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We study facets of the cut cone C,, i.c., the cone of dimension 4n(n —1) generated by the cuts of the
complete graph on n vertices. Actually, the study of the facets of the cut cone is equivalent in some
sense to the study of the facets of the cut polytope. We present several operations on facets and, in
particular, a “lifting” procedure for constructing facets of C,, from given facets of the lower dimensional
cone C,. After reviewing hypermetric valid inequalities, we describe the new class of cycle inequalities
and prove the facet property for several subclasses. The new class of parachute facets is developed and
other known facets and valid inequalities are presented.
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1. Introduction

1.1. The general max-cut problem

One of the main motivations of this work is to contribute to the polyhedral approach
for the following max-cut problem. Given a graph G =(V, E) with nodeset V and
edgeset E and given a subset S of V, the set D(S) consisting of the edges of E
having exactly one endnode in S is called the cuz (or split, or dichotomy) determined
by S, or more precisely by the partition of V into § and V —S. When nonnegative
weights ¢, are assigned to the edges e of E, the max-cut problem consists of finding
a cut D(S) whose weight (defined as the sum of the weights of its elements) is as
large as possible; the max-cut problem is NP-hard [26]. However, if we replace ‘““as
large” by *‘as small”, we obtained the min-cut problem which is known to be
polynomially solvable, using network-flow techniques. On the other hand, poly-
nomial algorithms exist for the max-cut problem for some classes of graphs. This
is the case, for instance, for planar graphs [30], for graphs not contractible to Kj
[6], for weakly bipartite graphs [28], the last result being based on a polyhedral
approach; the class of weakly bipartite graphs includes, in fact, planar graphs and
graphs not contractible to K5 [25]. We refer to the paper by Barahona et al. [8] for
a description of possible applications of the max-cut problem to statistical physics
and some circuit layout design problems with numerical results.
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A way to attack the max-cut problem is the following polyhedral approach which
is classical in combinatorial optimization. For any subset S of V, let §(S) denote
the incidence vector of the cut defined by S, i.e., §(S).=11if ec D(S) and 6(S), =0
otherwise; 8(S) is also called the cut vecior defined by S. The polytope P(G)=
Conv(8(8): S< V) is the cut polytope of the graph G. The max-cut problem can
then be rephrased as the linear programming problem:

max c X
such that xe P,(G).

It is therefore crucial to be able to find the linear description of the cut polytope
and characterize its facets. The study of the cut polytope for general graphs has
been initiated in [6] and continued in [11]. It was proved in [11] that the cut
polytope has the following nice property; namely, a description of the facets that
contain any particular extreme point gives the description of the whole polytope.
For this reason, it is enough to study the facets that contain the origin, i.e., the
facets of the cut cone C(G) generated by the cut vectors. Actually, this property is,
more generally, a property of cycle polytopes of binary matroids (see [7]).

1.2. The cut cone C,

The goal of this paper is to study facets of the cut cone C, = C(K,,), i.e., the cone
generated by the cuts of the complete graph K, on n vertices. There are several
motivations for restricting our attention to the case of complete graphs. One is that
the max-cut problem on a general graph G with n vertices can be represented as
the max-cut problem on the complete graph K, by assigning weight zero to the
missing edges in G. Of course, if the graph G is sparse, working with the complete
graph K, instead of G may increase the size of the problem beyond computer limits;
also, there are classes of sparse graphs for which one can have a simple complete
description of the cut polytope, e.g., for graphs not contractible to K5 [11). On the
other hand, the study of the cut polytope P.(K,) of the complete graph gives some
insight for general cut polytopes P.(G); for instance, every facet defining inequality
of P,(K,) also defines a facet of P,(G) if G is any subgraph of K, containing the
supporting graph of the inequality or if G is any graph containing K, [17]. Another
motivation comes from the fact that elements of the cut cone C, can be interpreted
as semi-metrics on n points. In fact, C, coincides with the family of semi-metrics
on n points which are embeddable into L'; in these terms, the study of the cut cone
was started by Deza in 1960 in [18] and continued e.g., in [3, 5, 20, 21, 38]. There
are also some strong connections between the study of the cut cone and the following
subjects: cone of all metrics and multicommodity flows (see, for instance, [5]),
description of lattices (i.e., Z-modules) in terms of metrics on pointsets on the
boundary of their holes [1, 38, 23]. In this paper, we concentrate on polyhedral
aspects of the cut cone C,; some connections with other polyhedral problems are
mentioned in Section 1.5.
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1.3. Basic notations

We denote by N the set [1,n]={1,2,...,n} and we set n'=5n(n—1). If Sis a
subset of N, 8(S)e{0,1}" denotes the incidence vector of the cut determined by
S, ie., 8(S);=1if |Sn{ij}=1 and §(S);=0 otherwise for 1=i<j=n. The
complete graph K, with nodeset N admits exactly 2" ' ~1 nonzero distinct cuts
D(S) determined by all subsets S of N for which we can assume, for instance, that
1£ S, since D(S)=D(N —S8). The cut cone C, is a full-dimensional polyhedral
cone in R™ which contains the origin [20]. Given a vector v€R", the inequality
v-x=<0 is called valid for the cone C, if it is satisfied by all vectors x of C, or,
equivalently, by all cut vectors 8(S). Then, the set F,={xe C,: v x =0} is the face
generated by the valid inequality v- x =0, denoted simply as v. The nonzero cut
vectors &(S) which belong to F, are called the roots of v, for short, we sometimes
say that S itself is a root of v. The set of roots of v is denoted as R(v). The dimension
of the face F,, denoted by dim(v), is the maximum number of affinely independent
points in F, minus one, or, equivalently, since F, contains the origin, the maximum
number of linearly independent roots of v; any set of dim(v) linearly independent
roots is called a basis of v. The face F, is called simplicial when dim(v) coincides
with the cardinality of R(v), i.e., when F, is a polyhedral (unbounded) simplex. A
facet is a face of dimension n'—1=3n(n—1)—1; one says then that the valid
inequality v is facet defining.

There are several ways of describing a valid inequality v+ x<0. First, one can
simply give explicitly the vector v whose coordinates are then ordered lexicographi-
cally as 0=(012, ..., U1 Uszs---, Uan; ... Un1a)- A more attractive way is to rep-
resent v by its supporting graph G(v), G(v) is the weighted graph with nodeset N
whose edges are the pairs (i, j) for which v; is not zero, the edge (i, j) being then
assigned weight v;. When the coefficients v; take only the values 0,1, —1, the
inequality v- x =0 is called pure and G(v) is a bicolored graph (edges with weight
+1 will be represented by a plain line while edges with weight —1 by a dotted line).
Finally, our graph notations are classical, for instance, we define the cycle
C(iy, ..., i) as the graph with nodes i, ..., i; and with edges (i, i) for I=sk=f
(setting ir,, = i;) and the path P(i,, ..., i) has edges (i, ix+,) for 1=k=jf—~1.

1.4. Methods for checking facets

We use various techniques for proving the facet property for a given valid inequality
vex=0.

(a) The “polyhedral” method. 1t consists of proving that, if b- x <0 is another
valid inequality of C, such that the face F, is contained in the face F,,i.e, b-x=0
whenever v- x =0, then b= av for some positive scalar a. We state two lemmas
that will be thoroughly used in this type of proof; they follow from Lemmas 2.5 in
[9] and [11].
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Lemma 1.1. Let b- x<0 be a valid inequality of C,. Let p, q be distinct elements of
N and S be a subset of N—{p, q} (possibly empty) such that the cut vectors 5(8S),
8(Su{ph), 8(Suiq}) and 8(Su{p, q}) define roots of b. Then, b,, =0 holds. O

Lemma 1.2. Let b+ x=<0 be a valid inequality of C,. Let p, q, r be distinct points of
N and A be a subset of N—{p, q, r}. If the cut vectors 5(Au{r}), 8(Au{p, r}),
8(Au{q}), 8(Au{p, q}) define roots of b, then b,, = b,, holds. []

(b) The “lifting” technique that we shall describe in Section 2.2, for constructing
iteratively facets of C,., from facets of C,.

(c) The “direct” method which consists of finding a set of 3n(n—1)—1 roots of
v and proving that they are linearly independent; for small values of n: n=7, 8, 9,
linear independence can be tested by computer and, for general n, it is usually done
by determinant manipulation.

1.5. Related polytopes and intersection pattern

It will sometimes be useful to represent cuts of K, not only by their cut vectors
5(S), but also by their intersection vectors 7 (S); actually, Deza [20] initiated its
study of C, within this framework of “intersection pattern” that we now describe
(see also [5]).

Given vectors z = (z;) 1=i<j=n a0d ¥ = (¥;)2<i=;=n, the function y = f(z) is defined
by

yy=3(ziitz;—z;) for2=<i<j=n,
(1.3)

yi=zy; for2=i=n.

