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We study facets of the cut cone C,, i.e., the cone of dimension ½n(n - 1) generated by the cuts of the 
complete graph on n vertices. Actually, the study of the facets of the cut cone is equivalent in some 
sense to the study of the facets of the cut polytope. We present several operations on facets and, in 
particular, a "'lifting" procedure for constructing facets of C~ +1 from given facets of the lower dimensional 
cone C A. After reviewing hypermetric valid inequalities, we describe the new class of cycle inequalities 
and prove the facet property for several subclasses. The new class of parachute facets is developed and 
other known facets and valid inequalities are presented. 

Key words: Max-cut problem, cone, polytope, facet, lifting, hypermetric inequality. 

1. Introduction 

1.1. The general max-cut  problem 

One of  the main  motivat ions o f  this work is to contribute to the polyhedral  approach  

for the fol lowing max-cut  problem. Given a graph G = (V, E )  with nodeset  V and 

edgeset E and given a subset S of  V, the set D ( S )  consisting of  the edges o f  E 

having exactly one endnode  in S is called the cut (or split, or dichotomy) determined 

by S, or more  precisely by the parti t ion o f  V into S and V - S .  When nonnegat ive 

weights ee are assigned to the edges e of  E, the max-cut  problem consists of  finding 

a cut D ( S )  whose weight (defined as the sum o f  the weights o f  its elements) is as 

large as possible; the max-cut  problem is NP-hard  [26]. However ,  if we replace "as 

large" by "as  small",  we obtained the min-cut problem which is known to be 

polynomial ly  solvable ,  using network-flow techniques.  On the other hand,  poly- 

nomial  algori thms exist for the max-cut  problem for  some classes o f  graphs. This 

is the case, for  instance, for p lanar  graphs [30], for  graphs not  contractible to K5 

[6], for weakly bipartite graphs [28], the last result being based on a polyhedral  

approach;  the class o f  weakly bipartite graphs includes, in fact, planar  graphs and 

graphs not contractible to K5 [25]. We refer to the paper  by Barahona  et al. [8] for 

a descript ion o f  possible applicat ions o f  the max-cut  p rob lem to statistical physics 

and some circuit layout  design problems with numerical  results. 
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A way to attack the max-cut problem is the following polyhedral approach which 

is classical in combinatorial optimization. For any subset S of V, let 6(S) denote 

the incidence vector of the cut defined by S, i.e., 6(S)~ = 1 if e c D(S)  and 6(S)~ = 0 

otherwise; 8(S) is also called the cut vector defined by S. The polytope Pc(G)= 

Conv(6(S):  So_ V) is the cut polytope of the graph G. The max-cut problem can 

then be rephrased as the linear programming problem: 

max c. x 

such that x c Pc(G). 

It is therefore crucial to be able to find the linear description of the cut polytope 

and characterize its facets. The study of the cut polytope for general graphs has 

been initiated in [6] and continued in [11]. It was proved in [11] that the cut 

polytope has the following nice property; namely, a description of the facets that 

contain any particular extreme point gives the description of the whole polytope. 

For this reason, it is enough to study the facets that contain the origin, i.e., the 

facets of the cut cone C(G) generated by the cut vectors. Actually, this property is, 

more generally, a property of cycle polytopes of binary matroids (see [7]). 

1.2. The cut cone Cn 

The goal of this paper is to study facets of the cut cone Cn = C(Kn), i.e., the cone 

generated by the cuts of the complete graph Kn on n vertices. There are several 

motivations for restricting our attention to the case of complete graphs. One is that 

the max-cut problem on a general graph G with n vertices can be represented as 

the max-cut problem on the complete graph Kn by assigning weight zero to the 

missing edges in G. Of course, if the graph G is sparse, working with the complete 

graph K,, instead of G may increase the size of the problem beyond computer limits; 

also, there are classes of sparse graphs for which one can have a simple complete 

description of the cut polytope, e.g., for graphs not contractible to Ks [11]. On the 

other hand, the study of the cut polytope Pc(Kn) of the complete graph gives some 

insight for general cut polytopes Pc(G); for instance, every facet defining inequality 

of Po(Kn) also defines a facet of Pc(G) if G is any subgraph of Kn containing the 

supporting graph of the inequality or if G is any graph containing K~ [17]. Another 

motivation comes from the fact that elements of the cut cone C, can be interpreted 

as semi-metrics on n points. In fact, Cn coincides with the family of semi-metrics 

on n points which are embeddable into L1; in these terms, the study of the cut cone 

was started by Deza in 1960 in [18] and continued e.g., in [3, 5, 20, 21, 38]. There 

are also some strong connections between the study of the cut cone and the following 

subjects: cone of all metrics and multicommodity flows (see, for instance, [5]), 

description of lattices (i.e., Z-modules) in terms of metrics on pointsets on the 

boundary of their holes [1, 38, 23]. In this paper, we concentrate on polyhedral 

aspects of the cut cone Cn ; some connections with other polyhedral problems are 

mentioned in Section 1.5. 
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1.3. Basic notations 

We denote by N the set [1, n ] = { 1 , 2 , . . . ,  n} and we set n ' = ½ n ( n - 1 ) .  I f  S is a 

subset of  N, ~5(S) c {0, 1} n' denotes the incidence vector of  the cut determined by 

S, i.e., S ( S ) i j = I  if [Sc~{i,j}[=l and 6 (S ) i j=0  otherwise for l<- i<j<-n .  The 

complete graph K,  with nodeset N admits exactly 2 ~ ~ -  1 nonzero distinct cuts 

D ( S )  determined by all subsets S of N for which we can assume, for instance, that 

1 ~ S, since D ( S ) =  D ( N - S ) .  The cut cone CA is a full-dimensional polyhedral 

cone in ~ "  which contains the origin [20]. Given a vector v c l~"', the inequality 

v. x-< 0 is called valid for the cone C, if it is satisfied by all vectors x of  Cn or, 

equivalently, by all cut vectors 6(S).  Then, the set F~ = {x c C,, : v.  x = 0} is the face 

generated by the valid inequality v. x-< 0, denoted simply as v. The nonzero cut 

vectors 6(S)  which belong to Fv are called the roots of v, for short, we sometimes 

say that S itself is a root of v. The set of  roots of  v is denoted as R(v) .  The dimension 

of the face F~, denoted by dim(v),  is the maximum number  of  affinely independent 

points in F~ minus one, or, equivalently, since F~ contains the origin, the maximum 

number  of  linearly independent roots of  v; any set of  dim(v)  linearly independent 

roots is called a basis of  v. The face F~ is called simplicial when dim(v) coincides 

with the cardinality of  R(v) ,  i.e., when F~ is a polyhedral (unbounded) simplex. A 

facet is a face of dimension n ' - l = ½ n ( n - 1 ) - l ;  one says then that the valid 

inequality v is facet defining. 

There are several ways of describing a valid inequality v. x-< 0. First, one can 

simply give explicitly the vector v whose coordinates are then ordered lexicographi- 

cally as v = (v~2, .. •, v~,, ; v23, • . . ,  v2n ; .. • ; v~-i~). A more attractive way is to rep- 

resent v by its supporting graph G(v);  G(v)  is the weighted graph with nodeset N 

whose edges are the pairs (i , j)  for which v, 2 is not zero, the edge (i ,j)  being then 

assigned weight v o. When the coefficients v~ take only the values 0, 1 , - l ,  the 

inequality v. x-< 0 is called pure and G(v)  is a bicolored graph (edges with weight 

+1 will be represented by a plain line while edges with weight -1  by a dotted line). 

Finally, our graph notations are classical; for instance, we define the cycle 

C ( i l , . . . ,  if) as the graph with nodes i~ , . . . ,  if and with edges (ik, ik+l) for 1--< k < - f  

(setting /f+~ = il) and the path P ( i ~ , . . . ,  if) has edges (ik, ik+~) for 1 ~< k < _ f - 1 .  

1.4. Methods for checking facets 

We use various techniques for proving the facet property for a given valid inequality 

v.x<_O. 

(a) The "polyhedral" method. It consists of  proving that, if b.  x-< 0 is another 

valid inequality of  Cn such that the face F~ is contained in the face Fb, i.e., b.  x = 0 

whenever v . x  = 0, then b = av for some positive scalar a. We state two lemmas 

that will be thoroughly used in this type of  proof; they follow from Lemmas 2.5 in 

[9] and [11]. 
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Lemma 1.1. Let b. x -< 0 be a valid inequality of C,. Let p, q be distinct elements of 

N and S be a subset of N - { p ,  q} (possibly empty) such that the cut vectors ~(S), 

6 ( S u { p } ) ,  6 ( S u { q } )  and 6 ( S u { p ,  q}) define roots ofb. Then, bpq =0 holds. [] 

Lemma 1.2. Let b . x -< 0 be a valid inequality of C,. Let p, q, r be distinct points of 

N and A be a subset of N - { p ,  q, r}. I f  the cut vectors 3(Au{r ) ) ,  6 ( A ~ { p ,  r}), 

6(Aw(q} ) ,  6 ( A ~ { p ,  q}) define roots of b, then bpq = bpr holds. [] 

(b) The "lifting" technique that we shall describe in Section 2.2, for constructing 

iteratively facets of C,+~ from facets of C,. 

(c) The "direct" method which consists of finding a set of ½n(n - 1) -  1 roots of 

v and proving that they are linearly independent; for small values of n: n --7, 8, 9, 

linear independence can be tested by computer and, for general n, it is usually done 

by determinant manipulation. 

1.5. Related polytopes and intersection pattern 

It will sometimes be useful to represent cuts of K,, not only by their cut vectors 

3(S), but also by their intersection vectors it(S); actually, Deza [20] initiated its 

study of Cn within this framework of "intersection pattern" that we now describe 

(see also [5]). 

Given vectors z = (z~j)~_~i<j~_n and y = (Yij)Z~i<j~n, the function y = f l ( Z )  is defined 

by 

1 
yij =~(Zli~-Zlj--Zij) for 2 -  < i<j-< n, 

(1.3) 
yij=Zli for 2-< i-< n. 

If S is a subset of N, the vector 7r(S) =f l (6(S))  is called the intersection vector of 

S pointed at position 1; in this definition, we specialized position 1, but any other 

position k of N can be specialized as well with function fk being correspondingly 

defined. The function f~ is a bijective linear transformation. A first useful corollary 

is that, for subsets S ~ , . . . , S k  of N, the families {6(S~) , . . . , 6 (Sk)}  and 

{~-($1) . . . . .  ~-(Sk)} are simultaneously linearly independent; we sometimes prefer 

to deal with the latter family, e.g., in the lifting procedure (see Section 2.2), since 

intersection vectors contain "more" zeros. 

Another important implication is the connection between the cut polytope and 

the boolean quadric polytope considered by Padberg [34]. The Boolean quadric 

polytope is the polytope Qpn = Conv({(x, y): x c {0, 1} n, y ~ {0, 1}"' and y~j = x~xj for 

l<-i<j-< n}). It models the following general unconstrained quadratic zero-one 

program: max(c, x+xVQx: x~{0, 1} ") where c~N n and Q is an n x n  symmetric 

matrix (see [10, 35]). Let us introduce a new element, say 0, and consider the 

complete graph K.+~ with nodeset N • {0}; its cut polytope is Po(K,+a) = Conv(3(S): 

S c N). It is easily observed that the vertices of QP" are exactly the intersection 



M. Deza, M. Laurent / Facets for the cut cone I 125 

vectors 7r(S) pointed at position 0 for S c  N (after setting x =  (~-(S)ii)~<~<n and 

y = (~-(S)a)l<~<j~,). Therefore, the mapping f0 is a linear bijective transformation 

mapping the cut polytope P¢(K~+~) onto the boolean quadric polytope QP". This 

simple but interesting connection was independently discovered, in different terms, 

by several authors (see [ 19, 20, 31, 10, 15, 16]). Consequently, any result concerning 

the cut polytope can be translated into a result on the boolean quadric polytope 

and conversely. For instance, the inequality 

Z c~x~j <- d (1.4) 
O<_i<j<_n 

defines a valid inequality (resp. facet) of P~(K,+~) if and only if the inequality 

Z a,x,+ Y~ b,yu<-d (1.5) 
l<_i~n 1 5 i < j ~ n  

defines a valid inequality (resp. facet) of QP", where a, b, c are related by 

coi=ai+½ Y, b~ for l<-i<-n, 

l<-j<,,:~i (1.6) 

c~j=-½b v f o r l < - i < j < - n .  

This connection will be used in Remark 3.15. Another closely related polytope is 

the bipartite subgraph polytope which is the "monotonization" of the cut polytope; 

it is the convex hull of the incidence vectors of the bipartite subgraphs, the maximal 

ones corresponding to the cuts (see [9]). Other related polytopes are the clique- 

partitioning polytope [29], the equipartition polytope [14], and, in the more general 

framework of binary matroids, the cycle polytope [7]. 

1.6. Contents of  the paper 

Section 2 contains the permutation and switching operations which permit derivation 

of new facets of the cut cone from existing ones. We also describe a "lifting" 

procedure for constructing facets of  the cone C,+~ on n + 1 points from a given 

facet of the cone Cn on n points. 

In Section 3, we describe classes of valid inequalities: hypermetric inequalities 

and new inequalities which we call cycle inequalities. We wish to point out that 

these cycle inequalities are distinct from those considered in [7, 9, 11]. The hyper- 

metric inequalities are of the form ~l~i<j~n bibj&j <-O, where b~ , . . . ,  bn are integers 

whose sum is equal to 1, while cycle inequalities are of the form ~ < j < ,  b~bjxij- 

Y.~o)Ec x~-< 0, where the sum of the integers bi is now equal to 3 and C is a suitable 

cycle. Our lifting technique provides an essential tool for showing that large classes 

of  hypermetric and cycle inequalities are facet inducing. We feel, however, that 

hypermetric and cycle inequalities belong, in fact, to a much larger class of  valid 

inequalities which may arise from integers b~ with suitably chosen sum; we suggest 

some possible extensions in this direction, but these ideas will be further developed 
in a follow-up work [24]. 
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In Section 4, after presenting the new class of parachute facets, we discuss other 

known classes, in particular those of Barahona, Gr6tschel and Mahjoub and of 

Poljak and Turzik and we investigate a class of faces introduced by Kelly. After 

summing up known facts for the cut cone on seven points, we conclude the section 

by mentioning some results on simplicial faces and some open questions. 

