, period jo = min {j: jaeS } belongs to W>>Y,

and period tqaeY. Moreover, if the look ahead period i* for any period i(EY>>YZ satisfies the

equation nyz(i,i*) = D(i), then period k = min {k' 2 i: k'ceWZ} belongs to Z.

Condition 2. The number of periods skipped from tj+l through tq is strictly less than q-j, for j =

0,..., q-1. Moreover, if m(tj) = j-bj and bj > 0, then i(EY for some i < tj (therefore the inequality

contains at least one yz structure).

Condition 3. If q = n, then any facet defining inequality contains at least one yz structure, and if

S = F, then it contains exactly one yz structure.
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Condition 4. If tq+ = tq+l, then i(EY for some i < tq.

Condition 5. If period i(EWZ>>YZ, then ci < D(i). If D(i) = 1, then period iceWZ>>YZ and if

i(EZ, then ci = 1. In addition, period tq(EW>>Z.

As described in Section 3.2, the hole and bucket inequalities do not satisfy the property that

if we produce k < N(i,tq) units in any on interval starting in period i, then the interval contributes k

units. Consider the following example with q = 4, t = 2, t2 = 5, t3 = 7 and t4 = 8. The following

inequalities are valid.

y2+Z3+Y4+Zs+Y6+7+Z8 2

and, y3 +z4+z 5+z 6+z7 1.

The first inequality is a hole and bucket inequality and the second one can be viewed either as a

skip inequality or as a hole and bucket inequality. If we add these inequalities, we obtain

y2+(y 3+z 3)+(y4+z4)+2z5+(y 6+z 6)+2z 7+z 8 > 3, which is a valid skip inequality. It satisfies all the

conditions 1 through 5. But it is not a facet since it can be expressed as a linear combination of two

other inequalities. However, the similar inequality y2+(y 3+z 3)+(y 4+z 4)+2z 5+(y 6+z6)+z 7+w8 2 3 is,

as we show later, a facet. In order to rule out non facet skip inequalities that are combinations of

hole and bucket inequalities and other skip inequalities, we impose the following condition.

Condition 6. Let j = min Ii: ioeS }, r = min {u: m(tu) = 1 }, and suppose q-b 2 2. If j(EY and j is

the look ahead period for period j, and the last period k in this yz structure starting with period j

satisfies the condition k 2> tr, then nz(i,k)+ny(i,k) < D(i) for all periods min {tr, j*+ l } < i < k.

Notice that for the demand structure we introduced previously, the inequality

y2+(Y3+Z3)+(y 4+z4)+2z 5+(y6 +z6 )+2Z7+Z 8 3 does not satisfy this condition since min {tr, j*+l } =

4, k = 8 and nz(i,8)+nyz(i,8) D(i) for all periods 4 i < 8. However, the inequality

y2+(Y3+z 3)+(y 4+z 4)+2Z5+(y 6+Z6 )+Z7+w 8 3 satisfies the condition since k = 7 and
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and it can be written as a linear combination of

SieW,,WZWi+SieYYZYi+SieZWZYZCiZi 2 q-b times b

and Si=,Twi = n times a.

Therefore, it is a facet.

To establish these results, we construct solutions in C* that produce in certain on intervals

[i,t]. Therefore the inequality aw+by+gz = d contains the terms aw+btyt and gi. Notice that if i < t,

then z = 1 and z, = 0, and so, g does not appear in the inequality. By shifting the production in

period t (typically to period tq), we produce another solution in C, and by comparing these

solutions we relate the coefficients a, and bt in different periods. We also construct another solution

in C* that has shifted all the production from on interval [i,t] to another on interval [j,k]. By

comparing these solutions, we relate the coefficients g in different periods. The complete proof,

which shows how to select the on intervals [i,t] and [j,k], is fairly intricate and long and so we will

not provide the details.