If S is a subset of N, the vector 7(S)=/£,(8(S)) is called the intersection vector of
S pointed at position 1; in this definition, we specialized position 1, but any other
position k of N can be specialized as well with function f, being correspondingly
defined. The function f, is a bijective linear transformation. A first useful corollary
is that, for subsets S;,...,S. of N, the families {8(S,),...,8(S)} and
{m(8S,),..., w(S,)} are simultaneously linearly independent; we sometimes prefer
to deal with the latter family, e.g., in the lifting procedure (see Section 2.2), since
intersection vectors contain ‘“more” zeros.

Another important implication is the connection between the cut polytope and
the boolean quadric polytope considered by Padberg [34]. The Boolean quadric
polytope is the polytope QP" = Conv({(x, y): x€{0,1}", y€{0, 1}" and y; = xx; for
1=i<j=n}). It models the following general unconstrained quadratic zero-one
program: max(c- x+x Qx: x&{0, 1}") where ceR" and Q is an n X n symmetric
matrix (see [10, 35]). Let us introduce a new element, say 0, and consider the
complete graph K., with nodeset N w {0}; its cut polytope is P.(K,,.,) = Conv(8(5):
S< N). It is easily observed that the vertices of QP" are exactly the intersection
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vectors 7(S) pointed at position 0 for S< N (after setting x =(7(S);) 1=, and
¥y =(m(S)y)1=i<j=n)- Therefore, the mapping f; is a linear bijective transformation
mapping the cut polytope P.(K,.,) onto the boolean quadric polytope QP". This
simple but interesting connection was independently discovered, in different terms,
by several authors (see [19, 20, 31, 10, 15, 16]). Consequently, any result concerning
the cut polytope can be translated into a result on the boolean quadric polytope
and conversely. For instance, the inequality

Y exy=d (1.4)

O=i<j=<n
defines a valid inequality (resp. facet) of P(K,.,) if and only if the inequality
Y oaxit+ Y by;=d (1.5)

1=i=n 1=i<j=n
defines a valid inequality (resp. facet) of QP”, where a, b, ¢ are related by

1 .
c;=a;+3 ), by forl=i=n,
1=<j=<n,j#i

(1.6)
¢g=—3b; forl=i<j=n

This connection will be used in Remark 3.15. Another closely related polytope is
the bipartite subgraph polytope which is the “monotonization” of the cut polytope;
it is the convex hull of the incidence vectors of the bipartite subgraphs, the maximal
ones corresponding to the cuts (see [9]). Other related polytopes are the clique-
partitioning polytope [29], the equipartition polytope [14], and, in the more general
framework of binary matroids, the cycle polytope [7].

1.6. Contents of the paper

Section 2 contains the permutation and switching operations which permit derivation
of new facets of the cut cone from existing ones. We also describe a “lifting”
procedure for constructing facets of the cone C,,, on n+1 points from a given
facet of the cone C, on n points.

In Section 3, we describe classes of valid inequalities: hypermetric inequalities
and new inequalities which we call cycle inequalities. We wish to point out that
these cycle inequalities are distinct from those considered in [7,9, 11]. The hyper-
metric inequalities are of the form },_,_ ., bibx; <0, where by, ..., b, are integers
whose sum is equal to 1, while cycle inequalities are of the form ¥,_._._, bbx; —
Yipec Xy =0, where the sum of the integers b; is now equal to 3 and C is a suitable
cycle. Our lifting technique provides an essential tool for showing that large classes
of hypermetric and cycle inequalities are facet inducing. We feel, however, that
hypermetric and cycle inequalities belong, in fact, to a much larger class of valid
inequalities which may arise from integers b; with suitably chosen sum; we suggest
some possible extensions in this direction, but these ideas will be further developed
in a follow-up work [24].
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In Section 4, after presenting the new class of parachute facets, we discuss other
known classes, in particular those of Barahona, Grotschel and Mahjoub and of
Poljak and Turzik and we investigate a class of faces introduced by Kelly. After
summing up known facts for the cut cone on seven points, we conclude the section
by mentioning some results on simplicial faces and some open questions.

Section 5 contains the proofs of the results from the preceding sections which,
in view of their length, are delayed in order to improve the flow of the text.

2. Operations on facets

We describe several operations: permutation, switching, lifting which produce “new”
facets from “old” ones for the cut cone.

2.1. Permutation and switching

Let v+ x =0 be a valid inequality of the cone C,. Let o be a permutation of the set
N. The coordinates of the vector x € R" being ordered lexicographically, we define
the vector x° by X7 =X,y for 1=i<j=n after setting X, ),(jy = Xo()o(y When
o(i)> a(j). The inequality v” - x <0, obtained by permutation of v by o, is valid for
C, and both inequalities v, v” are simultaneously facet defining. Hence, the permuta-
tion operation preserves valid inequalities and facets of C,.

Let v x= o be a valid inequality of the cut polytope P.(K,). Given a subset A
of N, we define the vector v™ by uf}- =—vy;if (i,j) e D(A) and vg‘ = v, if (i, j) € D(A)
and we set a®=a —v- 6(A). Then, the inequality v* - x = a* is valid for P(K,);
one says that it is obtained by switching the inequality v- x =< a by the cut §(A).
Furthermore, inequality v+ x < a is facet defining if and only if inequality v* - x = a®
is facet defining. This fact follows from the observation that the roots of v* - x =< «
are exactly the cut vectors 8(SAA) for which 8(S) is root of v-x=a and that
the families {8(S,),...,8(S.)} and {8(S;AA),..., 8(S AA)} are simultaneously
affinely independent. When we switch the inequality v x = a by a root, i.e., by a
cut such that v+ §(A) =, we obtain a valid inequality »”- x =0 of the cut cone
C,. Consequently, the “switching by roots” operation preserves valid inequalities
and facets of C,. Furthermore, if C, ={x: Mx =0}, then P(K,)={x: Mx=0 and
M'x = b} where vector b and matrix M’ are derived from M through the “switching
by cuts” operation [11]. The switching by roots operation was introduced in [20]
for the cut cone C,; the general switching by cut operation for the cut polytope of
an arbitrary graph was given in [11] where it is called “changing the sign of a cut”.

A

Remark 2.1. One can represent the switching operation using matrices as follows.
Given a vector v = (V) ,=,<j=n, define the n X n symmetric matrix M (v) with zeros
on its diagonal and M(v),; = M(v); =v; for 1=i<j=n and, given a subset S of
[1, n], define the n x n diagonal matrix D(S) by D(S);=—1ifie S and D(S); =1
otherwise. Then, the vector ©° obtained by switching of v by §(S) is equivalently
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defined by relation M (v°%)= D(S) M(v) D(S). In the case when v; =1 or -1 for
all 1=i<j=n, the matrix M(v) can be interpreted as the (1, —1)-adjacency matrix
of a graph H on nodeset [1, n] whose edges are the pairs (4, j) for which v;=~1
and, then, the graph whose (1, —1)-adjacency matrix is M (v®) is a switching of H
in the sense of Seidel (see, e.g., [13]).

Call two inequalities v, v’ equivalent if v’ is obtained from v by permutation
and/or switching (by root). This defines an equivalence relation on valid inequalities;
for this, observe that, for o, o’ permutations of N, one has (v”)” =07 and, for A,
B subsets of N, one has (v*)? =0v"**®. This equivalence relation preserves facets
of C,; therefore, at least from a theoretical point of view, for describing all facets
of C,, itis, in fact, enough to give a list of canonical facets of C,,, i.e., a list containing
a facet of each equivalence class. We will further specify how this equivalence
relation behaves for the special classes of hypermetric and cycle inequalities.

2.2. The lifting procedure

Let veR", n'=4n(n—1), and suppose that v- x =0 defines a facet of C,. Our goal
is to “lift” this facet of C, to a facet of C,.,. For this, we want to find n additional
coefficients: v,,., for 1=i=n such that, if v’ denotes the vector of length 3n(n+1)
obtained by concatenating v with these n new coefficients, then v’ - x =0 defines a
facet of C,,,. The next theorem shows that lifting by zero, i.e., adding only zero
coefficients, is always possible.

Theorem 2.2 [20]. Let v be a vector of length 3n(n—1) and v'=(v,0, ..., 0) of length
in(n+1). The following assertations are equivalent:

(i) v+ x=0 defines a facet of C,.

(ii) v’ x=0 defines a facet of C,,,.