Section 5 contains the proofs of the results from the preceding sections which, 

in view of their length, are delayed in order to improve the flow of the text. 

2. Operations on facets 

We describe several operations: permutation, switching, lifting which produce "new" 

facets from "old" ones for the cut cone. 

2.1. P e r m u t a t i o n  a n d  sw i t ch ing  

Let v. x-< 0 be a valid inequality of the cone C,. Let o- be a permutation of the set 

N. The coordinates of the vector x ~ En, being ordered lexicographically, we define 

the vector x ~ by xTj = x ~ i ) ~ j )  for 1 - i < j  <_ n after setting x ~ ) ~ j )  = x ~ j ) ~ u )  when 

or(i) > ~r(j). The inequality v ~. x <_ 0, obtained by p e r m u t a t i o n  o f v  by or, is valid for 

C, and both inequalities v, v ~ are simultaneously facet defining. Hence, the permuta- 

tion operation preserves valid inequalities and facets of C,. 

Let v. x < - ~ be a valid inequality of the cut polytope P ~ ( K , ) .  Given a subset A 

of N, we define the vector v a by v A = -vii if ( i , j )  c D ( A )  and v A = v 0 if ( i , j )  ~: D ( A )  

and we set a a =  a - v .  6 ( A ) .  Then, the inequality v A .  x < - a A is valid for Pc(K,); 

one says that it is obtained by sw i t ch ing  the  inequa l i t y  v .  x < - a by the cut  ~ ( A ) .  

Furthermore, inequality v. x <- a is facet defining if and only if inequality v a • x <- a A 

is facet defining. This fact follows from the observation that the roots of v A • x <- a n 

are exactly the cut vectors 6 ( S A A )  for which 3(S) is root of v. x < - a and that 

the families {6(S0, . . . , /~(Sk)} and { 6 ( S 1 A A ) , . . . ,  t~(SkAA)} a r e  simultaneously 

affinely independent. When we switch the inequality v. x-< a by a root, i.e., by a 

cut such that v. 3 ( A ) =  a, we obtain a valid inequality v A .  x<-O of the cut cone 

C,. Consequently, the "switching by roots" operation preserves valid inequalities 

and facets of C,,. Furthermore, if C,, ={x! M x < - O } ,  then P ~ ( K ~ ) = { x :  M x < - O  and 

M ' x  <- b} where vector b and matrix M '  are derived from M through the "switching 

by cuts" operation [11]. The switching by roots operation was introduced in [20] 

for the cut cone C, ; the general switching by cut operation for the cut polytope of 

an arbitrary graph was given in [11] where it is called "changing the sign of a cut". 

Remark 2.1. One can represent the switching operation using matrices as follows. 

Given a vector v = (vo)~<~<j<_n, define the n x n symmetric matrix M ( v )  with zeros 

on its diagonal and M(v)~ = M ( v ) j i  = vii for 1 < - i < j < _  n and, given a subset S of 

[1, n], define the n x n diagonal matrix D ( S )  by D ( S ) ,  = -1  if i c S and D ( S ) ,  = 1 

otherwise. Then, the vector v s obtained by switching of v by ~(S) is equivalently 
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defined by relation M ( v  s) = D(S)  M ( v )  D(S) .  In the case when v~ = 1 or -1  for 

all 1 -< i < j -<  n, the matrix M ( v )  can be interpreted as the (1, -1)-adjacency matrix 

of a graph H on nodeset [1, n] whose edges are the pairs ( i , j )  for which v~ = -1  

and, then, the graph whose (1, - l ) - ad jacency  matrix is M(v  s) is a switching of H 

in the sense of Seidel (see, e.g., [13]). 

Call two inequalities v, v' equivalent if  v' is obtained from v by permutation 

and /o r  switching (by root). This defines an equivalence relation on valid inequalities; 

for this, observe that, for ~r, or' permutations of N, one has (v~) ~'= v ~'~ and, for A, 

B subsets of N, one has (vA) B = V A~B. This equivalence relation preserves facets 

of  C, ; therefore, at least from a theoretical point of view, for describing all facets 

of C,, it is, in fact, enough to give a list of  canonical facets of  C,, i.e., a list containing 

a facet of each equivalence class. We will further specify how this equivalence 

relation behaves for the special classes of hypermetric and cycle inequalities. 

2.2. The lifting procedure 

Let v c ~" ,  n ' =  ½n ( n -  1), and suppose that v. x-< 0 defines a facet of CA. Our goal 

is to "lift" this facet of Cn to a facet of C,+,. For this, we want to find n additional 

coefficients: v~,+~ for 1 -< i-< n such that, if v' denotes the vector of length ½n(n + 1) 

obtained by concatenating v with these n new coefficients, then v ' .  x-< 0 defines a 

facet of C,+l. The next theorem shows that lifting by zero, i.e., adding only zero 

coefficients, is always possible. 

Theorem 2.2 [20]. Let v be a vector of length ln(n - 1) and v'= (v, 0 , . . . ,  0) of length 

½n ( n + 1). The following asserta tions are equivalent: 

(i) v. x <- 0 defines a facet of  Cn. 

(ii) v' .  x<-O defines a facet of C,+t. 

Therefore, any facet of C, extends to a facet of Cm for all n-< m. The proof  of 

this result has not been published, so we give it here; it will help us at the same 

time to present the basic ideas of the lifting procedure. We must first state a technical 

lemma. Let F be a subset of the set E(n)={( i , j ) :  l<_i<j<_n} and F ' = E ( n ) - F  

denote its complement. For a vector x c Nz("), we denote by Xe its projection onto 

I~ F and, for a subset X ofl~ e~n), set Xz ={xF: x c X }  and X F = { x e X :  XF =0}. Let 

v be a valid inequality of  Cn with set of roots R(v); then, r(v, F)  denotes the rank 

of  the set R ( v ) e  and r[v, F]  denotes the rank of the set R(v)  p. 

Lemma 2.3. The following assertions hold: 

(i) I f  r(v, F) = IFI and r[v, F]  = tF ' I -  1, then v is facet defining. 

(ii) I f  v is facet defining and vF, ~ O, then r(v, F)  = JFI. 
(iii) I f v  is facet defining and v~, = 0, then r(v, F)  = IF[-  1. 
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P r o o f .  We first show (i). By assumpt ion ,  we can find a set A c_ R(v)  of  IFI vectors  

whose project ions on F are l inearly independen t  and a set B c  R(v)  of  I F ' I - 1  

l inearly independen t  vectors whose  project ions on F a r e  zero. It is easy to verify 

that  A u  B is l inearly independent ,  which implies that  v is facet defining since 

IF [+ IF ' I  = n ' -  1 = i n ( n -  1 ) - 1 .  

We prove  now (ii). Since v is facet defining, we can find a set A c_ R(v )  of  n ' -  1 

l inearly independen t  roots. Let M denote  the ( n ' - 1 ) x  n'  matr ix  whose rows are 

the vectors of  A, its columns being indexed by F w F ' .  Hence ,  all columns but  one 

are l inearly independent .  We dist inguish two cases: 

- either, all co lumns  indexed by F are l inearly independent ,  i.e., r(v, F )  = IFI, 

- or all co lumns  indexed by F '  are l inearly independen t  and,  then, r a n k ( A t ) =  

I F ] -  1 f rom which one easily deduces  that  r(v, F )  = I F I -  1. 

Suppose  we are in the second case, so r(v, F )  = IF[ - 1. D e n o t e b y  T1 a subset  of  

I F [ -  1 vectors of  A whose  project ions  on F are l inearly independent ,  7"2 = A F and 

T3 is the set o f  remaining  rows of  M ;  thus I T2u 7"3[ = IF'I. Given  a vector  x o f  T3, 

x r  can be writ ten as l inear combina t ion  of  the project ions  on F of  the vectors  

of  TI: 

XF= ~ /3~av; 
a ~  T l  

set x ' = x -  5] /3~a, so x~==O. 
a E  T I 

It is easy to verify that  T2u  T~ is a set of  IUI l inearly independen t  vectors,  where  

T~ = {x': x ~ T3}. Observe  now that  the vectors x of  the set T2 u T~ satisfy: v .  x = 0 

and xF = 0, which implies that  vv, = 0, concluding the p r o o f  of  (ii). 

For  proving (iii), observe that, if  r(v, F )  = IF[, then r(v, F ' )  = [F ' I -  1 which,  using 

(ii), implies that  vr  = 0 and therefore  v~.¢  0. [] 

P r o o f  o f  T h e o r e m  2.2. We assume first that  (ii) holds.  Consider  the index set 

F = {(1, n + 1) . . . .  , (n, n + 1)} and  its c o m p l e m e n t  in E(n  + 1), F ' =  {(i , j) :  1 -< i < j - <  

n}. By construct ion,  we have that  vv = 0 ;  hence L e m m a  2.3 (iii) implies  that  

r(v, F ' ) =  I F ' 1 - 1  f rom which we deduce  that  v defines a facet  of  Cn. 

We suppose  now that  v defines a facet  of  Cn ; hence we can find n ' - 1  l inearly 

independen t  roots  o f  v of  the fo rm 3(Sj) with 1~ Sj and Sj ~_ N for 1 -<j <- n ' -  1. 

For  i c  N, set F~ = {(1, i ) , . . . ,  ( i - 1 ,  i), (i, i + 1 ) , . . . ,  (i, n)}. Since r e 0 ,  the projec-  

t ion of  v on F'~ = E(n)  -F~ is nonzero  for  some i c  N ;  we can suppose  w.l.o.g, that  

i =  1. Hence,  we deduce  f rom L e m m a  2.3(ii) that  r(v, F1 )=  IF]I = n -  1; therefore ,  

there exist n - 1 roots of  v: 3 (Tk)wi th  1 ~ Tk c_ N for 1 -< k-< n - 1, whose  project ions  

on F1 are l inearly independent .  We construct  ½n(n + 1) - 1 = ½ n ( n  - 1)  + n - 1 roots 

o f  v' as follows: for  l < - j < - n ' - l ,  define the subsets SJ=S~ of  N w { n + l }  and,  for  

1<-  k<- n - l ,  set: T ~ =  T k u { n + l }  and  T ~ , = { n + l } ;  hence 1~ Sj ,  T~; n + l ~  Sj and 

n + 1 c T~, for  all j, k. We prove  that  the ½n(n + 1) - 1 cut vectors  defined by  the sets 

Sj ,  T~ are l inearly independent ;  it is in fact easier to verify that  their  intersect ion 

vectors  (poin ted  at posi t ion 1) are l inearly independent .  For  this, let M be the 

matr ix  whose rows are the vectors  ~r(Sj), ~r(T~,), its co lumns  being indexed by 
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G u H u l ( n + l ,  n + l ) }  where G={(i , j):  2<-i<-j<-n} and H = { ( i , n + l ) :  2 - < i ~  < 

n}. The fact that M is nonsingular follows by examining its block configuration 

using the easy observations: 

7r(Sj)~ = ~'(S/) and ~'(S~)/~(,+l, ~+1) = 0 for all 1 -<j-< n ' -  1, 

t 1r (T~, ) ,=6(Tk)¢  (setting F =  G )  and ~-(Tk),+~,,+l=l f o r l - < k - < n - 1 ,  

! t M T , ) H = 0  and 7 r (T , ) ,+1 , ,+ l= l .  [] 

Generally, suppose v defines a facet of C,. We wish to lift v to a facet of C,+1, 

i.e., to find a vector v' of  length ½n(n + 1) defining a facet of C,+~; the vector v' is 

obtained by concatenating the vector v -  after eventually, altering its coefficients 

in a suitable w a y - - w i t h  n new well chosen coefficients. We now describe a set of 

conditions which, when they are satisfied, ensure that lifting is possible and produce 

a new facet v' of  Cn+~. Since v defines a facet of C,, we can find n ' - 1  linearly 

independent roots: 6(Sj) with 1 ~ SJ -~ N for 1 -<j-< n ' -  1. Define the subsets S; = Sj 

of N • { n +  1}; then the intersection vectors (pointed at position 1) 7r(Sj) are n ' - I  

linearly independent vectors of  length ½n(n + 1) whose projections on the index set 

{(2, n + 1 ) , . . . ,  (n + 1, n + 1)} are the zero vector. Consider the conditions: 

v' defines a valid inequality of C,+~, 

the cut vectors 3(S~) are roots of v', for 1 -<j-< n ' -  1, 

There exist n cut vectors 3(Tk), with l~Tk ,  n + l ~ T k c _ N u  

{ n + l }  for 1 - < k -  <n ,  which are roots of v' and such that the 

incidence vectors of the sets Tk are linearly independent. 

(2.4) 

(2.5) 

(2.6) 

Proposition 2.7. With the above notation, if conditions (2.4), (2.5), (2.6) hold, then 

v' defines a facet of C,+I. 

Proof. The proof  follows closely that for Theorem 2.2 and consists of verifying that 

the vectors ~r(Sj), 1 -<j-< n ' -  1, and ~-(Tk), 1 -< k-< n, are linearly independent. Set 

G={(i, j):  2~i<-j<-n}, H = { ( i ,  n + l ) :  2_<i~<n+l}.  Let M denote the matrix 

whose columns are indexed by G u /4 ,  its first n ' -  1 rows are the vectors ~r(Sj) and 

its last n rows are the vectors ~r(Tk). 