7. Further research

There are many ways to extend the results in this paper. One research direction would be to

extend the hole and bucket inequalities by permitting coefficients other than zero or one - for

example, finding a class of inequalities that include both the hole and bucket inequalities and the

skip inequalities as special cases.

Although it is possible to solve the single item problem in polynomial time, the convex hull

of feasible solutions is still unknown. So another direction for future research would be to

determine the convex hull of this problem and for the related problems, e.g., those with start up

costs but no set up costs. The results in this paper suggest that this polyhedron is quite complex.

In this paper, we have used facets for the single item problem in solving multi-item
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nz(7,7)+nyz(7,7) = 1 < D(7) = 2.

The following proposition shows that skip inequalities satisfying conditions 1 through 6

are facet defining.

Proposition 2. A skip inequality (SI) that satisfies condition 6 is a facet of conv(W,Y,Z) if and

only if it satisfies conditions 1 through 5.

Proof. (Sketch).

Let conv(W,Y,Z) denote the convex hull of feasible solutions of SCSP. For any valid

inequality (SI), let C* = { (w,y,z)(Econv(W,Y,Z): (w,y,z) satisfies (SI) as an equality}. To show

that (SI) is a facet, let aw+by+gz = d represent an arbitrary equation that is satisfied by all (w, y,

z)eC*. We show that aw+by+gz = d is a linear combination of

Siewwi+S iYyi+SiezCii+SieYz(Yi+CiZi)+Siewz(Wi+CiZi) = q-b.

and the only equality in SCSP, Si=Tw i = n.

The proof proceeds as follows:

(i) For periods ieZ>>WZ>>YZ, we show that gi = 0, and for periods ioeY>>YZ, we show that bi = 0.

(ii) For periods iceW>>WZ, we show that ai = a, and for periods i(EW>>WZ, we show that ai = a*.

(iii) We then show that bi = b for all iEY>>YZ, and that a* = a+b.

(iv) Finally, we show that g = cb and that d = (q-b)b+na.

Therefore, the inequality has the form:

a*Siew>wzwi+aSiow>,wZwi+ 3S ieYyzyi+bSiez>>wz>yZCiZi > d,
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problems. Another possibility would be to use facets of the multi-item problem itself. Very little

seems to be known about the polyhedral structure of this problem.
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Appendix 1

In this section, we establish properties P1, P2 and P3 from section 2.

P 1. N(i,t) = nyz(i,t')+n(i,t') for some i < t' t.

Proof. By definition, N(i,t) < nyz(i,t)+nz(i,t). So either t' = t, or, since

nyz(i,t)+n,(i,t) increases by zero or one unit for each time period t, some period i <

t' < t satisfies the property.

P2. For all t, N(i,t+l) > N(i,t) > N(i+l,t) and N(i,t) < N(i+l,t)+l.

Proof. The definition of N(i,t) implies that N(i,t) = min {D(i),

ny(i,i)+nz(i,i)+N(i+l,t) }. Therefore, N(i,t) < ny(i,i)+n(i,i)+N(i+l,t) <

1+N(i+l,t). If N(i,t) = nyz(i,i)+nz(i,i)+N(i+l,t), then clearly N(i+ 1l,t) < N(i,t). If

N(i,t) = D(i), then since N(i+l,t) < D(i+l) and D(i+l) < D(i), N(i+l,t) < N(i,t).

If N(i,t+l) < N(i,t) < nyz(i,t)+nz(i,t), then N(i,t+l) = nyz(i,k-l)+n,(i,k-l)+D(k) for

some i < k < t. However, the definition of N(i,t) implies that N(i,t) < nyz(i,k-

l)+nz(i,k-l)+D(k), which contradicts our assumption that N(i,t+l) < N(i,t).

Therefore, N(i,t+l) > N(i,t).

P3. Suppose N(i,t) = nyz(i,t')+nz(i,t') for some i < t' < t. Then N(i,r) = N(i,t) for all t'

< r < t.