Therefore, any facet of C, extends to a facet of C,, for all n=m. The proof of
this result has not been published, so we give it here; it will help us at the same
time to present the basic ideas of the lifting procedure. We must first state a technical
lemma. Let F be a subset of the set E(n)={(j,j): 1=i<j=n}and F'=E{(n)-F
denote its complement. For a vector x € R, we denote by x its projection onto
R” and, for a subset X of R, set X ={x;:xeX}and X" ={xe X: xz=0}. Let
v be a valid inequality of C, with set of roots R(v); then, r(v, F) denotes the rank
of the set R(v)r and r[v, F] denotes the rank of the set R(v)".

Lemma 2.3. The following assertions hold:
(i) If r(v, F)=|F)| and t[v, F1=|F'|~1, then v is facet defining.
(ii) If v is facet defining and vy #0, then 1(v, F) =|F]|.
(iii) If v is facet defining and v =0, then r(v, F)=|F|-1.
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Proof. We first show (i). By assumption, we can find a set A< R(v) of |F| vectors
whose projections on F are linearly independent and a set B< R(v) of |F'|—1
linearly independent vectors whose projections on F are zero. It is easy to verify
that Au B is linearly independent, which implies that v is facet defining since
|F|+|F|=n"-1=3n(n—1)—1.

We prove now (ii). Since v is facet defining, we can find a set Ac R(v) of n'—1
linearly independent roots. Let M denote the (n'—1) X n’ matrix whose rows are
the vectors of A, its columns being indexed by Fu F'. Hence, all columns but one
are linearly independent. We distinguish two cases:

- either, all columns indexed by F are linearly independent, i.e., r(v, F) =|F|,

- or all columns indexed by F' are linearly independent and, then, rank(Ag) =
|F|—1 from which one easily deduces that r(v, F)=|F|—1.

Suppose we are in the second case, so r(v, F) =|F|—1. Denote by T; a subset of
[F|—1 vectors of A whose projections on F are linearly independent, T,= A" and
T; is the set of remaining rows of M thus [T, u T5|=|F’'|. Given a vector x of T,
Xr can be written as linear combination of the projections on F of the vectors
of T;:

Xp= ) Padr;
acT)

set x'=x— Y PB.a, so xE=0.

aeT
It is easy to verify that T,u T} is a set of |F'| linearly independent vectors, where
T:={x": x € T5}. Observe now that the vectors x of the set T,w T3 satisfy: v- x=0
and xr =0, which implies that v =0, concluding the proof of (ii).
For proving (iii), observe that, if r(v, F) =|F|, then r(v, F') =|F’| -1 which, using
(ii), implies that v =0 and therefore vp #0. [

Proof of Theorem 2.2. We assume first that (ii} holds. Consider the index set
F={(1,n+1),...,(n,n+1)}and its complementin E(n+1), F'={(i,j): 1si<j=
n}. By construction, we have that vg=0; hence Lemma 2.3 (iii) implies that
r(v, F'y=|F'|—1 from which we deduce that v defines a facet of C,,.

We suppose now that v defines a facet of C,; hence we can find n'~1 linearly
independent roots of v of the form &(S;) with 1£S; and S;= N for 1=j=n'—1.
Forie N,set F,={(1,i),...,(i—1,),(i,i+1),..., (i n)}. Since v # 0, the projec-
tion of v on F!= E(n)— F, is nonzero for some i€ N; we can suppose w.l.0.g. that
i=1. Hence, we deduce from Lemma 2.3(ii) that r(v, F,) =|F|=n—1; therefore,
there exist n — 1 roots of v: 8(T,) with 12 T, < N for 1= k= n—1, whose projections
on F, are linearly independent. We construct 3n(n~+1)—1=3n(n—1)+n~1 roots
of v’ as follows: for 1=<j=n'—1, define the subsets S;=S; of Nu{n+1} and, for
1=sk=n-1,set: Ti=T,u{n+1}tand T, ={n+1}; hence 1£S;, T}; n+1£ S} and
n+1e T}, for all j, k. We prove that the $n(n+1) —1 cut vectors defined by the sets
S}, T} are linearly independent; it is in fact easier to verify that their intersection
vectors (pointed at position 1) are linearly independent. For this, let M be the
matrix whose rows are the vectors 7(S}), «(T}), its columns being indexed by
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GuHU{(n+1, n+1)} where G={(i,j): 2<i=j<n}and H={(in+1): 2=i=
n}. The fact that M is nonsingular follows by examining its block configuration
using the easy observations:

7(S))e=7(S;) and 7(S}))piini1,n+1)=0 forall 1=j=n"~1,
(T )y =8(T)r (setting F=F)) and 7 (T})pr1 041 =1 for1=k =n-1,
m(Ty)y =0 and W(T/n)nﬂ,nﬂ =1 ]

Generally, suppose v defines a facet of C,. We wish to lift v to a facet of C,,,
i.e., to find a vector v’ of length 3n(n+1) defining a facet of C,.,; the vector v’ is
obtained by concatenating the vector v — after eventually, altering its coefficients
in a suitable way — with n new well chosen coefficients. We now describe a set of
conditions which, when they are satisfied, ensure that lifting is possible and produce
a new facet v’ of C,. . Since v defines a facet of C,, we can find n'—1 linearly
independent roots: §(S;) with 1£ S; < N for 1=j=n’—1. Define the subsets S; =S
of N u{n+1}; then the intersection vectors (pointed at position 1) 7(S;) are n'—1
linearly independent vectors of length 3n(n+ 1) whose projections on the index set

{(2,n+1),...,(n+1, n+1)} are the zero vector. Consider the conditions:
v’ defines a valid inequality of C,,,, (2.4)
the cut vectors 6(S;) are roots of ', for1=<j=<=n'—1, (2.5)

There exist n cut vectors 8(T)), with 12T, n+1e T, c Nu
{n+1} for 1=k=n, which are roots of v’ and such that the
incidence vectors of the sets T, are linearly independent. (2.6)

Proposition 2.7. With the above notation, if conditions (2.4), (2.5), (2.6) hold, then
v’ defines a facet of C,, ..

Proof. The proof follows closely that for Theorem 2.2 and consists of verifying that
the vectors 7(S]), 1=j=n'—1, and 7(T,), 1 =< k=n, are linearly independent. Set
G={(ij): 2=i=j=n}, H={(in+1): 2=i=n+1}. Let M denote the matrix
whose columns are indexed by G U H, its first n' — 1 rows are the vectors w(S}) and
its last n rows are the vectors 7 (T}).

Then M has the following block configuration:

P 0
X Q

where P is the (n'~1) X n’ matrix whose rows are the vectors 7(S;), its rank is n'— 1
by assumption and Q is the »xXn matrix whose rows are the projections on
{2,..., n+1} of the incidence vectors of the sets Ty, its rank is » from condition
(2.6). Therefore matrix M has rank n'— 1+ n, implying that v’ is facet defining. [J
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We describe now a condition on v, v' which is sufficient for ensuring that (2.5)
holds. Suppose that the vectors v, v’ satisfy v;=vj; for all 2=i<j=n and the
following relation:

0= Vi + vl for2=i=n, (28)

This amounts to saying that the supporting graph G(v') of v’ is obtained from the
supporting graph G(v) of v by splitting node 1 into nodes 1, n+1 and correspond-
ingly splitting the edge weights v,; into v};, v},+; for 2=<i=n, all other coefficients
v; remaining unchanged. It is easily verified that v- x=1v'- x for all cut vectors
x=06(S) with S<[2, n]; hence any root of v defines a root of v’ and, therefore,
condition (2.5) holds. We wish to point out that this node-splitiing operation just
described is distinct from the node-splitting procedure from [11].

We will see in the next section how the lifting procedure provides a very powerful
tool for generating classes of facets, in particular when applied to hypermetric and
cycle inequalities; we shall use in fact, the more specific node-splitting operation,
so condition (2.5) holds and, since condition (2.4) will be automatically satisfied,
the crucial point consists of satisfying (2.6).

3. Hypermetric and cycle inequalities

The first nontrivial known class of valid inequalities of the cut cone is the class of
hypermetric inequalities, introduced in 1960 by Deza [18] and later, independently,
by Kelly [33]. For small values of n, n=3, 4, 5, 6, hypermetric facets are in fact
sufficient for describing C,, ; this was shown for n <5 by Deza [18, 20] and for n =6,
using computer check, by Avis and Mutt [4]. However, for n=7, there exist
non-hypermetric facets. After examining in Section 3.1 hypermetric inequalities, we
introduce in Section 3.2 the new class of cycle inequalities; we prove the facet
property for some subclasses of the above two classes. We also discuss some possible
extensions of hypermetric and cycle inequalities. In Section 3.3, we exhibit some
upper bounds for the coefficients of hypermetric and cycle facets.