Then M has the following block configuration: 

I P 0 
x Q 

where P is the ( n ' -  1) x n' matrix whose rows are the vectors ~-(Sj), its rank is n ' -  1 

by assumption and Q is the n x n  matrix whose rows are the projections on 

{ 2 , . . . ,  n + 1} of the incidence vectors of the sets Tk, its rank is n from condition 

(2.6). Therefore matrix M has rank n ' -  1 + n, implying that v' is facet defining. [] 
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We describe now a condition on v, v' which is sufficient for ensuring that (2.5) 

= ' for all 2 < i < j _ < n  and the holds. Suppose that the vectors v, v' satisfy v~ v~ 

following relation: 

vl i=v~+vln+l  for 2-< i-< n. (2.8) 

This amounts to saying that the supporting graph G(v') of v' is obtained from the 

supporting graph G(v)  of v by splitting node 1 into nodes 1, n + 1 and correspond- 

ingly splitting the edge weights v l~ into v'a~, v'i,,.1 for 2-< i -  < n, all other coefficients 

vq remaining unchanged. It is easily verified that v. x = v' • x for all cut vectors 

x = 6(S) with S c [2, n]; hence any root of v defines a root of v' and, therefore, 

condition (2.5) holds. We wish to point out that this node-splitting operation just 

described is distinct from the node-splitting procedure from [11]. 

We will see in the next section how the lifting procedure provides a very powerful 

tool for generating classes of facets, in particular when applied to hypermetric and 

cycle inequalities; we shall use in fact, the more specific node-splitting operation, 

so condition (2.5) holds and, since condition (2.4) will be automatically satisfied, 

the crucial point consists of satisfying (2.6). 

3. Hypermetric and cycle inequalities 

The first nontrivial known class of valid inequalities of the cut cone is the class of 

hypermetric inequalities, introduced in 1960 by Deza [ 18] and later, independently, 

by Kelly [33]. For small values of n, n = 3, 4, 5, 6, hypermetric facets are in fact 

sufficient for describing C~ ; this was shown for n -< 5 by Deza [18, 20] and for n = 6, 

using computer check, by Avis and Mutt [4]. However, for n >-7, there exist 

non-hypermetric facets. After examining in Section 3.1 hypermetric inequalities, we 

introduce in Section 3.2 the new class of cycle inequalities; we prove the facet 

property for some subclasses of the above two classes. We also discuss some possible 

extensions of hypermetric and cycle inequalities. In Section 3.3, we exhibit some 

upper bounds for the coefficients of hypermetric and cycle facets. 

3.1. Hypermetrie inequalities Hypn(b) 

Let b = ( h i , .  • • , bn) where the b~'s are integers satisfying 

E b, = 1. (3.1) 
l < i ~ n  

The inequality 

E bibjx~j <- 0 (3.2) 
l<i<j~--n 

is valid for C~ ; it is called the hypermetric inequality defined by b and denoted by 

Hyp,(b) .  If we set k--E~i<olb, j, then ~ j ~  ] b i t = 2 k + l  holds and one says that 

the hypermetric inequality is (2k+l)-gonaL Pure hypermetric inequalities are 
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obtained when bi = +1 or -1 for all i; when all (resp. all but one) negative coefficients 

bi are equal to -1 ,  the hypermetric inequality is called linear (resp. quasilinear). 

Validity of (3.2) follows from the fact that, for any subset S of N, we have: 

~l<g<j-~, b~bj~(S)~ = b (S) (1 -b (S) )  <-0, since b ( S ) = ~ i ~ s  b~ is an integer. Further- 

more, the roots of Hypn(b) are the cut vectors 6(S)  for which b(S) =0 or 1. 

The lifting by zero operation from Section 2.2 amounts to adding new coefficients 

bi which are equal to zero; hence, Hyp,(b)  and Hyp,+l(b, 0) are simultaneously 

facet inducing. Both permutation and switching (by roots) operations preserve the 

class of hypermetric inequalities. In fact, permutation of Hypn(b) amounts to 

permuting the bi's: if o- is a permutation on n points, the inequality obtained from 

Hyp,(b)  by permutation by ~r is Hypn(b~o) , . . .  , b~,~). Also, if S is a subset of N 

with b(S)  = 0, then the inequality obtained from Hyp,(b)  by switching by the root 

6(S)  is Hyp,(b ' )  where bl = - b ,  if ic  S and bl = bi otherwise. 

We present some known hypermetric facets: 

Hyp3(1, 1, -1)  (triangle facet), (3.3) 

Hyps(1, 1, 1, -1 ,  -1)  (pentagonal facet), (3.4) 

Hyp6(2, 1, 1 , - 1 , - 1 , - 1 ) ,  (3.5) 

Hyp7(1, 1, 1, 1, -1,  -1,  -1) ,  (3.6) 

HypT(3, 1, 1 , - 1 , - 1 , - 1 ,  -1),  (3.7) 

Hyps(3, 2, 2, -1,  - l ,  -1 ,  -1,  -2) ,  (3.8) 

Hyp9(2, 2, 1, 1 , - 1 , - 1 , - 1 , - 1 , - l ) .  (3.9) 

One verifies trivially that (3.3) is facet defining; one then deduces that (3.4)-(3.9) 

define facets by applying the next Theorem 3.12 based on our lifting procedure. As 

an application, let us recall the linear description of Cn for n-< 6 which consists 

only of hypermetric facets. For n = 3, 4, the only canonical facet is (3.3) and for 

n =5, the canonical facets are (3.3), (3.4) [21, 18]. For n =6,  the canonical facets 

are (3.3)-(3.5) and C6 has exactly 210 facets obtained from permutation/switching 

of (3.3)-(3.5) [4]. 

The general lifting procedure from Section 2.2 can be specialized for hypermetric 

facets as follows. Let b = ( b ~ , . . . ,  b,) satisfying (3.1) and suppose Hyp,(b)  is a 

facet of C,. Given an integer c, set b' = (b~ - c, b2, . . . ,  b,, c); hence b' satisfies (3.1). 

We say that Hyp,+l(b')  is obtained from Hyp, (b) by c-lifting. Then, the conditions 

(2.4), (2.5) of the lifting procedure described in Proposition 2.7 always hold. We 

are left with the problem of finding a suitable value of c for which condition (2.6) 

holds; this question can be rephrased as follows: 

Problem 3.10. Given any integers b2 . . . . .  b,, find an integer c such that there exists 

an n x n nonsingular binary matrix M satisfying: 

- its last column consists of all ones, 

- for all row vectors x of M, b* • x = 0 or 1, where b* = (b2 , . . . ,  b,, c). 
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This problem seems quite hard in general. The following results show that, for 

quasilinear hypermetric facets, (-1)-lifting is always possible and c-lifting is possible 

for suitable positive c. These results were stated in [20] and a sketch of the proofs 

was given in the accompanying document (kept in the Academy of Sciences of 

P~/ris) which was never published; so, we give the full proofs in this paper. 

Theorem 3.11 [20]. Le t  b ~ , . . . ,  b,  be integers sa t i s fy ing  (3.1) and suppose that  b 2  > - 

b3 >-" • • >- bf > 0 and  b~ = - l  f o r  f +  1 <- i <- n with f >- 2 and  n ~- 4. Suppose  f u r t h e r m o r e  

that  H y p , ( b l , . . . ,  b , )  is a f a c e t  o f  Cn; then: 

(i) Hyp,+~(bl+l ,  b2 , . . . ,  b , , - 1 )  is a f a c e t  o f  C,+~. 

(ii) Hyp,+l(bl - c ,  b 2 , . . . ,  b , ,  c) is a f a c e t  o f  C~+1, f o r  all  c such that  0 < c _  < 

n - f -  b2. 

Theorem3.12 [20]. Le t  b = ( b~ , . . . , b~) consist  o f  integers sa t i s fy ing  (3.1) and  suppose 

that  bl >- b2 ~ "  • ' ~ b f >  O> bf+ 1 > • • • >- b~. 

(i) I f  Hyp,(b)  is a f a c e t  o f  C , ,  then, ei ther f = 2  and  b =(1, 1, -1),  or f =  n - 2  

and  b l = l ,  or 3 < - f  < - n - 3 .  

(ii) In the l inear case, i.e., b, = -1;  Hyp~(b) is f a c e t  inducing i f  and only if, e i ther 

b = ( 1 , 1 , - 1 ) , o r b = ( 1 , 1 , 1 , - 1 , - 1 ) ,  or 3 < - f < - n - 3 .  

(iii) In the quasi l inear  case, i.e., b,_~ -- - 1  i f  f <  n - 1; H y p n ( b )  is f a c e t  inducing 

i f  and  only if, e i ther b -= (1, 1, -1) ,  or b = (1 . . . .  ,1, -1,  - n  +4),  or 3 <-f<- n - 3  and 

condit ion: (QL) b~ + b2 -< n - f -  1 + signlb~ - hA holds. 

Observe that, for a linear hypermetric inequality, condition (QL) always holds 

whenever 3 <-f<- n -3 .  Also, the inequality H y p , ( 1 , . . . ,  1, bn-1, b,) from case (i), 

f =  n -  2, is facet inducing, since it is equivalent to the (linear) hypermetric facet 

Hypn(-b , , -b~_~,  1 , - 1 , . . . ,  -1).  

Remark 3.13. Take k-> 3 and positive integers tl, • • •, t~ with ~ 1 ~ i ~  n ti = 2k+  1 and 

~,i>1 ti -< k -  1; then the inequality 

titjxij <_ k ( k + 1) (3.14) 
l~i<j~n 

defines a facet of the cut polytope P c ( K , )  [11, Theorem 2.4]. It is observed in [15] 

that this inequality identif ies--via swi tching--wi th  a subclass of hypermetric 

inequalities. For this, set tl . . . . .  tp = 1 < tp+l <-" • • <- t , ,  hence p >- k+2 ;  after 

switching the above inequality by the root {1, 2 . . . .  , k}, we obtain the linear hyper- 

metric inequality Hypn ( 1 , . . . ,  1, tp+l , . . . ,  t,, - 1 , . . . ,  -1)  consisting of p - k >- 2 

coefficients +1 and k>-3 coefficients -1 ,  henceforth, using switching, the facet 

property for (3.14), can alternatively be derived from Theorem 3.12. 

Remark 3.15. The clique and cut inequalities introduced by Padberg [35] for the 

boolean quadric polytope correspond, in fact, via the transformation between the 
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cut polytope Pc(K,+I) and the boolean quadric polytope QP" discussed in 1.5 and 

via switching, to some class of hypermetric inequalities. 

Given a subset S of N with s = IS I ->2 and 1 ~< a -< s - 2 ,  the clique inequality: 

a Z x i -  • y o - < ½ a ( a + l )  (3.16) 
iES  ( i , j ) ~ S x S  

is a facet of QW [35, Theorem 4]. Using relation (1.6), (3.16) can be translated into 

the following facet of Pc(K,+I): 

(c~-½(s-1) )  Y, Zo,+½ ~ zij-<½c~(a+l), (3.17) 
iES ( i , j ) c S x S  

which is, in fact, a subcase of inequality (3.14) and, hence, from Remark 3.13, 

i d e n t i f i e s -  via s w i t c h i n g -  with some quasilinear hypermetric facet. 

Similarly, the cut inequality 

- ~ x , -  Z Y~+ ~ YO- Z Yo -<0, (3.18) 
i~S  ( i , j )~  S x S  ( i , j ) E S x  T ( i , j )~  T× T 

where S, T are disjoint subsets of N of respective cardinalities s -> 1, t -> 2, is a facet 

of QP" [35, Theorem 5] which corresponds to the facet 

( t - s - 1 ) ( ~ Z o , -  ~ Zo~l+ ~ z,j- ~ z~j<-O (3.19) 
\ ~ S  iE T ( i , j ) c S × S  ( i , j ) c S x  T 

o r ( i , j ) ~ T × T  

of P~(K,+~); in fact, (3.19) coincides with the quasilinear hypermetric inequality 

Hyp,+~(b) where bo = s - t +  1, bi = -1  for i 6 S, b~ = 1 for i c T and bi = 0 otherwise. 

Other examples of facets obtained with our lifting procedure will be given in [17, 

24]. For  instance, H y p , ( w , . . . ,  w , - w , . . . , - w ,  1 , . . . ,  1 , - 1 , . . . , - 1 )  consisting of 

a + c coefficients +w, a coefficients -w,  b coefficients +1 and b+ cw-1 coefficients 

-1 ,  is facet inducing whenever a, b, c, w are nonnegative integers such that c-> 0, 

b->w+l [24]; also, the inequality H y p , ( 2 c + l ,  3, 2, - 1 , - 1 , - 1 , - 2  . . . . .  - 2 ) -  

Hyp,(c,  1, 1, 0, 0, 0, - 1 , . . . ,  -1)-< 0 (consisting of c coefficients - 2  in the first part 

and c coefficients -1  in the second one) is facet defining for any positive integer c 

[17]. 

3.2. Cycle inequalities Cyc,(b)  

Let b = (bl, •. •, b,) where the b/s are integers satisfying 

E b~=3. (3.20) 
l ~ i ~ n  

The set B + = { i ~  N:  b~>0} is called the positive support of  b. Set f = l B + l  and 

B+ = {i~, . . . , / f }  with 1 -< i~ < .  • • < ir _< n and let C be a cycle with nodeset B+. The 

inequality 

2 b~bjxo- Z xv <-0 (3.21) 
l ~ i < j ~ n  (i,j)EC 

is called a cycle inequality and is denoted by Cyc,(b, C) or, for short, by Cyc , (b)  

when C is the cycle ( i l , . . . , / f ) .  
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Take a cut vector ~(S) where S is a subset of N with 1 ~ S and set b(S)  = ~ (bj: 

i c S) and C ( S )  = ~. (8(S)~ : ( i , j )  c C),  Then, (3.21) computed at the cut vector 6(S )  

takes the value b ( S ) ( 3 - b ( S ) ) -  C ( S ) .  The latter quantity is obviously negative if 

b(S )  <- 0 or b(S )  >- 3. In the remaining case: b(S)  = 1 or 2, b(S)(3 - b(S) )  = 2 and 

thus S+ = Sc~ B+ is a proper subset of B+ from which one deduces easily that 

C ( S )  = C(S+)>-2.  Therefore, we have proved: 

Proposition 3.22. Any  cycle inequality (3.21) is valid for  C,,; its roots are the cut 

vectors 6 (S )  for  which b (S )  = 1 or 2 and C ( S )  = 2 hold. [] 

Let us analyze the effect of the permutation operation on cycle inequalities. Take 

a permutation o- on n points, b = (b~ , . . . ,  bn) satisfying (3.20) with positive support 

B+ = { i t , . . . ,  !t} and let C = (j~ . . . .  ,Jr) be a cycle on B+. Let (Cyc,(b, C)) ~ denote 

the inequality obtained by permutation by o- of the left-hand side of (3.21). We 

define the sequence b" = ( b o - ( l ) ,  • • . ~ b~(.)) and the cycle o-(C) = (o-( j l ) , . . .  , o-(jf.)). 