Proof. If N(i,t') < ny,,(i,t')+nz(i,t'), then N(i,t') = nyz(i,k-l)+n,(i,k-l)+D(k) for

some k < t', and D(k) < nyz(k,t')+nz(k,t'). Therefore, D(k) < nyz(k,r)+nz(k,r) for all

t' < r < t, and so N(i,t) < nyz(i,k-l)+nz(i,k-l)+D(k) < nyz(i,t')+nz(i,t'), which

contradicts our assumption. Consequently, N(i,t') = nyz(i,t')+nz(i,t') = N(i,t).

Property P2 implies that N(i,r) = N(i,t') for all t' < r t.
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Appendix 2

We consider a set of inequalities that satisfy the compensation condition and have 0-1

coefficients for the w and y variables. We show that among this class of inequalities, every facet

satisfies conditions 1 through 6. We first establish the following result.

Lemma 1. For any two periods t < i, the look ahead periods satisfy the inequality t' < i*.

Proof.

We show the result is true for t = i-l, which implies the general result. The definition of

N(i- 1 ,tq) implies that N(i- 1,tq) < nyz(i- 1,k- 1)+n(i- 1,k-1)+D(k) for all k > i-l. Recall that since we

define D(tq+l) = 0, nyz(i,i*)+nz(i,i) = N(i,tq) = nij (i,j- 1)+D(j) for some period j > D(i).

However, N(i- l,tq) = nyz(i-l,(i-l)*)+nz(i-l,(i-)*) < ny(i-l,j-)+n(i-l,j-1)+D(j). Therefore,

nyz(i,(i- l)*)+nz(i,(i-1)*) < nyz(i,i*)+n(i,i*), and so (i-1)* < i*.

In the following arguments, we consider an arbitrary valid skip inequality and show that in

order for it to be a facet, it must satisfy certain conditions.

Condition 1 (a). If iEY>>YZ>>WZ or if iEZ and ci > 2, then i+iEZ>>YZ>>WZ. If the look ahead

period i* for any period i satisfies the equation nyz(i,i*) = D(i), then period k = min {k ' > i* 

k'oeWZ} belongs to Z.

Proof.

Suppose period iEY>>YZ>>WZ and period i+l(EW>>Y>>S. We show that if we replace y by

wi, the inequality is still valid. To do so, we need to show that the compensation condition is

satisfied for periods t < i with look ahead period t* > i. For periods t < i, Lemma 1 implies that t* <

i*. The compensation condition implies that nz(i+l,(i+l)*) = 0. Therefore, nz(i,(i+l)*)= 0. Let to

denote the new look ahead period for periods t < i. Since t < (i+l)*, the inequality satisfies the
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compensation condition for all periods t < i with t 2 i.

If iEZ, ci > 2 and period i+l(EW>>Y>>S, then ci > nz(i,i*) = 1. We can reduce the coefficient

of zi to 1 and obtain a tighter inequality.

Finally, suppose the look ahead period i* satisfies the equation nyz(i,i*) = D(i) > 0 for some

period i(EY>>YZ and that period k = min k' > i* : k'oeWZ} does not belong to Z. Note that since

N(i,tq) = nyz,,(i,i* )+nz(i,i*) < D(i), nz(i,i*) = 0. If k(EY»)YZ, then i° < k. Therefore, t < k and since

nz(i,k) = 0, the inequality still satisfies the compensation condition for periods t i with t 2 i. If

k(ES, then the compensation condition implies that nz(k,k*) = 0. Therefore, nz(i,k*)= 0. Since t <

k*, the inequality satisfies the compensation condition for all periods t < i with t 2 i. Therefore, the

modified inequality is valid and since Yi > wi, it dominates the original inequality.

Condition 1 (b). If period i'EZ>>WZ>>YZ, then period i = max (t<i': tceZ>>WZ>>YZ) belongs to

Y. In addition, period jo = min j: joeS } belongs to W>>Y.

Proof.