3.1. Hypermetric inequalities Hyp,(b)

Let b=(b,,...,b,) where the b;’s are integers satisfying

Y bi=1. 3.1)
1=i=n
The inequality
Y bbx;=0 (3.2)
I=i<<j=n

is valid for C,; it is called the hypermetric inequality defined by b and denoted by
Hyp,(b). If we set k=Y, _,Ib], then ¥,_,_, |b}=2k-+1 holds and one says that
the hypermetric inequality is (2k-+1)-gonal. Pure hypermetric inequalities are
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obtained when b; = +1 or —1 for all /; when all (resp. all but one) negative coefficients
b; are equal to —1, the hypermetric inequality is called linear (resp. quasilinear).
Validity of (3.2) follows from the fact that, for any subset S of N, we have:
Liwizjzn bibi3(S); =b(S)1~b(S)) =0, since b(S)=Y, ¢ b; is an integer. Further-
more, the roots of Hyp, (b) are the cut vectors §(S) for which b(8)=0 or 1.

The lifting by zero operation from Section 2.2 amounts to adding new coeflicients
b; which are equal to zero; hence, Hyp, (b) and Hyp, (b, 0) are simultaneously
facet inducing. Both permutation and switching (by roots) operations preserve the
class of hypermetric inequalities. In fact, permutation of Hyp,(b) amounts to
permuting the b;’s: if o is a permutation on n points, the inequality obtained from
Hyp,(b) by permutation by o is Hyp,(b,), - . -, o). Also, if S is a subset of N
with b(S) =0, then the inequality obtained from Hyp,(b) by switching by the root
8(S) is Hyp,(b') where b}=—b, if i€ S and b} = b, otherwise.

We present some known hypermetric facets:

Hyps(1,1, —1) (triangle facet), (3.3)
Hyps(1,1,1, =1, —1) (pentagonal facet), (3.4)
Hyps(2, 1,1, ~1, -1, ~1), (3.5)
Hyp,(1,1,1,1, -1, =1, —1), (3.6)
Hyp-(3,1,1, -1,—-1, -1, =1), (3.7)
Hyps(3,2,2, -1, -1, -1, -1, =2), (3.3)
Hypo(2,2,1,1,-1, -1, -1, ~1, —1). (3.9)

One verifies trivially that (3.3) is facet defining; one then deduces that (3.4)-(3.9)
define facets by applying the next Theorem 3.12 based on our lifting procedure. As
an application, let us recall the linear description of C, for n =6 which consists
only of hypermetric facets. For n =3, 4, the only canonical facet is (3.3) and for
n =35, the canonical facets are (3.3), (3.4) [21, 18]. For n =6, the canonical facets
are (3.3)-(3.5) and Cs has exactly 210 facets obtained from permutation/switching
of (3.3)-(3.5) [4].

The general lifting procedure from Section 2.2 can be specialized for hypermetric
facets as follows. Let b=(b,,...,b,) satisfying (3.1) and suppose Hyp,(b) is a
facet of C,. Given an integer ¢, set b'= (b, —¢, b,, ..., b,, ¢); hence b’ satisfies (3.1).
We say that Hyp,.,(b’) is obtained from Hyp,(b) by c-lifting. Then, the conditions
(2.4), (2.5) of the lifting procedure described in Proposition 2.7 always hold. We
are left with the problem of finding a suitable value of ¢ for which condition (2.6)
holds; this question can be rephrased as follows:

Problem 3.10. Given any integers b, ..., b,, find an integer ¢ such that there exists
an n X n nonsingular binary matrix M satisfying:

- its last column consists of all ones,

- for all row vectors x of M, b* - x=0 or 1, where b*=(b,,...,b,, c).
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This problem seems quite hard in general. The following results show that, for
quasilinear hypermetric facets, (—1)-lifting is always possible and c-lifting is possible
for suitable positive c. These results were stated in [20] and a sketch of the proofs
was given in the accompanying document (kept in the Academy of Sciences of
Pdris) which was never published; so, we give the full proofs in this paper.

Theorem 3.11 [20]). Let by, ..., b, be integers satisfying (3.1) and suppose that b, =
byz-+-=b>0andb;,=-1 forf+1=i=nwithf=2 and n = 4. Suppose furthermore
that Hyp,(b,, ..., b,) is a facet of C,; then:

(i) Hypn1(b,+1,b,,...,b,, -1} is a facet of C,,.

(i) Hyp,1(by—c¢, by, ..., b,,¢) is a facet of C,.y, for all ¢ such that 0<c=
n—f—b,.

Theorem 3.12 [20]. Letb=(b,,..., b,) consist of integers satisfying (3.1) and suppose
that by=by=- - =b>0>bp >+ -=b,.
(i) If Hyp.(b) is a facet of C,, then, either f=2 and b=(1,1,-1), or f=n-2

and b;=1, or 3=f=n-3,

(ii) In the linear case, i.e., b, = —1; Hyp,(b) is facet inducing if and only if, either
b=(1,1,-1), or b=(1,1,1,—-1,~1), or 3=f=n-3.

(iii) In the quasilinear case, i.e., b,_,=—1 if f<n—1;, Hyp,(b) is facet inducing
if and only if, either b=(1,1,-1), or b=(1,...,1,-1, —n+4), or 3=f=<n-3 and
condition: (QL) b,+b,=n—f—1+sign|b, — b/| holds.

Observe that, for a linear hypermetric inequality, condition (QL) always holds
whenever 3= f=n—3. Also, the inequality Hyp,(1,...,1, b,_,, b,) from case (i),
f=n-2, is facet inducing, since it is equivalent to the (linear) hypermetric facet
Hyp,(-b,, —b,_,,1,-1,...,-1).

Remark 3.13. Take k=3 and positive integers ¢,,...,t, with },_,_, t=2k+1 and
Y. ti=k—1; then the inequality

Y ttxy=k(k+1) (3.14)

1=si<j=n

defines a facet of the cut polytope P,(K,) [11, Theorem 2.4]. It is observed in [15]
that this inequality identifies — via switching— with a subclass of hypermetric
inequalities. For this, set t,=---=1,=1<t,,,=---=t,, hence p=k+2; after
switching the above inequality by the root {1, 2, ..., k}, we obtain the linear hyper-
metric inequality Hyp,(1,...,1, t,y,..., 4, ~1,..., —1) consisting of p—k=2
coefficients +1 and k=3 coeflicients ~1, henceforth, using switching, the facet
property for (3.14), can alternatively be derived from Theorem 3.12.

Remark 3.15. The clique and cut inequalities introduced by Padberg [35] for the
boolean quadric polytope correspond, in fact, via the transformation between the
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cut polytope P,(K,,,) and the boolean quadric polytope QP" discussed in 1.5 and
via switching, to some class of hypermetric inequalities.
Given a subset S of N with s=|S|=2 and 1=<a =<s-2, the cliqgue inequality:
a Y xi— Y y;=<za(a+l) (3.16)
icS (i,j)eSxS
is a facet of QP" [35, Theorem 4]. Using relation (1.6), (3.16) can be translated into
the following facet of P.(K,):
(a—3s-1)) % Zoit+3 ) Zijs%a(a‘*'l), (3.17)
ieS (i,j)eSxS
which is, in fact, a subcase of inequality (3.14) and, hence, from Remark 3.13,
identifies — via switching — with some quasilinear hypermetric facet.
Similarly, the cut inequality
X x— X oyt Yo oy— X y=0, (3.18)

ieS (i,j)eSxS (i,/))eSxT (i,j)eTxT

where S, T are disjoint subsets of N of respective cardinalities s =1, t =2, is a facet
of QP" [35, Theorem 5] which corresponds to the facet

(t—s-—l)( Y zoi— Y zo,->+ Y. zi— ) z;=0 (3.19)
ieS ieT (i, jleSxS (i,j}eSxT
or(i,jyeTxT

of P.(K,.); in fact, (3.19) coincides with the quasilinear hypermetric inequality
Hyp,..(b) where by=s—1t+1, b;=—1forie S, b;=1for ic T and b; = 0 otherwise.

Other examples of facets obtained with our lifting procedure will be given in [17,
24]. For instance, Hyp,(w,...,w,—-w,...,—w,1,...,1,—1,...,—1) consisting of
a+ c coeflicients +w, a coefficients —w, b coefficients +1 and b+ cw —1 coefficients
—1, is facet inducing whenever a, b, ¢, w are nonnegative integers such that ¢=0,
b=w+1 [24]; also, the inequality Hyp,(2¢+1, 3, 2, —-1,—-1,-1,-2,...,-2)—
Hyp,(¢1,1,0,0,0,—-1,...,-1) =0 (consisting of ¢ coefficients —2 in the first part
and c coefficients —1 in the second one) is facet defining for any positive integer ¢
[17].