It is not difficult to verify the following relation: 

Cyc,(b ~, cr-l(C)) = Cyc,,(b, C) ~ (3.23) 

i.e., the cycle inequality on the left-hand side of (3.23) is obtained from Cyc,,(b, C) 

by permutation by or. Hence, the permutation operation preserves the class of cycle 

inequalities. Therefore, we can restrict our attention to the cycle inequalities of the 

form Cyc,(b) where the positive support of b is B+ = { 1 , . . . ,  f}  and the chosen 

cycle is C = ( 1 , 2 , . . . f ) .  We furthermore deduce from (3.23) that Cyc,(b) and 

Cyc,(b ~) are permutation equivalent inequalities whenever o- is a permutation 

preserving the cycle (1, 2 , . . . ,  f ) .  However, the following example shows that, if ~r 

does not preserve the cycle (1, 2 . . . .  , f ) ,  then Cyc,(b),  Cyc,(b ~) are not necessarily 

permutation equivalent; in fact, they are not necessarily simultaneously facet 

defining. 

Example 3.24. Consider the sequence bl = (2, 2, 1, 1, -1,  -1 ,  -1);  there are five 

other sequences obtained by permuting the coefficients of b~: b2 = (2, 1, 2, 1, -1,  

-1,  -1) ,  b3 = (2, l, 1, 2, -1,  -1 ,  -1) ,  be = (1, 1, 2, 2, -1 ,  -1 ,  -1),  bs= (1, 2, 1, 2, 

-1,  -1,  -1),  b6 = (l, 2, 2, 1, -1,  -1 ,  -1).  From the above observations, the inequalities 

CycT(bi) for i = 1, 3, 4, 6 are all permutation equivalent, while Cyev(b2) is permutation 

equivalent to CycT(bs) and one can verify that CycT(bi), Cyc7(b:) are not permutation 

equivalent. Computer check indicates that Cycy(b:) is not facet inducing while 

CycT(bl) is. 
The following cycle inequalities are all facet inducing: 

Cyc7(3, 2, 2, -1,  -1,  -1 ,  -1),  Cyc7(2, 2, 1, 1, -1,  -1,  -1),  

Cycv(1, 1, 1, 1, 1, -1,  -1) ,  Cycs(2, 2, 2, 1, -1,  -1 ,  - 1 , - 1 ) ,  

Cyc8(2 , 1, 1, 1, 1, -1,  -1,  -1) ,  Cyc8(3, 3, 2, -1,  - 1 , - 1 ,  -1,  -1) ,  

Cycs(3, 2, 1, 1, -1,  -1,  -1 ,  -1),  eye9(1, 1, 1, 1, 1, 1, -1,  -1,  -1).  
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The first three were discovered by Assouad and Delorme (in fact, they gave facets 

equivalent to them after permuting (1234567)~ (7654321), cf. [1]); we checked all 

others by computer. 

The definition of c-lifting given for hypermetric facets in 3.1 extends to cycle 

inequalities. Let b = ( b t , . . . ,  b,) satisfying (3.20) and c be an integer; the cycle 

inequality obtained from Cyc,(b) by c-lifting is Cyc,+~(b~-c, b 2 , . . . ,  b,, c). For 

instance, in the above list, the last four facets are obtained from the first three by 

(-D-lifting. The following results show the existence of classes of cycle facets 

extending the facets mentioned above. 

Theorem 3.25. Cyc~(1, 1 , . . . ,  1 , - 1 , . . . , - 1 ) ,  consisting of k coefficients -1 and k+3  

coefficients + 1, is facet inducing for all n = 2k + 3 >- 7. 

Theorem 3.26. Let bt , b2, b3 be integers such that b~ + be+ b3 = n and b~ >- 2 for i = 1, 

2, 3. Then, Cyc~(b~, b2, b3, - 1 , . . . , - 1 ) ,  consisting of n - 3  coefficients -1,  is facet 

inducing for all n >- 7. 

Theorem 3.27. C y c , ( n - 5 ,  2, 1, 1 , - 1 , . . . , - 1 ) ,  consisting o f n - 4  coefficients -1,  is 

facet inducing for all n >- 7. 

We refer to Section 5 for the proofs. Theorems 3.26, 3.27 are proved by applying 

iteratively (-1)-lifting, starting respectively with the known facets Cyc7(3,2,2, 

-1,  -1,  -1,  -1)  and Cyc7(2, 2, 1, 1, -1,  -1,  -1) ;  the proof of Theorem 3.25 is based 

on the polyhedral method. 

We conclude this section by mentioning possible extensions of cycle inequalities. 

Given integers bl, • . . ,  b,, set ~ (b) = b~ + . . .  + b,,. We have seen that, for ~ (b) = 1 

or 3, we can produce from the b;'s respectively the hypermetric and cycle valid 

inequalities with large subclasses of facets. A natural idea is to ask whether one 

can define a class of valid inequalities from all integers bi with arbitrary sum ~ (b). 

When ~ (b )=0 ,  it is known that the inequality ~ < ~ j ~  bib~xij<_O is valid for C, 

(this remains true for real valued b;'s); however, it is never facet inducing since it 

is implied by the hypermetric inequalities [18]. We will see in 4.2 that a class of 

facets discovered by Barahona, Gr6tschel and Mahjoub can be interpreted as a 

generalization of cycle inequalities with ~ (b)=  2k+  1. 

When Y~ (b )=  2, one verifies easily the validity of the following inequality: 

bibjx,:/ - ~ x;j <_ O, (3.28) 
l ~ i < j ~ n  ( i , j )~P 

where P is a path whose nodeset is the positive support B+ of b; (3.28) is called a 

path inequality and denoted by Path,(b, P). Its roots are the cut vectors 8(S) for 

which b(S) = 1 and 18(S) ~ PI = 1. An anonymous referee pointed out that the path 

inequality (3.28) is not facet inducing for f--IB+I->4. Indeed if ~(S) is a root, then 

ScaB+ is one of the following f - 1  intervals [i , f]  for 2<-i<-f if P is the path 

( 1 , . . . , f ) ,  a n d f - l < ( { ) - I  holds for f_>4. 
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A possible extension for arbitrary sum Y~ (b) is as follows. Suppose that n > 

[I ~ (b)] [1 ~ (b)] + 3 and let K = K2,,_3 denote the complete bipartite graph on N 

with node partition into {1, 2} and {3 . . . .  , n}. Consider the inequality 

bibjxij+xl2- ~ xij<-O. (3.29) 
3<i<j<n (i,j)EK 

Take a cut vector 6(S) with 1 ~ S; then (3.29) computed at 6(S) takes the nonpositive 

value: b ( S ) ( ~ ( b ) - b ( S ) ) + l - ( n - 3 )  when 2 ~ S  and the value: b ( S ) ( ~ ( b ) -  

b(S))-21sI when 2~ S. Hence, (3.29)is valid if b(S)(~ (b) -b(S) ) -2[S]<-O holds 
for all subsets S of { 3 , . . . ,  n}. For instance, if b = (5, 4, -1 ,  -1 ,  -1 ,  -1 ,  -1 ) ,  (3.29) 

is valid, but is not a facet since it has only 10 roots. 

3.3. Bounds for hypermetric and cycle facets 

If v.x<-O is a valid inequality of Cn, we are interested in finding bounds for 

llvll=2(lv l: l<- i<j<-n) .  When v defines a pure inequality, then IIvLl-<(~) 

obviously holds. For the classes of hypermetric and cycle inequalities, we are able 

to derive upper bounds for [[vii which are exponential in n. Observe first that, 

if v denotes the hypermetric inequality Hypn(b),  then Ilvll=i((yl~i_~olb, I) 2- 
Y~l_~i_< n I b~12) and, if v denotes the cycle inequality Cycn (b), then [I v II is the preceding 

quantity minus f, where f is the number of positive bg's; therefore, it suffices to 

study upper bounds for Ilbll = 2  (Ibil" 1 -< i<_ n). we  set gh(n) = max(llbll: Hyp , (b )  

is facet of C,) and gc(n)=max(llb[l: Cycn(b) is facet of C,). 

Proposition 3.30. 

( i )  ~n  2 --  4-< gh(n) --< n/3, 1 for n >-- 7, 

(ii) 2n--3<--gc(n)<--3+4(n-1)2¢3,,_2for n>--7, 

where fin is the maximum value of an n x n determinant with binary entries. 

Proof. (i) was proved in [5]; the upper bound in (ii) is an extension to the cycle 

case of the proof  given in [5] and the lower bound follows from the facet of Theorem 

3.26. [] 

The upper bounds from Proposition 3.30 are exponential in n and probably very 

weak; an interesting open question is to decide whether one can find upper bounds 

for hypermetric and cycle facets which are polynomial in n. 

4. Other known facets and some interesting faces 

4.1. The parachute facet Parn 

Take an integer k - 2  and n = 2k+  1, n-= 3 rood 4. The parachute graph Parn is the 

bicolored graph whose n nodes are denoted as 0, 1 . . . . .  k, 1 ' , . . . ,  k' and whose 
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edges consist of the path P = (k, k - 1 , . . . ,  1, 1', 2', . . . .  k') and the pairs (0, i), (0, i') 

for 1 ~< i_< k - 1  and the pairs (k, i'), (k', i) for 1-< i-< k; edges of the path P are 

assigned weight 1 (represented by a plain line) while all other edges are assigned 

weight -1 (represented by a dotted line). Figure 1 shows the parachute graph on 

7 points. We also denote by Parn the (pure) inequality, called parachute inequality, 

whose supporting graph is the graph Parn. 

0 

/ /  \ \  
/ \ 

/ / \ \ 
/ / \ ", 

/ / \1 \ 3 2/ 1 ' ", 2' 3' 

Fig. 1. 

Theorem 4.1. For all n = 2k+  1 with k >- 3 odd, the parachute inequality defines a facet 

of C,. 

The proof, based on the polyhedral method, is given in Section 5. 

For n = 2k + 1 with k even, the parachute inequality is not valid; e.g., it is violated 

by the cut vector defined by S = {1, 3, . . . ,  k -  1} u {2', 4 ' , . . . ,  k'}. 

For n = 7, the facet (equivalent to) Par7 was given by Assouad and Delorme (cf. 

[1]) and enumeration of the roots shows that Par7 is a simplicial facet. 

Remark4.2. Both sets S = { k ' } ~ { i c [ 1 ,  k]: i is even} and T = { i ¢ [ 1 ,  k]: i is  odd}u 

{i'~[1', k']: i' is odd} define roots of the parachute inequality Par,. Actually, for 

n = 7, the parachute inequality Par7 has only two (n0n-permutation equivalent) 

switchings obtained by switching by these two roots g(S), ~(T) (see [17]). 

4.2. Other facets 

(a) Barahona-Gr6tschel-Mahjoub facet [9, 11] 

A graph G is called a bicycle p-wheel if G consists of a cycle C = (1, 2 , . . .  ,p)  of 

length p and two nodes p +  1, p + 2  that are adjacent to each other and to every 

node in the cycle; we assign weight 1 to the edges of the cycle C and to edge ( p +  1, 

p +2) and weight -1 to all other edges. Figure 2 shows a bicycle 5-wheel. 

We denote by BGMn the pure inequality whose supporting graph is a bicycle 

(n -2) -whee l ,  i.e., described by 

Xn--1, n -~ ~ Xi, i + l - ~ X l , n - 2  - Z (x , - l j+x, , i )  <-0. (4.3) 
l~_i~n--3 l~_i~_n--2 
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1 

, 

\ J ~ .  ! 

/ / j "x X \  

Fig. 2. 

Theorem 4.4 [11, Theorem 2.3]. For all odd n >-5, the inequality BGMn defined by 

(4.3) is a facet  o f  C~. [] 

Remark 4.5. In fact, Theo rem 2.3 [ 11 ] presents  a facet which is switching equivalent  

to BGMn.  For  n = 5, the inequali ty BGM5 coincides with the pentagonal  inequal i ty  

Hyps(1,  1, 1 , - 1 , - 1 )  and for  n = 7 ,  BGM7 coincides with the cycle inequal i ty  

Cyc7(1, 1, 1, 1, 1, - 1 ,  - 1 ) .  In fact, if  we set b -- ( 1 , . . . ,  1, - 1 ,  - 1 )  where the first n - 2 

bi's take value +1 and the last two value - 1  and if K = K , , _  2 - C denotes  the graph  

on { 1 , . . . ,  n - 2 }  obta ined  by deleting the edges of  the cycle C = ( 1 , . . . ,  n - 2 )  f rom 

the complete  graph  K,,_2, then, the inequal i ty  B G M ,  can be al ternatively descr ibed 

by 

bibjxii - ~, xij <- O. (4.6) 
l<--i<j~n (i,j)EK 

Since n is odd,  we can set n = 2k + 3 with k -> 1; then,  }~ (bi: 1 -< i <- n) = 2(k - 1) + 1 

and the graph  K can be d e c o m p o s e d  into k - 1 edge disjoint cycles on { 1 , . . . ,  n - 2 = 

2k + 1}. Therefore ,  the inequali ty BGM~ can be in terpre ted  as an extension of  some 

hypermet r ic  (when k = 1) and cycle (when k = 2) inequalit ies,  which offers a partial  

answer  to the quest ion f rom Section 3.2 on how to define valid inequalit ies f rom 

any integers hi. 