If period i'(EWZYZ>>Z and period i = max (t<i': toeWZ>>YZ>>Z) belongs to W>>S, then we

show that the inequality does not satisfy the compensation condition. Since i(EW>>S, ci = 0, and

therefore nz(i,i*) = 0 and nyz(i,i*) = nyz(i+l,i*) = nyz(i+l,j-l)+D(j) for some period j > i+l. Since

i+I(EZ>>WZ>>YZ, c 2 1, and hence cl+nyz(i+l,i*) > nyz,(i+l,j-l)+D(j). Lemma 1 implies that

(i+l)* 2 i*, and so cx+n(i+l,(i+l)*) > nyz(i+l,j-l)+D(j) > N(i+l,(i+l)*) =

nyz(i+l,(i+l)*)+nz(i+l,(i+l)*). But this result contradicts the compensation condition c =

nz(i+l,(i+l)*).

Suppose period 1 belongs to YZ>>WZ>>Z. Then c 2> 1. If z1 = 1 and y1 = 0 in any feasible

solution, then w1 = 0. Therefore, setting zx to zero gives another feasible solution that satisfies the

inequality. Therefore, if cl 2 1, we can replace clz, by cly1 and since z > y1, we obtain a tighter

valid inequality, and so, period leZ>>YZ>>WZ.

If period 1(EY and the coefficient of y1 is c, > 2, then arguments similar to those used

earlier establish that period 2(EYZ>>WZ and so the coefficient of z2, c 2 1. We can replace the
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quantity clyl+c 2z2 by (cl-l)yl+(c 2-l)z 2+y 2 and obtain a new inequality. The quantity

nz(l,t)+nyz(l,t) does not change and so the inequality satisfies the compensation condition for

period 1. The contribution from period 2 for any on interval [2,t] also remains unchanged.

Therefore the inequality also satisfies the compensation condition for period 2. Consequently, the

new inequality is valid, and since Y1+z 2 > Y2, it dominates the original inequality. Therefore, if

period 1(EY, then the coefficient of y1 must be 1 if the inequality is a facet.

Conditions 1 (a) and (b) establish Condition 1.

We next derive conditions on the number of skip periods and their location.

Condition 2 (a). The number of periods skipped from tj+l through tq is strictly less than q-j, for

j = 0,..., q-l.

Proof.

Recall that bj is the number of periods skipped in the interval 1 through tj. If b-bj, the

number of skipped periods after period tj equals q-j or more, then j-bj > q-b. Therefore, m(tj) > j-bj

2 q-b. Corollary 1 of Proposition 1 implies that every feasible solution contributes at least m(tj)

units up to period tj. Therefore, we can drop all the terms in the inequality with indices greater than

or equal to tj+l and obtain a stronger valid inequality.

Condition 2 (b). If m(tj) = j-bj and bj > 0, then ieY for some period i < tj.

Proof.

If ioeY for any period i < tj, then condition 1 implies that all periods 1 through tj belong to

W>>S. Let t = min {i < tj: i(ES}. Since bj > 0, such a period always exists. Let W' = (W<<{ 1,...,

tj})>>{t} and let S(tj+l,tq) denote the terms in the inequality in the interval {tj+l,..., tq}. Then the

inequality can be expressed as a linear combination of the inequalities

Siw.wji+S(tj+l,tq) > q-b+l (*)

and 1 > w t. We show that the inequality (*) is valid. Let n's(l,i) denote the number of periods that

the inequality (*) skips in the periods 1 through i, let m'(i) = max {d(l,k)-n's(l,k): 1 < k < i , and
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D'(i) = q-b+l-m'(i-l). Since m(t) = j-bj, d(l,i)-ns(l,i) < j-bj for periods i < tj. Therefore, d(l,i)-

n'S(l,i) < d(l,i)-n,(l,i)+l < j-bj+l = d(l,tj)-n'(l,tj) and so m'(tj) = j-bj+l = m(tj)+l.