3.2. Cycle inequalities Cyc,(b)
Let b=(b,,..., b,) where the b;’s are integers satisfying
Y b, =3. (3.20)

l=<i=<npn
The set B, ={ie N: b,>0} is called the positive support of b. Set f=|B,| and
B.={i),..., i} with1=1i <---<i=n and let C be a cycle with nodeset B.. The
inequality

Y bbx;— ¥ x;=0 (3.21)

Isi<j=n (i,j)eC
is called a cycle inequality and is denoted by Cyc,(b, C) or, for short, by Cyc, (b)
when C is the cycle (i, ..., i).
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Take a cut vector 8(S) where S is a subset of N with 1£ S and set b(S) =Y. (b;:
ieS)and C(S)=Y (8(S);: (i, j)e C). Then, (3.21) computed at the cut vector 5(S)
takes the value h(S)(3—b(S))— C(S). The latter quantity is obviously negative if
b(S)=0 or b(S)=3. In the remaining case: b(S)=1 or 2, b{(S)(3—b(S))=2 and
thus S, =S B, is a proper subset of B, from which one deduces easily that
C(S)= C(S,)=2. Therefore, we have proved:

Proposition 3.22. Any cycle inequality (3.21) is valid for C,; its roots are the cut
vectors 8(S) for which b(S)=1 or 2 and C(S)=2 hold.

Let us analyze the effect of the permutation operation on cycle inequalities. Take
a permutation o on n points, b= (b, ..., b,) satisfying (3.20) with positive support
Bi={ii,...,i;tand let C=(j,,..., ;) be acycle on B.. Let (Cyc,(b, C))” denote
the inequality obtained by permutation by o of the left-hand side of (3.21). We
define the sequence b” = (b, (1), . .., bowm) and the cycle o(C) = (o (j), ..., o(jo)).
It is not difficult to verify the following relation:

Cyc, (b7, ¢ 7(C))=Cyc,(b, C)” (3.23)

i.e., the cycle inequality on the left-hand side of (3.23) is obtained from Cyc, (b, C)
by permutation by o. Hence, the permutation operation preserves the class of cycle
inequalities. Therefore, we can restrict our attention to the cycle inequalities of the
form Cyc,(b) where the positive support of b is B, ={1,..., f} and the chosen
cycle is C=(1,2,...f). We furthermore deduce from (3.23) that Cyc,(b) and
Cyc,(b”) are permutation equivalent inequalities whenever ¢ is a permutation
preserving the cycle (1,2, ..., f). However, the following example shows that, if o
does not preserve the cycle (1,2,..., f), then Cyc,(b), Cyc,(b?) are not necessarily
permutation equivalent; in fact, they are not necessarily simultaneously facet
defining.

Example 3.24. Consider the sequence b, =(2, 2, 1, 1, ~1, —1, —1); there are five
other sequences obtained by permuting the coefficients of b,: b,=(2, 1, 2, 1, —1,
1, -1), by=(2, 1, 1, 2, =1, =1, —1), by=(1, 1, 2,2, =1, =1, =1), bs=(1, 2, 1, 2,
-1,-1,-1), bs=(1,2,2,1, -1, —1, ~1). From the above observations, the inequalities
Cycy(b;) fori=1,3,4, 6 are all permutation equivalent, while Cyc,(b,) is permutation
equivalent to Cyc,(bs) and one can verify that Cyc,(b,), Cyc,(b,) are not permutation
equivalent. Computer check indicates that Cyc,(b,) is not facet inducing while
Cyc,( b)) is.
The following cycle inequalities are all facet inducing:
Cyc,(3,2,2, -1, -1, -1, ~-1), Cyc,(2,2,1,1, -1, -1, ~1),
Cye,(1,1,1,1,1, —1, 1), Cycs(2,2,2,1, -1, -1, -1, 1),

CyCS(za 15 15 19 1; *13 _1’ ——1)a CyCS(?” 37 27 —15 _1, _1’ _la _])7
Cycg(3,2,1,1, -1, -1, -1, -1), Cyco(1,1,1,1,1,1, -1, -1, ~1).
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The first three were discovered by Assouad and Delorme (in fact, they gave facets
equivalent to them after permuting (1234567) > (7654321), cf. [1]); we checked all
others by computer.

The definition of c¢-lifting given for hypermetric facets in 3.1 extends to cycle
inequalities. Let b= (b,,..., b,) satisfying (3.20) and ¢ be an integer; the cycle
inequality obtained from Cyc,(b) by c-lifting is Cyc,+,(b,—¢, b,, ..., b,, ¢). For
instance, in the above list, the last four facets are obtained from the first three by
(—1)-lifting. The following results show the existence of classes of cycle facets
extending the facets mentioned above.

Theorem 3.25. Cyc,(1,1,...,1,—1,..., —1), consisting of k coefficients —1 and k+3
coefficients +1, is facet inducing for all n=2k+3=7.

Theorem 3.26. Let b,, b,, b, be integers such that by +b,+by;=nand b;=2 fori=1,
2, 3. Then, Cyc,(by, b,, by, —1,..., —1), consisting of n—3 coefficients —1, is facet
inducing for alln=17.

Theorem 3.27. Cyc,(n—5,2,1,1,—1,...,—1), consisting of n—4 coefficients —1, is
facet inducing for all n=17.

We refer to Section 5 for the proofs. Theorems 3.26, 3.27 are proved by applying
iteratively (—1)-lifting, starting respectively with the known facets Cyc,(3, 2,2,
-1, —-1,—1, -1) and Cyc,(2,2,1, 1, -1, —1, —1); the proof of Theorem 3.25 is based
on the polyhedral method.

We conclude this section by mentioning possible extensions of cycle inequalities.
Given integers by, ..., b,, set ) (b)=b,+- - +b,. We have seen that, for Y (b)=1
or 3, we can produce from the b’s respectively the hypermetric and cycle valid
inequalities with large subclasses of facets. A natural idea is to ask whether one
can define a class of valid inequalities from all integers b; with arbitrary sum 3 (b).
When ). (b) =0, it is known that the inequality ¥,_,_;_, bibx; =0 is valid for C,
(this remains true for real valued b;’s); however, it is never facet inducing since it
is implied by the hypermetric inequalities [18]. We will see in 4.2 that a class of
facets discovered by Barahona, Grotschel and Mahjoub can be interpreted as a
generalization of cycle inequalities with ), (b) =2k +1.

When Y. (b) =2, one verifies easily the validity of the following inequality:

Y obbx;— Y x;=0, (3.28)

1=si<j=n (i, j)eP

where P is a path whose nodeset is the positive support B, of b; (3.28) is called a
path inequality and denoted by Path, (b, P). Its roots are the cut vectors 8(S) for
which b(S)=1 and |6(S) n P|=1. An anonymous referee pointed out that the path
inequality (3.28) is not facet inducing for f=|B.|=4. Indeed if 5(S) is a root, then
S B, is one of the following f—1 intervals [i, f] for 2=i=/, if P is the path
(1,...,f),and f—1<(4)—1 holds for f=4.
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A possible extension for arbitrary sum } (b) is as follows. Suppose that n>
Y (B)}[3X.(b)]+3 and let K =K, ; denote the complete bipartite graph on N
with node partition into {1, 2} and {3, ..., n}. Consider the inequality

Y bbx;tx,— Y x;=0. (3.29)
3=i<j=n (i,)eK
Take a cut vector 6(.S) with 1 & S; then (3.29) computed at §(S) takes the nonpositive
value: b(S)(X (b)—b(S))+1—(n—-3) when 2¢S and the value: b(S)(3 (b)—
b(S))—2|S] when 2¢ S. Hence, (3.29) is valid if 5(S)(¥ (b)—b(S))—2|S]=0 holds
for all subsets S of {3,..., n}. For instance, if b=(5, 4, -1, -1, -1, =1, —1), (3.29)
is valid, but is not a facet since it has only 10 roots.

3.3. Bounds for hypermetric and cycle facets

If v-x=<0 is a valid inequality of C,, we are interested in finding bounds for
lol=% (jvgl: 1=i<j=n). When v defines a pure inequality, then |ov||=(3)
obviously holds. For the classes of hypermetric and cycle inequalities, we are able
to derive upper bounds for ||| which are exponential in n. Observe first that,
if v denotes the hypermetric inequality Hyp,(b), then [v|=3((Y,.,_,|b:])*~
Y <:=n |Bi") and, if v denotes the cycle inequality Cyc,(b), then ||v| is the preceding
quantity minus f, where f is the number of positive b;’s; therefore, it suffices to
study upper bounds for ||b|| =Y, (|b]: 1=i=n). We set g,(n)=max(||b||: Hyp,(b)
is facet of C,) and g.(n)=max(|b|: Cyc,(b) is facet of C,).