General ly ,  if b = ( 1 , . . . ,  1, - 1 , . . . ,  - 1 )  with v >- 2 coefficients - 1  and v + 2u + 1 

coefficients +1,  let K denote  the ant iweb on m = v + 2 u + l  nodes  with pa rame te r  

u, i.e., K is the circular graph on nodes  {1, 2 , . . . ,  v + 2u + 1} in which each node  i 

is adjacent  to nodes  i + 1, i + 2 , . . . ,  i + u; then inequali ty (4.6) is called a clique-web 

inequality (set n = 2 u + 2 v + l ) .  Observe  that,  for u = 0  or 1 and for v = 2 ,  then the 

cl ique-web inequali ty is facet inducing (it cor responds ,  respectively,  to the pure  

hypermet r ic  inequality,  pure  cycle inequal i ty  and BGMn inequali ty).  We can prove  

that,  if the cl ique-web inequali ty is valid, then it is, in fact, facet inducing and that  

it is indeed valid for u = 2 or when m > ( u -  1)(u2+ u - 2 ) .  We conjecture that  the 

cl ique-web inequali ty is always valid; we will examine  this conjecture in [24]. 
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(b) Kelly's inequality 

Consider a partition of N into P w Q u { n} with [PI = P, ) QI = q, p, q -> 2 and p + q + 

1 = n. Let K,,  Kq denote respectively the complete graph on P, Q. Set t = qp _p2+ 1. 

The following 

Kelly [34]: 

(p-l)  

inequality denoted by Keln(p) was mentioned by 

x f j + ( p + l )  ~ xij - p E x~j 
(i , j)~ K,I ( i , j )c  Kp ia Oj~ P 

+ ( q - p - t )  ~ x~,+t ~ x~,<-O. (4.7) 
i~Q i~P 

P r o p o s i t i o n  4 .8 .  For all n >- 5, the inequality Kel , (p )  defined by (4.7) is a valid 

inequality of  Cn. 

P r o o f .  Consider a cut vector 8(S) with n ~ S, c~ = [S ~ Q[,/3 = IS n P[. (4.7) computed 

at vector 6(S) takes the value 

(p - 1)o~ ( q -  a ) +  (p + 1)/3 (p - /3 )  - p [ a ( p  - / 3 )+  ~(q - o~)] + ( q - p  - t )a  + t/3. 

One can verify that this quantity is equal to 

(p + 1)(a -/3)(/3 - 1 - a ( p  - 1) / (p  + 1)). 

We now verify that the latter is nonpositive; for this, we distinguish two cases. 

- Suppose first that a </3. Then, we have a - /3  < 0 and 

/ 3 - 1 - a ( p - 1 ) / ( p + l ) - > c ~ - a ( p -  1 ) / ( p + l )  = 2 a / ( p + l ) - > 0 .  

- Suppose now that a> /3 .  We verify t h a t / 3 - 1 - a ( p - 1 ) / ( p + l ) < - O .  For this, 

note that/3 -< min(~ - 1, p); when a - 1 -<p, then we have 

/3 -  1 - a ( p -  1 ) / ( p +  1)-< a - 2 - a ( p -  1 ) / ( p +  1) = 2 ( a - p -  1 ) / ( p +  1)-<0, 

and when p -< a - 1, then we have 

/ 3 - 1 - c ~ ( p - 1 ) / ( p + l ) _ < p = l - a ( p - 1 ) / ( p + l ) = ( p - 1 ) ( p +  1 - a ) / ( p + l ) - < 0 .  

Therefore we have proved validity of (4.7). [] 

Remark 4.9. We deduce from the above proof  that the roots of  Kel,, (p) are exactly 

the cut vectors 6(S) with n ¢~ S and c~ = IS n Q[,/3 = IS n P[ satisfying 

(a) Either ol =/3; there are ~1 . . . . .  ~,(p, q) ( ~ ) ( P )  such roots. 

(b) Or /3= l + a ( p - 1 ) / ( p + l ) ;  such roots exist only if p + l  divides a ( p - 1 )  

and, i f p  is odd, we can suppose that c~ # ½ ( p + l )  (else ce =/3). 

Set F = { a :  0_<a_<min(q ,p+ l ) ,  c ~ # ~ ( p + l )  such that p + l  divides a ( p - 1 ) } ,  
q p then there are ~ i -  (~)(~) such roots. 

It is an open question to characterize the parameters for which Kel, (p) is facet 

inducing; however, we have the following results: 

P r o p o s i t i o n  4.10. For n >-7, the following assertions hold: 

(i) Kel,(2)  is permutation equivalent to C y c n ( n - 4 ,  2, 2, - 1 , . . . , - 1 )  and is 

therefore facet inducing. 

(ii) K e l , ( n - 3 )  is a simplicial face of dimension ½n(n-  1 ) - 3 .  
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Proof.  We leave it to the reader  to verify that, setting P = {1, 2}, Q = { 3 , . . . ,  n - 1}, 

Keln(2) coincides with Cyc, (2 ,  2, - 1 , . . . ,  - 1 ,  n - 4 ) .  F rom Remark 4.9, the roots of  

K e l p ( n - 3 )  are 6(S)  for: 

- e i t h e r o ~ = / 3 = l :  S = { 1 ,  i } o r { 2 ,  i} with 3-< i-< n - 1 ,  

- o r a = ] 3 = 2 :  S = { 1 , 2 ,  i, j} with 3 <- i < j  <- n - 1 ,  

- o r e s = 0 , / 3 = 1 :  S = { i } w i t h 3 < - i < - n - 1 .  

Hence,  there are ½ n ( n - 1 ) - 3  roots. We verify that  their intersection vectors 

(pointed at posi t ion n) are linearly independent .  For  this, form the matrix whose 

rows are, first the vectors ~r({i}) for  3 < - i < - n - 1 ,  then ~r({1, i}) for 3<- i<-n -1 ,  

then ~'({2, i}) for  3-< i <- n - 1 and finally ~r({1, 2, i, j}) for  3-< i < j -<  n - 1, and 

whose columns are indexed by (1, 1), (2, 2), (1, 2), (i, i) for 3-< i-< n, (1, i) for 

3<~i<-n, (2, i) for  3<-i<-n and (i , j)  for  3<-i<j<-n.  After deleting the columns 

indexed by (1, 1), (2, 2), (1, 2), the matrix has the configurat ion shown in Figure 

3 and is clearly nonsingular  (setting rn = n - 2 ,  s =½(n - 2 ) ( n  - 3 ) ) .  [] 

I m 

T m 

I m 

T m 

X 

"r m 

I~ 

Fig. 3. 

(c) Poljak-Turzik inequality [36, 37] 

Let k, r be even integers and n = kr+ 1. Let C(n, r) denote  the circular graph of  

order  n with edges ( i , i+ 1), (i, i +  r) for  1 ~ i ~  n. Poljak and Turzik [36] proved 

that  the inequali ty 

}~ x i j < _ 2 n - k - r  (4.11) 
( i , j )~C(n , r )  
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is valid for the cut polytope Pc(K,) and defines a facet of the bipartite subgraph 

polytope of  Kn. Poljak and Turzik [37] proved that inequality (4.11) defines, in 

fact, a facet of P c ( K , )  for r -  < k+2 .  

Figure 4 shows the graph C(9, 2). If  we switch (4.11) by the root {1, 4, 7}, we 

obtain a facet of the cone C9 whose supporting graph is shown in Figure 5. 

1 

9~ 

8' 1 3  

7 

Fig. 4. 

k k ~ ~ ~ ~°4 ~ /-- 

~ ~ - ~ . . . ~  .~ / /  

\ " / 1  
) \ / /  \ 

.V/ 

k~ I I 
~ I / 

~ // 

Fig. 5. 

Remark 4.12. For r = k = 2, n = 5, C(5, 2) = Ks and, if we then switch (4.11) by root 

{1, 3}, we obtain exactly the pentagonal hypermetric facet. For k = 4 ,  r--2,  n--9,  

(4.11) is also facet defining; in fact, after switching by root {1, 4, 7}, we obtain an 

inequality which is permutation equivalent to that from Figure 5. 

4.3. The cut  cone on seven points  

Let Gr7 denote the graph on 7 points shown in Figure 6; its edges are weighted 1, 

-1  or - 2  (the circle around nodes 1, 2, 3, 4 indicates that node 5 is adjacent to all 
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II 
I1 

II 

5 

Fig. 6, 

of them; weight - 2  is indicated by a double dotted line). We also denote by Gr7 

the inequality supported by the graph Gr7 and defined by 

2 Xij"~X56-]-X57--X67 -XI6-X36-X27-X47-2  ~ X5i~O" (4.16) 
1<_ i<,j~_4 1 ~ i ~ 4  

This inequality was discovered by Grishukhin [27] who proved that it defines a 

simplicial facet of the cone C7 (by computer check). 

Remark 4.17. Figure 7 shows the graph obtained from Gr7 after identifying nodes 

6, 7; observe that the inequality supported by this graph is exactly the hypermetric 

facet Hyp6(1, 1, 1, 1, -2 ,  -1) .  Therefore, the facet Gr v can be seen as the result of 

,% 

7 
J 

f 
f 

%. 

I 
/ 

f 
J 

J 

,% 

Fig. 7. 
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splitting node 6 in the above hypermetric facet; i.e., Gr 7 is a lifting of the hypermetric 

facet Hyp6(1, 1, 1, 1, - 2 , - 1 ) .  

Up to permutation and switching, all known facets of the cut cone C7 are: 

- Six hypermetric facets HypT(b) for 

(1) b = (1, 1, -1,  0, 0, 0, 0), 

(2) b = (1, 1, 1, - 1 ,  - 1 ,  0, 0), 

(3) b = ( a ,  1, 1, 1 , - 1 , - 1 , - 1 ) ,  

(4) b =  (2, 1, 1 , - 1 , - 1 , - 1 , 0 ) ,  

(5) b = (2, 2, 1, -1,  -1,  -1,  -1) ,  

(6) b = (3, 1, 1 , - 1 , - 1 , - 1 , - 1 ) .  

- Three cycle facets Cyc7(b) for 

(7) b -  (1, 1, 1, 1, 1, -1,  -1) ,  

(8) b = (2, 2, 1, 1, - 1 ,  - 1 ,  - 1 ) ,  

(9) b = (3, 2, 2 , - 1 , - 1 ,  -1,  -1).  

(10) 

(11) 

The parachute facet Par7. 

Grishukhin facet GrT. 

Among these facets, the last five are non-hypermetric, the non-simplicial ones are 

the first five and five of them: (1), (2), (3), (7), (10) are pure, i.e., have 0, 1, -1 

coefficients. Grishukhin [27] proved that the above list is, up to permutation and 

switching, complete, i.e., that every facet of the cone C7 is permutation and/or  

switching equivalent to some facet of the above list of facets (l)-(11). The number 

of non-permutation equivalent switchings of facets (7), (8), (9), (10), ( l l )  is, 

respectively, 3, 6, 4, 2, 6 [17]. 

Assouad and Delorme [2] studied graphs G whose suspension VG (obtained by 

adding a new node adjacent to all nodes of G) is hypermetric, but not embeddable 

into L I, i.e., the graphic distance d induced by VG satisfies all hypermetric 

inequalities but does not belong to the cut cone, where d~ = 1 if ( i , j )  is an edge of 

G and d~i = 2  otherwise. They proved that VG is hypermetric but not embeddable 

into L ~ if and only if G is an induced subgraph of the Schl~fli graph (see, e.g., [12]) 

and contains as an induced subgraph one of the following eight forbidden subgraphs: 

(1) G1 = g 7 - C 5 ,  with (75 is the cycle (3, 6, 4, 7, 5). 

(2) G2 = K 7 - P 3 ,  with P3 is the path (4, 6, 7, 5). 

(3) G3 = K7 - P2, with P2 

(4) G4 = VB8 where B8 is 

(5) G5 = VB7 where B 7 is 

is the path (5, 7, 6). 

the graph shown in Figure 8. 

the graph shown in Figure 9. 

(6) G 6 = VB5 where B5 is the graph shown in Figure 10. 

(7) (37 = 77/ /3 where /-/3 is the graph shown in Figure 11. 

(8) G8 = VH4 where H4 is the graph shown in Figure 12. 

Let di denote the graphic distance for graph Gi ; since di ~ C7 but di is hypermetric, 

there exists a non-hypermetric facet v of C7 which separates di from C7, i.e., v" di > 0. 
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Fig. 8. 

5 

4 °7 

3 

Fig. 9. 

2 5 

3 6 

Fig. 10. 

6 7 

3 4 

Fig. 11. 

For the first five graphs, such separating facets were found by Assouad and Delorme; 

they are respectively for the first four graphs: CyCT( -1 , -1 ,1 ,1 ,1 ,1 ,1 ) ,  

Cycv(--1, -1 ,  -1 ,  1, 1, 2, 2), Cycv(-1,  -1 ,  -1 ,  -1 ,  2, 2, 3), the parachute facet Par~ 
(after renumbering its nodes: (0, 3, 2, 1, 1', 2', 3') as (7, 1, 2, 3, 4, 5, 6)). The distance 

ds is separated by the facet supported by the graph from Figure 13; it is, in fact, 
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"~" ~ ~ ~ - - ~  2 

Fig. 13. 

equivalent to the facet CyCT(-l, -1 ,  1, 1, 1, 1, 1) (after switching the latter by root 

{3, 4} and then permuting the vertices (1, 2, 3, 4, 5, 6, 7)-~ (7, 4, 2, 6, 3, 1, 5)). We 

verified that d 6 iS separated by the facet C y c 7 ( - 1 , - 1 , - 1 ,  1, 2,2, 1). Grishukhin 

(personal communication) observed that dv is separated by the facet equivalent to 

Gr7 obtained by switching Gr7 by the root 6({1, 3, 6}) and then permuting the 

vertices: (1, 2, 3, 4, 5, 6, 7) ~ (4, 2, 3, 1, 5, 7, 6); also that d~ is separated by the facet 

equivalent to Cyc7(2, 2, 1, 1, - l ,  -1 ,  -1 )  obtained by switching it by root 6({1}) and 

then permuting the vertices: (1, 2, 3, 4, 5, 6, 7) -~ (7, 2, 1, 3, 5, 6, 4). 