Consequently, for periods tj < i tq,

m'(i) = max {m'(tj), d(l,i')-n',(l,i'): tj+1 < i i}

= max {m(t)+l, d(l,i')-ns(l,i')+l: tj+l < i' < i}

= m(i)+l.

Therefore, D'(i) = q-b+l-m'(i) = D(i) and the definition of N(i,tq) implies that for periods i > tj+ 1,

the look ahead period i and the quantity N(i,tq) remain unchanged after we introduce the variable

w t. Therefore, the inequality (*) satsifies the compensation condition for all periods i > tj+l. For

periods i < tj, N(i,tq) = N(tj+l,tq) since the periods 1 through tj belong to W>>S, and so the periods i

< tj satsify the compensation condition as well.

Consequently, the new inequality is valid. Since our original skip inequality is a linear

combination of two inequalities, it is not a facet.

Conditions 2 (a) and (b) establish condition 2.

Condition 3. If q = n, then any facet defining inequality contains at least one yz structure, and if

S = F, then it contains exactly one yz structure.

Proof.

Consider the case q = n. If the inequality contains no yz structure, then Y = f and then by

the previous condition, it skips no periods. Therefore, the inequality reduces to Si=_TW i > n, which

is implied by Si=, Twi = n and wi > 0. Therefore, if q = n, then Y • f. Condition 1 implies that the

inequality contains at least one yz structure.

Suppose 2Y2>1 and S = f. By Condition 1, the inequality has at least two yz structures.

For each {i,t} yz structure, let SI(i,t) denote the terms in periods i through t. We can write the

inequality as the sum of the following inequalities (and therefore it cannot be a facet):
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n = Sj=lTwj written QYQ-1 times.

ST,=1 jj t1wj +(SI(it)) > n for each ieY.

Condition 4. If tq+1 = tq+l, then iEY for some i < tq.

Proof.

If Y = f, then condition 1 implies that Z>>YZ>>WZ = f, and so the inequality reduces to

t t +1

Aw i 2 q. But this is inequality is implied by A w i 2 q+l 1 2 w t +1
i=l i=l q

Condition 5. If period i(EWZ>>YZ, then c < D(i). If D(i) = 1, then period ioeWZ>>YZ, and if

iCEZ, then c i = 1. In addition, tqW>>Z.

Proof.

Suppose period iCEYZ and ci > D(i). Since N(i,t) < N(i,tq) < D(i), and n(i,i) = 1,

ci+n(i,t) > N(i,t) for all periods t > i. Therefore, we can reduce ci by 1 and obtain a tighter valid

inequality. Similarly, if i(EWZ and c i > D(i), we can reduce ci by 1. Suppose iEWZ and ci = D(i).

The compensation condition implies that ci = nz(i,i*) = D(i) > 0. Since by definition of N(i,i*),

ny(i,i*)+nz(i,i*) < D(i), ny(i,i*) = 0. Therefore, for any period t < i with look ahead period t* > i,

since t* < i, ct+nyz(t,t*) = ci+nyz(t,i-l) N(t,t*). Note that this condition is satisfied even if we

drop w from the inequality, and so the inequality is valid. Therefore, the original inequality cannot

be a facet. In particular, if D(i) = 1, then ci = 0, and therefore, ioeWZ>>YZ. If i(EZ, then ci < D(i) =

1. Since i(EZ, ci > 1. Therefore, ci = 1. Condition 2 implies that tqoeS. Therefore, tqEW>>Y>>Z. If

period tq(EY, we can shift tq to W and obtain a tighter valid inequality. For any period i, ci = nz(i,i*)

and by shifting tq to W, nz(i,i*) does not change (even if i* = tq does change). Therefore, tqEW>>Z.
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