Proposition 3.30.
(i) in*—4=gy(n)=nB, , forn=7,
(ii) 2n-3=g.(n)=3+4(n—1)°B,, forn=17,
where 8, is the maximum value of an n X n determinant with binary entries.

Proof. (i) was proved in [5]; the upper bound in (ii) is an extension to the cycle
case of the proof given in [5] and the lower bound follows from the facet of Theorem
3.26. U

The upper bounds from Proposition 3.30 are exponential in n and probably very
weak; an interesting open question is to decide whether one can find upper bounds
for hypermetric and cycle facets which are polynomial in n.

4. Other known facets and some interesting faces

4.1. The parachute facet Par,

Take an integer k=2 and n=2k+1, n=3 mod 4. The parachute graph Par, is the
bicolored graph whose n nodes are denoted as 0,1,...,k 1',..., k" and whose
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edges consist of the path P=(k, k—1,...,1,1,2', ..., k') and the pairs (0, i), (0, i")
for 1=i=<k—1 and the pairs (k, i), (k’, i) for 1=i=<k; edges of the path P are
assigned weight 1 (represented by a plain line) while all other edges are assigned
weight —1 (represented by a dotted line). Figure 1 shows the parachute graph on
7 points. We also denote by Par, the (pure) inequality, called parachute inequality,
whose supporting graph is the graph Par,.

0
AN
7 \\
/ \
PAVERURAN
/ / \ \

3 24/ 1 1! \\2' 3!
™ - Ed /4
N e S — 7
~ - P
~ —_ -

Fig. 1.

Theorem 4.1. For all n =2k +1 with k =3 odd, the parachute inequality defines a facet
of C,.

The proof, based on the polyhedral method, is given in Section 5.

For n =2k +1 with k even, the parachute inequality is not valid; e.g., it is violated
by the cut vector defined by S={1,3,..., k—1}u{2, 4, ..., k'}.

For n=7, the facet (equivalent to) Par, was given by Assouad and Delorme (cf.
[1]) and enumeration of the roots shows that Par, is a simplicial facet.

Remark 4.2. Both sets S={k'}u{i€[1, k]: iiseven}and T={i<[1, k]: i is odd}u
{i'e[1', k']: i’ is odd} define roots of the parachute inequality Par,. Actually, for
n =17, the parachute inequality Par, has only two (non-permutation equivalent)
switchings obtained by switching by these two roots 8(S), 8(T) (see [17]).

4.2. Other facets

(a) Barahona-Grotschel-Mahjoub facet [9, 11]
A graph G is called a bicycle p-wheel if G consists of a cycle C=(1,2,...,p) of
length p and two nodes p+1, p+2 that are adjacent to each other and to every
node in the cycle; we assign weight 1 to the edges of the cycle C and to edge (p+1,
p+2) and weight —1 to all other edges. Figure 2 shows a bicycle 5-wheel.

We denote by BGM,, the pure inequality whose supporting graph is a bicycle
(n—2)-wheel, i.e., described by

Xnopnt 2 X tXiao— L (Xoii+X,;)=0. (4.3)

l=i=n-3 l1=<i=n-2
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Theorem 4.4 [11, Theorem 2.3). For all odd n =35, the inequality BGM,, defined by
(4.3) is a facet of C,,. [

Remark 4.5. In fact, Theorem 2.3 [11] presents a facet which is switching equivalent
to BGM,,. For n =5, the inequality BGM; coincides with the pentagonal inequality
Hyps(1,1,1,-1,-1) and for n=7, BGM, coincides with the cycle inequality
Cye,(1,1,1,1,1, -1, —1). In fact, if weset b= (1, ..., 1, —1, —1) where the first n — 2
b;’s take value +1 and the last two value —~1 and if K = K, _,— C denotes the graph
on{1,...,n—2} obtained by deleting the edges of the cycle C=(1,...,n—2) from
the complete graph K, », then, the inequality BGM,, can be alternatively described
by

Y. bbx;— Y x;=0. (4.6)

lsi<j=n (i, )e K

Since n is odd, we can set n=2k~+3 with k=1; then, } (b;: 1=i=n)=2(k—-1)+1
and the graph K can be decomposed into k —1 edge disjoint cycleson {1, ..., n—2=
2k +1}. Therefore, the inequality BGM,, can be interpreted as an extension of some
hypermetric (when k = 1) and cycle (when k = 2} inequalities, which offers a partial
answer to the question from Section 3.2 on how to define valid inequalities from
any integers b;.

Generally, if b=(1,...,1,—=1,...,—1) with v =2 coefficients —~1 and v+2u+1
coefficients +1, let K denote the antiweb on m = v+2u+1 nodes with parameter
u, i.e., K is the circular graph on nodes {1, 2,..., v+2u+1} in which each node i
is adjacent to nodes i+1, i+2,..., i+ u; then inequality (4.6) is called a cliqgue-web
inequality (set n=2u+2v+1). Observe that, for u =0 or 1 and for v =2, then the
cligue-web inequality is facet inducing (it corresponds, respectively, to the pure
hypermetric inequality, pure cycle inequality and BGM,, inequality). We can prove
that, if the clique-web inequality is valid, then it is, in fact, facet inducing and that
it is indeed valid for u =2 or when m > (u—1)(u*+ u—2). We conjecture that the
clique-web inequality is always valid; we will examine this conjecture in [24].
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(b) Kelly’s inequality

Consider a partition of N into Pu Qu{n} with |P|=p,|Q|=4q, p, g=2and p+q+
1=n. Let K,, K, denote respectively the complete graph on P, Q. Set t = gp—p°+1.
The following inequality denoted by Kel,(p) was mentioned by
Kelly [34]:

(p-1) Y x+(p+tl) ¥ x-p ¥ X

(i, jle K, (i, jleK, ieQjepP
+(g—p—t) Y x,+t Y x,=<0. (4.7)
ieQ ieP
Proposition 4.8. For all n=5, the inequality Kel,(p) defined by (4.7) is a valid
inequality of C,,.

Proof. Consideracutvector §(S)withng S, a =S~ Q|, 8 =|Sn P|.(4.7) computed
at vector 6(S) takes the value

(p—Valqg—a)+(p+1)B(p—B)—pla(p-B)+B(g—a)]+(g—p—-1)a+1B.
One can verify that this quantity is equal to

(prD(a=B)B-1-alp-1)/(p+1)).
We now verify that the latter is nonpositive; for this, we distinguish two cases.
- Suppose first that @ <. Then, we have a —8 <0 and

B-l-a(p-1)/(pt+l)za—a(p-1)/(p+1)=2a/(p+1)=0.

- Suppose now that « > 8. We verify that 8—1—-a(p—1)/(p+1)=<0. For this,
note that 8 =min(a —1, p); when a —1= p, then we have

B-l-a(p-1)/(pt)=a-2-a(p-1)/(p+1)=2(a-p-1)/(p+1)=0,
and when p= « -1, then we have
B-1-a(p—1)/(ptl)=p=l-a(p-1)/(p+1)=(p-)(p+1-a)/(p+1)=0.
Therefore we have proved validity of (4.7). O

Remark 4.9. We deduce from the above proof that the roots of Kel, ( p) are exactly
the cut vectors 8(S) with n£ S and a =|Sn Q|, 8 =[S P| satisfying

(a) Either a = B; there are Yi<a=min( ¢) (a)(&) such roots.

(b) Or B=1+a(p—1)/(p+1); such roots exist only if p+1 divides a(p—1)
and, if p is odd, we can suppose that @ #3(p+1) (else a = B).

Set I'={a: 0=a=min(qg,p+1), a#3(p+1) such that p+1 divides a(p—1)},
then there are ). ;- (2)(%) such roots.

It is an open question to characterize the parameters for which Kel,(p) is facet
inducing; however, we have the following results:

Proposition 4.10. For n =7, the following assertions hold:

(i) Kel,(2) is permutation equivalent to Cyc,(n~4, 2, 2, —1,...,~1) and is
therefore facet inducing.

(ii) Kel,(n—3) is a simplicial face of dimension in(n—1)-3.
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Proof. We leave it to the reader to verify that, setting P={1,2}, Q={3,...,n—1},
Kel,(2) coincides with Cyc,(2,2, —1,..., —1, n —4). From Remark 4.9, the roots of
Kel,(n—3) are 8(S) for:

- eithera=B8=1: §={1, i} or {2, i} with3=i=n-—1,

—ora=8=2:8={1,2,ij}with3=<i<j=n-1,

—ora=0,8=1S={i}with3<i=n-1.