Remark 4.18. In all above cases, if v is the facet separating the graphic distance d, 

then v. d = 1 holds, i.e., v. d takes the minimum possible value over {v. x: x is an 

integer vector that violates inequality v. x <-0}. 

4.4. S o m e  count ing results' and  open quest ions 

(a) S o m e  count ing 

Recall that a valid inequality v. x-<0 is simplicial if all its roots are linearly 

independent. Permutation and switching by roots preserve the property of being 

simplicial. However, lifting by zero does not in general preserve this property. For 

this, suppose that v. x--- 0, v ' .  x ~ 0 define respectively simplicial facets of C~, C~,+,~ 

(m ~ 1) where v '=  (v, 0 . . . .  ,0); then, we have the relations: IR(v) l  = (~) - 1, IR(v ' ) I  =- 

("~ ' )  - 1 and 

[R(v')l = 2'~lR(v)l +2  m - 1, (4.19) 



146 M. Deza, M. Laurent / Facets for the cut cone I 

from which we deduce that: (n + m ) ( n  + m - 1) = 2mn(n - 1), implying that n = 3, 

m = 1. Therefore, Hyp3(1, 1, - 1 )  and its 0-lifting Hyp4(1, 1, -1 ,  0) are the only case 

of simultaneous simplicial facets. On the other hand, we obtain from (4.19) that 

Hyp,(1 ,  1, -1 ,  0 , . . . ,  0) has 2"-2+2" 3_ 1 roots; therefore, it is simplicial when 

n = 3, 4 and Proposition 4.20 shows that it realizes the maximum possible number 

of roots for a hypermetric facet of C, (the extreme opposite of being simplicial). 

Proposition 4.20. Any  hypermetric facet  o f  C~ has at most 2"-2+2"  3_ 1 roots. 

Proof. Take a hypermetric facet Hyp~(b) with bl >-" • • >- by> 0 >  bf+l ->" • • --- bn 

where f -  > 2. The set of roots can be partitioned into: R ( v )  = R 1 k) R 2 where R~ = {root 

6 (S  u {2}): S _ [3, n]} and R2 = {root 6(S): S c_ [3, n]}. When b2 # 1, there exists no 

subset S of [3, n] such that 6(S) ~ R2 and 6 ( S  u {2}) ~ R1; hence IR(v)l-< 2 "-2. When 

b2=1 , i.e., b2 . . . . .  hr.=l,  we set A ~ = { S c _ [ 3 ,  n]: b(S)=0} ,  A 2 = { S c _ [ 3 ,  n]: 

b ( S ) = l }  and A a = { S G [ 3 ,  n]: b ( S ) = - l } ;  then, IR~]=IA~I+IA31 and IR21 = 

IAI[ + Ia21- 1, i.e., [R(v)l = 2]All + IA21 + ]a31-1. We have that: IAIf + fA21 + [a31 ~ 2 "-2 

and JAil -< 2 "-3 (by partitioning again A1 into those sets containing 3 and the others). 

The result extends to the case when some coefficients b~ are zero by using relation 

(4.19). [] 

The pentagonal facet: Hyps(1, 1, 1, -1 ,  -1 )  is also simplicial; in fact, the number 

of roots of the pure hypermetric facet Hyp,,(1 . . . .  ,1, -1 ,  . . . ,  -1 )  (with k +  1 ones 

and k minus ones) is equal to: 

k k - 1 ,  |~/~<k (i)((i)~(ikl))=l<~i~k (k)(k+, 1) ~ (2k; 1) 
with equality if and only if k = 1, 2, i.e., for the triangle or pentagonal facets. Indeed, 

Hyp3(1, 1, -1 ) ,  Hyp4(1, 1, -1 ,  0), Hyps(1, 1, 1, -1 ,  - 1 )  belong to the larger class of 

simplicial facets: Hyp,  (n - 4 ,  1, 1, - 1 , . . . ,  -1 )  for n >- 3 which follows from Proposi- 

tion 4.21. We conjecture that this is the only (up to equivalence) class of simplicial 

hypermetric facets, at least for the linear or quasilinear case. 

Proposition 4.21. Let b = ( bl , b2 ,1 ,1 ,  - 1  . . . . .  -1 )  with bl + b2 = n - 5, b l >- b 2 and 

n->7. 

(i) Hyp~(b) is facet  defining if  and only i f  bl < - n - 4 .  

(ii) Hypn(b) is a simplicial face  if  and only i f  bl > - n - 4 .  

Proof. We prove (i). When b 2 < ~ - l ,  from Proposition 3.12, Hyp , (b )  is a 

(quasilinear) facet if and only if: n -4_> bl+ 1 -s ignlbt  - 11, i.e., bl ~< n - 4 .  When 

b2 -> 1, then bl ~< n - 6  and, from Proposition 3.12, Hypn(b) is a (linear) facet. We 

prove now (ii). One verifies easily that Hyp . (b )  has ( ~ ) - n  roots of the form 3(S) 
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with S~_[3, hi; the number of roots 6(S )  with 2~S, I ~ S  is equal to: 

n - 4  n - 4  n -  n - 4  n - 4  

A = ( n b - - 2 4 ) + ( b 2 _ l ) + 2 ( b 2 + l ) + 2  ( b e 4 ) + ( b 2 + 2 ) + ( b 2 + l )  ' 

setting ( n ~  4) to zero whenever  a < O  or a > n - 4 .  

When bl = n - 4 ,  i.e., b2 = - 1 ,  then A = n - 1 and the total number of roots is (~) - 1; 

Hyp,(b)  is then a simplicial facet. When bl = n - 3 ,  i.e., be = -2,  then A = 1 and the 

total number of roots is (~ ) -n  + 1; we verify that these roots are all linearly 

independent. For this, consider the matrix whose rows are the projections on the 

index set I = {(i,j): 3 < ~ i < j  <-n} of the intersection vectors pointed at position 1 

of the roots 6(S )  for S = {3}, {4}, {2, 3, 4}, {3, 4, i} (5 -< i -< n), {3, i} (5 -< i -< n), {4, i} 

(5-< i -  < n) and {3, 4, i , j }  (5~< i < j -  < n). If  one permutes the columns of this matrix 

by reordering the pairs in I as: (3,3), (4,4), (3,4), (i, i) for 5<-i<-n,  (3, i) for 

5<-i<-n,  (4, i) for 5<-i<-n and ( i , j )  for 5 < - i < j < - n ,  one obtains a matrix whose 

block configuration is shown in Figure 14 and which is clearly non singular (setting 

rn = n -2 ,  s =½(n -2 ) (n  -3)) .  Hence, Hyp~(b) is a simplicial face. When bl -> n - 2 ,  

then A =  0 and, from the previous argument, Hyp,(b)  is again a simplicial face. 

When bl -< n - 5, i.e., be -> 0, then A -> n and there are at least (~) roots, hence Hyp,  (b) 

is not simplicial. [] 
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Fig. 14. 

Proposition 4.22. Hypn(1, 1, 1 , - 1 , - 1 ,  b 6 , . . . ,  bn) (with b6+" • .+bn =0) is not 

sirnplicial whenever n ~ 6. 

Proof. Observe that there exist 19 distinct roots g(S) with S_~ [1, 5]; they are not 

linearly independent, since their intersection vectors take nonzero value only on the 

15 positions ( i , j )  with l < - i < j < - 5 .  [] 
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(b) Some open questions 

We have described above classes of valid inequalities for the cut cone C" containing 

large subclasses of facets. Almost all of  them belong to the following three families: 

hypermetric, cycle and pure (i.e., with 0, 1 , - 1  coefficients) inequalities. It is of 

interest to consider the cones defined by each of the above families: the hypermetric 

cone HYP, defined by the hypermetric inequalities, the cycle cone CYC, defined 

by the cycle inequalities and the pure cone P, defined by all pure valid inequalities 

of C,. The set of all semi-metrics on n points is the polyhedral cone M, whose 

facets consist exactly of the triangle inequalities. We have the inclusions: C, g 

HYP,  _c 54, and C" ___ HYP, c~ CYC, c~ P,. There are many interesting open ques- 

tions concerning these cones; we mention some which are most relevant to our 

work. Obviously, the cone P, is polyhedral; is this true as well for the cones HYP, ,  

CYC, ? It is proven in [23] that the hypermetric cone is indeed polyhedral. It would 

be very interesting to determine the complexity of the separation problem over the 

cones HYP,,  CYC,,  P,,. 

Another interesting question is whether the cones HYP~, CYC,,  P, realize a 

"good approximation" of C,. If C is a cone containing C", one can consider the 

quantity: d(C,  C , ) = m a x ( v .  x: xE  C - C . ,  v is facet of C, with Ilvtl-< 1). It would 

be of interest to study whether d(C,  C,) is bounded for C = HYP,,  CYC, or P,, 

(recall Remark 4.18). 

Another development of this work concerns restricted cut cones, i.e., cones gener- 

ated by a subset of the family of cuts of the complete graph, e.g., all cuts with given 

cardinalities; the applications to the related max-cut problem are obvious. In [14], 

the case for subfamilies consisting of all equicuts, i.e., cuts 3(S) with ISI = jan] or 

[in ], was considered (in the polytope version). In [22], we consider equicuts and 

the complementary case of inequicuts, i.e., all cuts except equicuts. 

5. Proofs 

5.1. Proofs for Section 3.1 on hypermetric inequalities 

Proof of Theorem 3.11. Given integers bl, . . . , by such that b2 > - b3 >-" " " >- b f  > 0 

and b l + b 2 + ' " + b y = n - f + l  and given an integer c, we set b =  

( b l , . . . , b j - , - 1  . . . .  , - 1 ) ,  b ' = ( b l - c ,  b2 . . . .  , bs, -1  . . . .  , - 1 ,  c) (with n - f  

coefficients -1 )  and we denote respectively by v, v' the hypermetric inequalities 

Hyp, (b) ,  Hyp,+l(b') .  We assume that v is facet defining. We show that v' is facet 

defining for suitable choice of c by using our lifting technique from Section 2.2 and 

Proposition 2.7. We observe first that conditions (2.4), (2.5) hold; for this, note that 

if a subset S of N = [1, n] such that 1 ~ S defines a root of v, it also defines a root 

of v', since the coefficients of b' differ from those of b only in positions 1, n + 1 

and 1, n + 1 ~ S. In order to complete the proof, we must show that condition (2.6) 

holds, i.e., that there exist n roots of v' = Hyp,+l(b ' )  of the form 6(S)  with 1 ~ S, 
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n + 1 ~ S and the project ions  o f  their incidence vectors on { 2 , . . . ,  n + 1} are linearly 

independent• 

Case  c = - 1  and  b2 = 1. Then,  w e  c h o o s e  the following n roots 6 (S ) :  

S:{ i ,n+l}  fo r2-< i -<f  

S={2,3, i,n+l} forf+l<-i<-n, 

S= {2, 3, n+l}.  

Their incidence matrix, shown in Figure 15, is easily verified to be nonsingular 

(In denotes the n x n identity matrix, a matrix whose  entries are all zeros (or ones)  

is indicated by 0 (or 1)). 

Case e = - 1  and b2->2. Then, we choose  the fol lowing n roots: 

S:{ i ,n+l}u[ f+l , f+bi -1]  for 2-< i~<f 

S={2, n + l } u [ f + l , f + b 2 - 1 ] - { i }  forf+l<-i<-f+b2-1, 

S={2, n + l } u [ f + l , f + b 2 - 2 ] u { i }  forf+b2<-i<-n, 

S={2,3,  n+ l }u[ f  + l , f  +b2+b3-1]. 

Set t = n - f - b 2 +  1, b = b2 and let K,  denote the n x n matrix o f  all ones except 

zero on the diagonal; then, the incidence matrix of the above n roots has the block 

configuration shown in Figure 16. We denote by I, J, K and {n} the index sets for 

If-i 

I 1 

1 1 0 

1 1 

i 1 0 . 

In.l 

Fig. 15. 
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I" 
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Fig. 16. 
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its columns and by Ci, i • I k0 J vo K w {n}, its columns• One obtains that the matrix 

has a nonzero  determinant  by performing the fol lowing manipula t ion on the 

columns:  

- replace Cj by Cj - C1 for j • J, 

- replace C~ by C~-Yi~I  Ci, 

- replace C1 by C1+Y~j~a Cj, 

- replace C~ by Ci+Y~k~ Ck for  the last element i of  jr. 

Case 0 <  c -  < n - f -  b2. We consider  the following n roots: 

S = { i , n + l } w [ f + l , f + b ~ + c - 1 ]  for 2~< i~<f, 

S = { 2 ,  n + l } w [ f + l , f + b 2 + c ] - { i }  f o r f + l ~  < i < ~ f + b 2 + c - 1 ,  

S = { 2 ,  n + l } w [ f + l , f + b 2 + c - 1 ] w { i }  f o r f + b 2 + c  <-i<-n, 

S =  {2, 3, n + l } w [ f + l , f + b 2 + b 3 + c ] .  

Their incidence matrix is shown below in Figure 17 (we set: s = b2+ c - 1, t = n - f -  

b: - c + 1). As before,  /, J, K and {n} denote  the index sets for the columns corres- 

ponding  to the block configurat ion o f  the matrix and its columns are denoted  by 

Ci. One observes that  its determinant  is nonzero  by performing the fol lowing 

manipula t ion  on the columns:  

- replace Cj by Cj - Cn for j • J, 

- replace C,, by C,,--~ieI Ci, 
- replace Cl by C1--~k~K Ck. [] 

I J K n 

1 

1 i0...0 

X 

K s 

1 

I. 

1 
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1 

o 

1 

I" 
I t t. 

o 1 
1 i. IO.. 1 

Fig. 17. 

P r o o f  o f  T h e o r e m  3 . 1 2 .  We take integers bj -> • • • -> by > 0 > by+l >-' • • >- bn. 

Proof of (i). Suppose that v = Hyp~(b)  is facet inducing and denote by R its set 

o f  roots• If  f - -  1, then b(S) < 0 holds for all S c N ;  i f f  = n - 1, the number  of  roots 

is equal to the number  o f  indices i such that  bi = 1; hence both cases f =  1, n - 1 

are excluded. Suppose now that f =  2; for all roots 6(S) ,  we can assume that  1 ~ S, 

2 c S. Set F = {(1, 2), (2, 3), (1, 3)}; then the set RF (of  project ions on F o f  the roots) 

consists exactly o f  the two vectors (1, 1,0), (1,0, 1); hence,  r(v, F ) = 2 < I F  I =3 ,  
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which, from Lemma 2.3(ii), implies that vF,=0, i.e., n =3 and thus b = (1, 1 , -1) .  

We now suppose that f =  n -2 ;  for all roots B(S), we can assume that n ~ S. Suppose 

for contradiction that b~ > 1. Then, for all roots 6(S), n -  1 ~ S whenever 1 ~ S; 

therefore, setting F={(1 ,  n - 1 ) ,  (1, n), ( n -  1, n)}, the set Rr  consists of vectors 

(0, 1, 1), (1,0, 1), (0, 0,0) and thus r(v, F ) = 2  which, from Lemma 2.3(ii), yields a 

contradiction. 

Proof of (ii). We take b = ( b l , . . . ,  by, - 1 , . . . ,  -1) .  The "only if" part follows 

from (i) and the " i f"  part by applying iteratively the (-D-lif t ing procedure from 

Theorem 3.11(i) starting with the facet Hyp3(1, 1, -1).  (Note that if, at some step, 

one knows that H y p m ( b l , . . . , b k , - 1 , . . . , - l )  (with m = b ~ + . . . + b k + k - 1  and 

k<-f  - 1) is facet inducing, then one can apply repeated (-l)-l if t ing starting with 

the facet Hypm+~(0, b ~ , . . . , b k , - 1 , . . . , - 1 )  in order to obtain the facet 

Hypl(bk+l, b l , . . . ,  b k , - 1 , . . . , - 1 )  with 1 = b l + '  • "+bk+l+k) .  

Proof of  (iii). We take b = (b~ . . . . .  be, - 1 , . . . ,  -1 ,  bn) with bn -< -2  and n - f -  1 

coefficients -1.  H y p , ( 1 , . . . , 1 , - 1 , - ( n - 4 ) )  is (switching and permutation) 

equivalent to Hyp, (n  - 4 ,  1, 1, - 1 , . . . ,  -1) ,  the latter being a facet from (ii). Hence 

we can suppose that 3 -<f-< n - 3. 

Assume first that Hyp,(b)  is facet defining. We prove that condition (QL) holds. 

We can suppose that, for all roots ~(S), n ~ S. If  bl + b2-> n + 1 - f  then S does not 

contain {1,2} if 3(S) is root; set F = {(1, 2), (1, n), (2, n)}, then RF consists of 

vectors (1, 1, 0), (1, 0, 1) and thus r(v, F) = 2 < I F I ,  contradicting Lemma 2.3(ii). 

Therefore, bl + b2 -< n - f h o l d s  and, if b~ > by, then condition (QL) holds. We suppose 

now that b~ = b I and we prove that the case bl + b2 = n - f  is excluded, by counting 

roots. If bl + b2 = n - f  then, for 1 -< i < j - < f  there exists exactly one root containing 

both i,j. Denote by A the family of intersection vectors (pointed at position n) 

7r(S) for which 6(S) is root with IS n[1 ,  f ] l = l .  For any vector rr(S) of A, 

its nonzero coordinates occur at positions (i,j) for ( i , j )=(1 ,  1 ) , . . . ,  ( f  f )  or, 

l<-i<-f and f + l < - j < - n - 1 ,  or f+l<-i<-j<--n-1;  yielding that r a n k ( A ) -  < 

f + f ( n  - 1 - f )  + ( ~  Y). Therefore, rank(R) -< rank(A) + (~) < (~) - 1, contradicting 

the fact that Hypn(b) is a facet. We prove now that, conversely, if condition (QL) 

holds and 3-<f-< n - 3 ,  then Hypn(b) is a facet. We distinguish two cases: 

Case b~ = by; then condition (QL) becomes b~ + b2-< n - f - 1 .  Applying 0-lifting 

and (-1)-lifting from Theorem 3.11(i) starting with facet Hyp3(1, l, -1) ,  we obtain 

the facet Hypm(1, b ~ , b y , - 1 , . . . , - 1 )  (m=b~+by+3=b~+b2+3).  Applying 

Theorem 3.11 (ii) with c = b2 (which is possible since b2-< m - 3 -  b~), we obtain that 

Hyp~+~(1-b2, b~, b2, b s, - 1 , . . . , - 1 )  is a facet. Similarly, applying successively 

Theorem 3.11(ii) with c = b  3 . . . .  , bs_~, we deduce that Hyp,,+i_2(1-b2 . . . . .  

bs_~, b~, b2 , . . . ,  by, -1,  . . . , - 1 )  is a facet with m + f - 2  = b~ + b2 + f +  1-< n. Finally 

a p p l y  (-1)-lifting until obtaining the facet Hypn(bn, h i , . . . ,  by, - 1 , . . . ,  -1)  where 

b, = 1 -b2 . . . . .  bf_l + n - (m + f - 2 )  = n - f  - b l  . . . . .  bf. 

Case b~> fir; then condition (QL) becomes b~+b2<_n-f  As before, by 

(-1)-lifting, we obtain the facet Hypk(b2-bs, b ~ , b s , - 1 , . . . , - 1  ) with k =  

b~+b2+2. We can apply Theorem 3.11(ii) with c ~ - b 2  and obtain facet 
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Hypk+l(-bf,  bl, b2, bj-, - 1 , . . . ,  -1 ) ,  then with c = b 3 , . . . ,  by ~ until deducing facet 

Hypk+y_2(-b3 . . . . .  bf, b l , . . . , b F , - 1 , . . . , - 1 )  where k + f - 2 = b ~ + b z + f < - n .  

Finally, apply (-D-l i f t ing until obtaining facet Hypn(bn, b~ , . . . ,  by,-1 . . . .  , - 1 )  

where b n = - b 3  . . . . .  b y + n - ( k + f - 2 ) = n - f - b l  . . . . .  bf. [] 

5.2. Proofs for Section 3.2 on cycle inequalities 

Proof of Theorem 3.26. We use again our lifting technique. We prove Theorem 3.26 

by induction on n >-7; for n =7,  the result holds since {b~, b2, b3} = {3, 2, 2}. We 

denote respectively by v,v' the inequalities Cyc,(b~,b2,  b 3 , - 1 , . . . , - 1 )  and 

CyCn+l(bl + 1, b2,  b 3 , - 1 , . . . , - 1 , - l ) .  By the inductive assumption, we know that 

v is facet defining; we prove that v' is facet defining by using Proposition 2.7. 

Condition (2.4) always holds; condition (2.5) holds because, if S is a subset of 

N = [1, n] with 1 ~ S defining a root of v, then S also defines a root of v' since both 

cycle inequalities v, v' have the same positive support: {1, 2, 3} and 1, n + 1 ~ S. In 

order to satisfy condition (2.6), we must find n roots of v' with n + 1 ~ S whose 

incidence vectors projected on { 2 , . . . ,  n + 1} are linearly independent; these roots 

must be chosen from the following list: 

S={2 ,  n +  i } ~ { b 2 - 2  or b2 -3  points from [4, n]}, 

S={3 ,  n + l } ~ { b 3 - 2  or b3 -3  points from [4, n]}, 

S = { 2 , 3 ,  n + l } u { b z + b 3 - 2  or b 2 + b 3 - 3  points from [4, n]}. 

We distinguish 3 cases: 

Case b2, b3 >- 3. Then, we choose the following n roots: 

S={3 ,  n+ l } u [ n - b 3 + 4 ,  n], 

s = {2, n + 1} u [4, b2], 

S = {2, 3, n+  1}w [4, b 2 + 3 ] ~ [ n - b 3 + 4 ,  hi, 

S={3 ,  i , n + l } u [ n - b 3 + 4 ,  n] f o r 4 < - i < - n - b 3 + 3 ,  

S={2 ,  i , n + l } u [ 4 ,  b2] for n-b3+4<- i<-n ,  

(setting [a, b] = 0 if b < a). Their incidence matrix is shown below in Figure 18 

(setting: u = n - b3 ,  v = b3-3) ,  Denote by {1}, {2}, I, J, K, {n} the partition of the 

index set of the columns corresponding to the block configuration of the matrix 

and denote by Ci its columns. One verifies that the matrix has nonzero determinant 

by performing the following manipulations on its columns: 

- replace C~ by C , -  C~-  C2, 

- replace Ci by C i -  Cj for i c I, 

- replace Ck by Ck - C2 for k c K. 

Case b2 = b3 = 2. Then, choose the following n roots: 

S = {2, 3, 4, 5, n + l } , { 2 ,  n + l } , { 3 ,  n + l } , { 2 , 3 ,  i , n + l }  for4<- i -<n .  
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2 I J K n 

1 0,.0 0 .... 0 

0 I..i 0 .... 0 

1 I.. 1 IIi0. 0 

~U 
I 

0 

1 0 

0 

i. 1 1 

O. O 1 

i. 1 . 

1 

I v 

Fig. 18. 

Case b 2 = 2 ,  b3->3. We  c h o o s e  t h e  n r o o t s :  

S={3, i , n + l } u [ n - b 3 + 4 ,  n] for4<-i<-n-b3+l ,  

S={2,3, n+l, n - b 3 + l } u [ n - b 3 + 2  , n]-{i} for n-b3+2<~i<-n ,  

S ={2, 3, n+l }u[n-b3+2 ,  n], 

S =  {2, 3, n + l } u [ n - b 3 + l ,  n] ,  

S = { 2 ,  n+1}.  

Their incidence matrix is shown in Figure 19 (we set: u=n-b3-2 ,  v = b 3 - 1 ) .  

Denote by {1}, {2},/ ,  {a}, J and {n} the partition of the index set of the columns 

corresponding to the block configuration of the matrix. One verifies that its deter- 

minant is nonzero by performing the following manipulations on the rows and 

columns: 

- replace Cn by Cn-  C:, 

- r ep lace  Cj by  Cj - C~ for  j ~ J, 

oii 
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replace C2 by C2 - C1 - Ca - ~ i~ i Ci, 

replace C, by C o -  CI, C1 by C~ + C2, 

replace L3 by L 3 - L 2 ,  where L2, L3 denote the second and third rows (starting 

from the bottom of the matrix). [] 

Proof of  Theorem 3.27. As for Theorem 3.26, the proof  goes by induction on n >_ 7. 

It is similar, so we simply indicate which additional n roots must be chosen: 

S={2 ,  n + l } ,  {2, 3, n+ l} ,  {3, 4, n + l } ,  {2, 3, 4,5, n + l }  and {2,3, i, n + l }  for 5 -  < i-< 

n. One verifies easily that their incidence vectors are linearly independent. [] 

(c) 
(1,2, .  

(d) 
where 

/3<0.  

Proof of Theorem 3.25. We prove that Cy%(1, . . . ,  1, - 1 , . . . ,  -1 )  is facet defining 

by using the "polyhedral"  method discussed in 1.4(a). We denote by 1, 2 . . . .  , k + 3 

the k + 3  points corresponding to coefficients bi = 1 and by 1', 2 ' , . . . ,  k' the k points 

corresponding to coefficients -1 ,  so n = 2k+3  with k->2. We denote by v the cycle 

inequality C y c n ( 1 , . . . ,  1 , - 1 , . . . , - 1 )  and we consider a valid inequality b. x -  < 0 

of Cn such that b. x = 0 holds whenever v. x = 0. In order to show that v is facet 

defining, it suffices to prove the following statements: 

(a) b 0,=/3 for a l l l - < i < - k + 3 ,  1-<j-<k, 

(b) bi,; = -/3 for all 1 -< i < j  -< k, 

bu=- /3  for all l < - i < j - < k + 3  where ( i , j )  is 

. . , k + 3 ) ,  

b~i+~ =0  for all 1 

/3 is some scalar; 

not an edge of the cycle 

-< i -  < k + 3  (setting k + 4 =  1), 

negativity of/3 will then follow from relation: b. 6({1, 1'}) = 

We first observe that the roots of v, which are then also roots of b, are of the 

form 6(S)  with S = T u  T' where T is a circular interval of [1, k+3] ,  T' is a subset 

of [1', k'] and ITI = IT'{ + 1 or [T'J +2. 

(1) Condition (d) follows from Lemma 1.1, since the sets {i}, {i+ 1}, {i, i+  1} all 

define roots (of v, hence of b) for any 1-<i -<k+3.  

(2) For proving that condition (a) holds, observe that, for A = [4, k+3]  u [3', k'], 

the sets A u {1'}, A u {2'}, A u {1, 1'}, A w {1, 2'} all define roots; hence we deduce 

from Lemma 1.2 that b~l ,= b~2, and the general result follows by symmetry. We set 

b u, = fi for any i, j. 

(3) Take i e [ 3 ,  k] and set A = [ 1 ,  k ] w [ 3 ' , k ' ] - { i ' } ;  the sets A~{2'}, A w { i ' } ,  

A ~ { I ' ,  2'}, A u { l ' ,  i'} all define roots; hence we deduce from Lemma 1.2 that 

bl,e ,= bye. By symmetry, we conclude that, for some scalar c~, brj,= a for all 

1-< i <_j -< k. 