Hence, there are sn(n—1)~3 roots. We verify that their intersection vectors
(pointed at position n) are linearly independent. For this, form the matrix whose
rows are, first the vectors 7({i}) for 3<i=n-—1, then 7 ({1, i}) for 3=i=n—1,
then 7({2,i}) for 3=i=n—1 and finally w({1, 2, i, j}) for 3=i<j=n—1, and
whose columns are indexed by (1, 1), (2, 2), (1, 2), (i, i) for 3=i=n, (1,i) for
3=i=n, (2,i) for 3=i=n and (i, j) for 3=<i<j=n. After deleting the columns
indexed by (1, 1), (2, 2), (1, 2), the matrix has the configuration shown in Figure
3 and is clearly nonsingular (setting m=n—2, s=3(n-2)(n—-3)). O

I, 0 0 0
I, I, 0 0
In 0 I, 0

X X X Is
Fig. 3.

(¢) Poljak-Turzik inequality [36, 37]
Let k, r be even integers and n=kr+1. Let C(n, r) denote the circular graph of
order n with edges (i, i+1), (i,i+r) for 1=<i=n. Poljak and Turzik [36] proved
that the inequality

Y x;=2n—k-—r (4.11)

=
(i, )eC(n, 1)
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is valid for the cut polytope P.(K,) and defines a facet of the bipartite subgraph
polytope of K,. Poljak and Turzik [37] proved that inequality (4.11) defines, in
fact, a facet of P(K,) for r=k-+2.

Figure 4 shows the graph C(9, 2). If we switch (4.11) by the root {1, 4, 7}, we
obtain a facet of the cone C, whose supporting graph is shown in Figure 5.

1

9
8 3
7 4
6 5
Fig. 4.
S YN P i
AN — =z~
§ N~ V4
N 53 /7
\\ //
\\ /
W Ay
Ne o/
\ /

Remark 4.12. Forr=k=2,n=35, C(5,2) = K; and, if we then switch (4.11) by root
{1, 3}, we obtain exactly the pentagonal hypermetric facet. For k=4, r=2, n=9,
(4.11) is also facet defining; in fact, after switching by root {1, 4, 7}, we obtain an
inequality which is permutation equivalent to that from Figure 5.

4.3. The cut cone on seven points

Let Gr; denote the graph on 7 points shown in Figure 6; its edges are weighted 1,
—1 or —2 (the circle around nodes 1, 2, 3, 4 indicates that node 5 is adjacent to all
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5

Fig. 6.

of them; weight —2 is indicated by a double dotted line). We also denote by Gr;
the inequality supported by the graph Gr; and defined by
> xij+x56+x57*x67'xls‘x36“x27"x47“2 Y X5;=0. (4.16)
I=i<j=4 1<i<4
This inequality was discovered by Grishukhin [27] who proved that it defines a
simplicial facet of the cone C; (by computer check).

Remark 4.17. Figure 7 shows the graph obtained from Gr, after identifying nodes
6, 7; abserve that the inequality supported by this graph is exactly the hypermetric
facet Hype(1, 1,1, 1, =2, —1). Therefore, the facet Gr, can be seen as the result of

Fig. 7.
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splitting node 6 in the above hypermetric facet; i.e., Gr; is a lifting of the hypermetric
facet Hype(1,1,1,1, -2, —1).
Up to permutation and switching, all known facets of the cut cone C; are:

- Six hypermetric facets Hyp,{b) for
(1) b=(1,1,-1,0,0,0,0),
(2) b=(1,1,1,-1,-1,0,0),
(3) b=(1,1,1,1, -1, -1, -1),
4) b=(2,1,1,~-1,-1,-1,0),
(5) b=(2,2,1,~1,-1, -1, 1),
6) b=(3,1,1,-1,—1, -1, —1).

- Three cycle facets Cyc,(b) for
(7) b=(1,1,1,1,1, -1, -1),
(8) b=(2,2,1,1,-1, -1, 1),
9) b=(3,2,2,—1, -1, -1, —1).

(10) The parachute facet Par,.
(11) Grishukhin facet Gr;.

Among these facets, the last five are non-hypermetric, the non-simplicial ones are
the first five and five of them: (1), (2), (3), (7), (10) are pure, i.e., have 0, 1, —1
coefficients. Grishukhin [27] proved that the above list is, up to permutation and
switching, complete, i.e., that every facet of the cone C, is permutation and/or
switching equivalent to some facet of the above list of facets (1)-(11). The number
of non-permutation equivalent switchings of facets (7), (8), (9), (10), (11) is,
respectively, 3, 6, 4, 2, 6 {17].

Assouad and Delorme [2] studied graphs G whose suspension VG (obtained by
adding a new node adjacent to all nodes of () is hypermetric, but not embeddable
into L', ie., the graphic distance d induced by VG satisfies all hypermetric
inequalities but does not belong to the cut cone, where d; =1 if (i, j) is an edge of
G and d; =2 otherwise. They proved that VG is hypermetric but not embeddable
into L' if and only if G is an induced subgraph of the Schlifli graph (see, e.g., [12])
and contains as an induced subgraph one of the following eight forbidden subgraphs:

(1) G,=K,—Cs, with Cs is the cycle (3, 6, 4, 7, 5).

(2) G,=K,— P;, with P; is the path (4, 6, 7, 5).

(3) Gy=K,~P,, with P, is the path (5, 7, 6).

(4) G,=VBg where Bg is the graph shown in Figure 8.

(5) Gs=VB, where B, is the graph shown in Figure 9.

(6) G¢=VBs where Bs is the graph shown in Figure 10.

(7) G;=VVH,; where Hj is the graph shown in Figure 11.

(8) Gg=VH, where H, is the graph shown in Figure 12.

Let d; denote the graphic distance for graph G;; since d; £ C; but d; is hypermetric,
there exists a non-hypermetric facet v of C; which separates d; from C;,i.e., v* d; > 0.
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2 6 3
4 1 5
Fig. 8.
6 5
4 7
2 3
Fig. 9.
2 5
7 4
3 6
Fig. 10.
6 7 5
o« S
3 4
Fig. 11.

For the first five graphs, such separating facets were found by Assouad and Delorme;
they are respectively for the first four graphs: Cyc,(-1,-1,1,1,1,1,1),
Cyc,(—~1,-1,-1,1,1,2,2), Cyc,(—1, -1, -1, -1,2,2,3), the parachute facet Par,
(after renumbering its nodes: (0,3,2,1,1,2,3) as (7,1, 2, 3, 4, 5, 6)). The distance
ds is separated by the facet supported by the graph from Figure 13; it is, in fact,
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7 2 6 3

equivalent to the facet Cyc,(=~1, —1, 1, 1, 1, 1, 1) (after switching the latter by root
{3, 4} and then permuting the vertices (1, 2, 3,4, 5,6,7)>(7, 4,2, 6,3, 1, 5}). We
verified that d; is separated by the facet Cyc,(—1, —1,—-1,1,2,2,1). Grishukhin
(personal communication) observed that d, is separated by the facet equivalent to
Gr, obtained by switching Gr, by the root 8({1,3,6}) and then permuting the
vertices: (1,2,3,4,5,6,7)>(4,2,3,1,5,7,6), also that d; is separated by the facet
equivalent to Cy¢,(2,2,1,1, =1, —1, —1) obtained by switching it by root §({1}} and
then permuting the vertices: (1,2,3,4,5,6,7)-(7,2,1,3,5,6,4).

Remark 4.18. In all above cases, if v is the facet separating the graphic distance d,
then v- d =1 holds, i.e., v d takes the minimum possible value over {v- x: x is an
integer vector that violates inequality v - x =< 0}.

4.4. Some counting results and open questions

{(a) Some counting

Recall that a valid inequality v-x=0 is simplicial if all its roots are linearly
independent. Permutation and switching by roots preserve the property of being
simplicial. However, lifting by zero does not in general preserve this property. For
this, suppose that v+ x <0, v’ - x = 0 define respectively simplicial facets of C,, Cyim
(m=1)where v'=(v,0,...,0); then, we have the relations: |R(v)|= () —1,|R(v)] =
("5™~1 and '

[R(v")|=2"[R(v)|+2™ -1, (4.19)
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from which we deduce that: (n+m)(n+m—1)=2"n(n—1), implying that n=3,
m = 1. Therefore, Hyp,(1, 1, —1) and its 0-lifting Hyp4(1, 1, —1, 0) are the only case
of simultaneous simplicial facets. On the other hand, we obtain from (4.19) that
Hyp,(1,1,-1,0,...,0) has 2"7>+2"°—1 roots; therefore, it is simplicial when
n=3,4 and Proposition 4.20 shows that it realizes the maximum possible number
of roots for a hypermetric facet of C, (the extreme opposite of being simplicial).

Proposition 4.20. Any hypermetric facet of C, has at most 2" >+2">—1 roots.