(4) Take v, 1-< v -  < k+3 ;  then 5({v}) is a root. From the preceding statements 

and the equality: b. 6({v}) = 0, we can deduce the following relation: 

(S~) ~ bvi + k/3 -- 0. 
l < - - i < k + 3  

i#v- - l , v ,v+l  
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(5) Claim. fl =-a .  

Proof Since the set {1, 2, 1'} defines a root, equality b. 6({1, 2, 1'}) = 0 yields 

(6) b13+ ~ b~,+b2i+fi(3k-1)+a(k-1)=O. 
4 ~ i ~ k + 3  

By adding relations ($1) and ($2), we obtain 

(7) b,3+ ~ b,~+bei+2kfl =0. 
4~<i~<k+3 

Subtracting (6) from (7), we deduce that fi =-c~. 

(8) Claim. b~3 =-ft. 

Proof Using the fact that {1, 2, 3, 1'} is a root, we deduce the relation 

(9) ~ b,~+b2~+b3~+(3k-2)fi =0. 
4 ~ i ~ k + 3  

Adding relations (SI), ($2), ($3) and then subtracting the resulting relation from (9) 

yields equality b13 =- /3 .  

In order to finish the proof, we must show that condition (c) holds. For this, we 

prove by induction on u, 3-< u-< k+3 ,  the following statement: 

(Hu) b~,~=-/3 fora l l  l<~v<w<-u and w ~ v + l .  

From (8), the inductive assumption holds for u = 3. Take u->4 and assume that 

(Hu_~) holds; we prove that (H, )  holds, i.e., b~, = b2~, = . . . .  bu-2, = -/3. We show 

the latter again by induction on v, 1-< v -  < u - 2 ,  in the following claims (10), (14). 

(10) Claim. bl, =-ft.  

Proof Using the fact that both sets [1, u ] u  [1', ( u - 2 ) ' ]  and [2, u ] u [ l ' ,  ( u - 3 ) ' ]  

are roots, we deduce respectively 

(11) ~ bu-t-b2iq-.. .+b~+2/3(k-u+2)+/3(u-2) (k-u+3)=O,  
u+l~i~k+3 

(12) b l , +  Y b2~+b3,+-" .+b~,+/3(k-u+3)(u-1)=O. 
u+l~i<~k+3 

Relation (S~) together with the inductive assumption becomes 

(13) bl,+ Z ble+fl(k-u+3)=O. 
u+l~ i~k÷3  

By computing ( 1 2 ) -  (11)+ (13), we deduce that b~, =- /3 .  

(14) Claim. Assume that b~, = b2u = . . . .  b~_~u = -/3 where 2-< v ~  u - 3 .  Then, 

b~ =- /3 .  

Proof Using the fact that both sets [ v + l ,  u]u[ l ' , ( u - v -2 ) ' ] ,  [v,u]u 

[1', (u - v - 1)'] are roots and the inductive assumptions Gw = -/3 if 1 -~ s < w ~ u - 1, 

w # s + 1 and b~, = -/3 if 1 ~ s ~ v - 1, we deduce respectively 

(15) b ~ +  Y~ b~+~,+.- "+b~+/3(u-v) (k-u+3)=O,  
u+l~i~k+3 
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(16) Y, 
u + l ~ i ~ k + 3  

Relation (So) becomes 

(17) b~+ Z b~+[3(k-u+4)=O. 
u+l<i<_k+3 

Now, computing ( 1 5 ) - ( 1 6 ) +  (17) yields b~ = - f t .  
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b~+" • "+ b,~-fi + f i ( u - v +  l ) ( k - u +  3) =0. 

[] 

5.3. Proof of Theorem 4.1 on the parachute facet 

The nodes of  the parachute graph are denoted as 0, 1 , 2 , . . . ,  k, I ' , 2 ' , . . . ,  k'; E+ 

denotes the set of edges with weight +1 consisting of the path P =  

(k, k -  1 , . . . ,  1, 1 ' , . . . ,  ( k -  1)', k') while E denotes the set of edges with weight -1  

consisting of the pairs (0, i), (0, i') for 1 -< i-< k -  1 and the pairs (k, i'), (k', i) for 

1 -< i <- k. We suppose that k is odd. We subdivide the proof  into two parts: first, 

we show that the parachute inequality Parn, denoted by v, which can be written as 

v. x = }~(i,j)~E+ x~ - ~ ( i . j i ~  x~ <- 0, is valid for the cut cone and, then, that it is facet 

defining. 

(i) The parachute inequality is valid. Consider a cut vector 6(S); we can assume 

that 0~S.  Set a=lSc~[1, k-1]] and a ' = l S n [ l ' , ( k - 1 ) ' ] ] ,  s+=]g(S)ng+l and 

s_= 16(S)n E_ I. In order to prove validity, we must show that s + -  < s_ holds. We 

first compute the value of s_ by distinguishing four cases (whether k, k ' c  S): 

(a) k ,k 'cS .  Then, s _ = 2 k - 2 .  

(b) k, k' ~ S. Then, s_ = 2a + 2a' .  

(c) k c S ,  k'~S. Then, s_=2a+k.  

(d) k¢:S, k'~S. Then, s = k + 2 a ' .  

(1) Claim. Let P = ( 1 , 2 , . . . , n )  be a path, S be a subset of [1, n] and set 

13 = ]S n [2, n - 1]1. Then, 16(S) c~ P] _< 2/3 + IS n {1, n}[. 

The proof is easy. Validity is now checked: 

- In case (a), s+-<lP l -1  = 2 k - 2 ,  since both endpoints of P belong to S and k 

is odd. 

- In case (b), s + - < 2 a + 2 a  ' from Claim (1). 

- In case (e) (idem for (d)), decomposing P into paths P~= ( 1 , . . . ,  k) and 

P 2 = ( 1 , 1 ' , . . . , k ' )  and using claim (1), we have: s+<-]Sc~{l,k}l+21Sn 

[2, k -1] l+[6(S)nP2l=2a+l-[Sn{1} l+16(S)nP21;  hence s+<_s_ holds 

whenever I~(S) c~ P21-< k - 1; if t6(S) n/21 = k, then, since k'~ S and k is odd, 1 c S 

and we have again s+-< s_. 

(ii) The parachute inequality is facet inducing. Our proof  for facetness is based on 

the polyhedral method. Let b. x-< 0 be a valid inequality of C, such that b. x = 0 

whenever v. x = 0. In order to show that the parachute inequality v is facet inducing, 

it is enough to prove the following statements: 

(a) bo=O for all (i,j)~:E+uE_, 

(b) bij=fl  for all (i ,j)cE+, 

(c) b u = a  for all ( i , j )cE_,  
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for  some scalars a,/3. Then,  using the fact that {1} defines a root  of v, hence of  b, 

one deduces  that c~ = - / 3  holds; positivity of  fi will then follow from relation 

b.  3({0}) = 2 ( k -  1)a  = - 2 ( k -  1)/3 < 0, implying that v is indeed facet defining. 

We now give a sketch of  p r o o f  for  assertions (a), (b), (c), the detailed verifications 

(which are easy but  tedious) being left to the reader. 

(2) Claim. Assert ion (a) holds. 

Proof Given i, i', l < - i < - k - 1  with (i, i') # (1, 1'), the sets {i}, {i'}, {i, i'} all define 

roots; hence,  Lemma 1.1 implies that b~,= 0. 

Given S = { 1 , 3 , 5  . . . .  , k}w{2 ' ,4 ' ,  . . . .  ( k - l ) ' } ,  the sets S, Su{0} ,  Sw{k '}  and 

S w {0, k'} all define roots,  hence Lemma 1.1 implies that bok, = 0. 

(3) Claim. For  some scalar a, b0i = bo/, = a for  all 1 -< i -< k - 1. 

Proof Take i, l < - i < - k - 2 ,  and set A = { 3 ' , 5 ' , . . . , k ' } w { 1 , 3 , . . . , i - 1 } u  

{ i+2 ,  i + 4 , . . . ,  k - l }  when i is even and set B = {1', 3 ' , . . . ,  k ' } u { 2 , 4 , . . . ,  i - 1 } u  

{ i+2 ,  i + 4 , . . . ,  k} when i is odd.  Using Lemma 1.2 appl ied to the set A when i is 

even, or B when i is odd,  and to the points p = 0 ,  q=i ,  r = i + l ,  we deduce  that 

b0~ = bo/+l. Applying Lemma 1.2 to set A = {3, 5,.  , . ,  k} w {3', 5 ' , . . . ,  k'} and points 

p = 0, q = 1, r = 1', we deduce  that  bo~ = boy. This concludes the proof.  

(4) Claim. bu, = -bky = - - b k , 1  d=ef /31 and b12 = by2, = - a .  

Proof Set A = { 1 , 3 , . . . , k } w { 3 ' , 5 ' , . . . , k ' } ;  both A and A u { l ' }  define roots, 

which yields 0 =  b. 3 ( A ) -  b. 6(A u {1'}) and thus 

(5) 0 =  - b l v  + bv2,+ oz --bkr. 

Using the fact that {1'} defines a root,  we obtain 

(6) O=bav+bv~,+a+bkl,. 

Combining (5), (6), we have: bl,2 , = - a  and b11, = - b k v  and claim (4) follows by 

symmetry.  

We now proceed  to compute  the value of  bo along the path P and on edges (k, i'), 

(k',  i). For  this, we prove by induct ion on i the following relations: 

(Oi) b i i + l  = b i , ( i + l  ), = --O/ for  i odd,  i = 1, 3 , . . . ,  k - 2 .  

(Ei) b~i+l = --bk,i = --bk'~+1%f/3i for  i even, i =2 ,  4 , . . . ,  k - 3 .  

(Ei,) b~,(~+l),=-bk~.=-bk(~+j),%ffll f o r i e v e n ,  i = 2 , 4 , . . . , k - 3 .  

By symmetry,  it is enough to show (E~) or (El). For  i =  1, relation (O1) follows 

from claim (4). The next  claim shows that relat ion (E2)  holds. 

(7) Claim. b23 =-bk,2 = --bk,3. 

Proof Since {2} is root, O=b'6({2})=bo2+b~2+b23+bk,2 which, f rom the 

precedings claims, implies that b23 = --bk,2. Set A = {1, 3 , . . . ,  k } u  {5', 7 ' , . . . ,  k'}; 

since both A u {2'} and A w {1', 3'} are roots,  we deduce  

0 = b. 6(A u {1', 3'}) - b- 3 ( a  w {2'}) 
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and therefore 

(8) 0 = b3,4,+ oz --bk3,+bk2,. 

From the fact that {Y} is root, we deduce 

(9) O=ty ' i -b2,3 ,+b3,4,+bk3, .  

Combining (8), (9) and using b2,~, =- -bk2,, we obtain b3, 4, = -ce and then, from (8), 

bk3' = bk2', which concludes the proof. 

In claim (10), we proceed to show that induction is possible. Take i even, 

4<_ i<_ k - 2 ,  and assume that (EJ), (E~) hold for a l l j  even, j < _ i - 2 ,  and (Ok) holds 

for all k odd, k-< i - 3 .  

(10) Claim. (Ei), (El), (O,_,) hold. 

Proof The sets A = { 1 , 3 , . . . , k } u { l ' , 3 ' , . . . , k ' } ,  B = { 1 , 3 , . . . , k } w { 2 ' , 4 ' , . . . ,  

( i -2 ) ' } •{ ( i+1) ' ,  ( i + 3 ) ' , . . . , k ' }  and C = { 1 , 3 , . . . , k } w { 2 ' , 4 ' , . . . , i ' } u { ( i + 3 ) ' ,  

( i + 5 ) ' , . . . , k ' }  are all roots. Hence 0 = b . 6 ( A ) - b . 6 ( B )  and 0 = b . 6 ( A ) -  

b. 6(C),  from which we deduce respectively, using the inductive assumption, 

(11) O = a - i - b ( i _ l l , i , - b k ( i _ l y + b k ( i _ 2 ) , ,  

(12) O=a+b(i+w(i+2~,-bk(i+l>'+bk~,. 

Using (E'~-a) and (11), we deduce b(~ ~>,f, = - a ,  i.e., (Oi_~) holds. From the fact that 

{i'} is root, we have 

(13) 0=c~+b(~ l>,i,+br(i+~>,+bk~,, 

from which we deduce 

(14) br(i+l), =" -bkr. 

From the fact that {(i+ 1)'} is root, we have 

(15) O=oL+bi,(i+l),+b(i+l),(i+2),q-bk(i+l),. 

Adding (12), (15) and using (14) yields b(i+l),(i+2), = --oz and then (15) implies 

br(i+w =-bk(i+l),, i.e., (E'~) holds, which concludes the proof. 

(16) Claim. bk-lk = --bb'k 1%f/3k-1 and b(k-1)'k' = --bk(k-W ~f/3~-1. 

Proof Both sets A = { 1 , 3 , . . . , k } u { l ' , 3 ' , . . . , k ' }  and B = { 1 , 3 , . . . , k } u  

{2', 4 ' , . . . ,  ( k -  1)', k'} give roots, implying 0 = b" 6 ( A ) -  b. 6(B) which, using pre- 

ceding results, yields claim (16). 

(17) Claim. b k k , =  ~ l  - -  f l k _ l  - -  /3 tk_ l  . 

Proof Use relation 0 = b. 6(A) where A = {3, 5 , . . . ,  k} u {2', 4', . . . .  ( k -  1)'} is a 

root. 

We conclude the whole proof by showing that/31 . . . . . .  /3k_1 =/3] . . . . .  /3 ~,_~ = 

- - O l .  

(18) Claim./3~=/3~=-c~ for all l< - i<-k -1 .  

Proof For i even, 2 - < i - < k - 2 ,  set B = { k } u { l ' , Y , . . . , ( i - 1 ) ' } ~ { ( i + 2 ) ' , . . . ,  

( k - l ) ' } ,  B and B u { i ' }  are both roots, yielding/3'~= -c~. [] 
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