Proof. Take a hypermetric facet Hyp,(b) with by=- - -=b>0> by, = - -2 ),
where f = 2. The set of roots can be partitioned into: R(v) = R, u R, where R, ={root
8(Su{2h): S<[3, n]} and R, ={root 8(S): S<[3, n]}. When b, # 1, there exists no
subset S of [3, n] such that 8(S) € R, and 6(Su{2}) € R, ; hence |[R(v)|=2""% When
b,=1, ie., by=---=b;=1, we set A;={Sc[3,n]: b(S)=0}, A,={Sc[3,n]:
b(Sy=1} and A;={Sc<[3,n]: b(S)=-1}; then, |Ry=]|A||+|A;] and |R,=
|A)|+|Ay— 1,1, |R(v)| =2|A;|+]|A,|+]As| — 1. We have that: |[A |+ A, +|As = 2"
and |A,)=<2"7 (by partitioning again A, into those sets containing 3 and the others).
The result extends to the case when some coefficients b; are zero by using relation
(419). O

The pentagonal facet: Hyps(1, 1,1, —1, —1) is also simplicial; in fact, the number
of roots of the pure hypermetric facet Hyp,(1,...,1,~1,..., —1) (with k+1 ones
and k minus ones) is equal to:

2O )

with equality if and only if k =1, 2, i.e., for the triangle or pentagonal facets. Indeed,
Hyps(1,1, —1), Hyp,(1,1,-1,0), Hyps(1,1, 1, =1, —1) belong to the larger class of
simplicial facets: Hyp,(n—4,1,1,—1, ..., ~1) for n =3 which follows from Proposi-
tion 4.21. We conjecture that this is the only (up to equivalence) class of simplicial
hypermetric facets, at least for the linear or quasilinear case.

Proposition 4.21. Let b=(b,, b,,1,1,-1,...,—1) with by+b,=n—5, b;=b, and
n=7.

(1) Hyp,(b) is facet defining if and only if b;=n—4.

(ii) Hyp.(b) is a simplicial face if and only if b,=n—4.

Proof. We prove (i). When b,= —1, from Proposition 3.12, Hyp,(b) is a
(quasilinear) facet if and only if: n—4=b,+1—sign|b, ~1|, i.e., by=n—4. When
b,=1, then b, < n 6 and, from Proposition 3.12, Hyp,(b) is a (linear) facet. We
prove now (ii). One verifies easily that Hyp,(b) has (3) — n roots of the form 5(S)
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with S <[3, n]; the number of roots §(S) with 2¢ S, 1 S is equal to:

B i e o e o U P L
“\ b b,—1 b,+1/ "\ b, b, +2 b,+1)’

setting ( ) to zero whenever a <0 or a>n—4.

When b, =n—4,1i.e., b,=—1, then A= n—1 and the total number of roots is (5} —1;
Hyp, (b) is then a simplicial facet. When b, =n -3, i.e., b,= —2, then A =1 and the
total number of roots is (3)—n+1; we verify that these roots are all linearly
independent. For this, consider the matrix whose rows are the projections on the
index set I ={(i,j): 3=i<j=n} of the intersection vectors pointed at position 1
of the roots §(S) for S={3}, {4}, {2,3,4},{3,4,i} 5=i=n),{3,i} Bb=i=n), {4, i}
(5=i=n)and {3,4,ij} (5=i<j=n). If one permutes the columns of this matrix
by reordering the pairs in I as: (3,3), (4,4), (3,4), (i,i) for 5=i=n, (3,i) for
5=i=n, (4,i) for 5=i=n and (i, j) for 5=i<j=n, one obtains a matrix whose
block configuration is shown in Figure 14 and which is clearly non singular (setting
m=n-2,s=%n-2)(n-3)). Hence, Hyp,(b) is a simplicial face. When b, =n —2,
then A=0 and, from the previous argument, Hyp,(b) is again a simplicial face.
When by =n—>5,i.e., b,=0,then A= n and there are at least (3) roots, hence Hyp,(b)
is not simplicial. [

100
010 o} 0 0 o}
111
110

. I, I, I, 0
110
1 00

. I, I, 0 0
100
010

. I, 0 I, 0
010
111

. X X b I,
111

Fig. 14,

Proposition 4.22, Hyp,(1,1,1, -1, ~1, b,,..., b,) (with bs+---+b,=0) is not
simplicial whenever n = 6.

Proof. Observe that there exist 19 distinct roots () with §<[1, 5]; they are not
linearly independent, since their intersection vectors take nonzero value only on the
15 positions (i,j) with 1=i<j=5. [
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(b) Some open questions

We have described above classes of valid inequalities for the cut cone C, containing
large subclasses of facets. Almost all of them belong to the following three families:
hypermetric, cycle and pure (i.e., with 0,1, —1 coefficients) inequalities. It is of
interest to consider the cones defined by each of the above families: the hypermetric
cone HYP, defined by the hypermetric inequalities, the cycle cone CYC,, defined
by the cycle inequalities and the pure cone P, defined by all pure valid inequalities
of C,. The set of all semi-metrics on n points is the polyhedral cone M, whose
facets consist exactly of the triangle inequalities. We have the inclusions: C, <
HYP,c M, and C,c HYP,nCYC, n P,. There are many interesting open ques-
tions concerning these cones; we mention some which are most relevant to our
work. Obviously, the cone P, is polyhedral; is this true as well for the cones HYP,,,
CYC,? It is proven in [23] that the hypermetric cone is indeed polyhedral. It would
be very interesting to determine the complexity of the separation problem over the
cones HYP,, CYC,, P,.

Another interesting question is whether the cones HYP,, CYC,, P, realize a
“good approximation” of C,. If C is a cone containing C,, one can consider the
quantity: d(C, C,) =max(v- x: xe C—C,, v is facet of C, with ||v||=1). It would
be of interest to study whether d(C, C,) is bounded for C=HYP,, CYC, or P,
(recall Remark 4.18).

Another development of this work concerns restricted cut cones, i.e., cones gener-
ated by a subset of the family of cuts of the complete graph, e.g., all cuts with given
cardinalities; the applications to the related max-cut problem are obvious. In [14],
the case for subfamilies consisting of all equicuts, i.e., cuts 8(S) with |S|= |3n] or
[3n], was considered (in the polytope version). In [22], we consider equicuts and
the complementary case of inequicuts, i.e., all cuts except equicuts.

5. Proofs
5.1. Proofs for Section 3.1 on hypermetric inequalities

Proof of Theorem 3.11. Given integers by,..., b; such that b,=b;=---=b,>0
and by +byt---+b=n—f+1 and given an integer ¢, we set b=
(byy.o.ybp—1,...,-1), b'=(by—c, bsy,....,b,~1,...,-1,¢c) (with n—f
coefficients —1) and we denote respectively by v, v the hypermetric inequalities
Hyp.(b), Hyp,.:(b'). We assume that v is facet defining. We show that v’ is facet
defining for suitable choice of ¢ by using our lifting technique from Section 2.2 and
Proposition 2.7. We observe first that conditions (2.4), (2.5) hold; for this, note that
if a subset S of N =[1, n] such that 1 S defines a root of v, it also defines a root
of v’, since the coefficients of b’ differ from those of b only in positions 1, n+1
and 1, n+1¢ 8. In order to complete the proof, we must show that condition (2.6)
holds, i.e., that there exist n roots of v’ =Hyp,(b") of the form 8(S) with 15,
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n+1e€ S and the projections of their incidence vectors on {2, ..., n+1} are linearly
independent.
Case ¢ =—1 and b,=1. Then, we choose the following n roots §(S):

S={in+1} for2=i=<f{

S={2,3,in+1} forf+1=i=<n,

§={2,3,n+1}
Their incidence matrix, shown in Figure 15, is easily verified to be nonsingular
(I, denotes the n X n identity matrix, a matrix whose entries are all zeros (or ones)
is indicated by 0 (or 1)).

Case ¢ =—1 and b,=2. Then, we choose the following n roots:
S={in+1}U[f+1,f+b—-1] for2=i=<]
S={2,n+1}u[f+1,f+b,—2]u{i} forf+b,<i=<n,

S={2,3, n+1}u[f+1,f+b,+by—1].
Set t=n—f—b,+1, b=>b, and let K, denote the nx n matrix of all ones except

zero on the diagonal; then, the incidence matrix of the above n roots has the block
configuration shown in Figure 16. We denote by I, J, K and {n} the index sets for

1
1
If-1 0 .
11
11 0 o
11 .
1
Ll 11 0. . . .0 1
Fig. 15.
I J K n
1
I, X 0
1
. 0 K, , 0
0 1 0 I, .
0 .
1
1110 ol1..... 11111.10..0}1
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its columns and by C;, i€ I UJu K u{n}, its columns. One obtains that the matrix
has a nonzero determinant by performing the following manipulation on the
columns:

- replace C; by C;— C, for jeJ,

- replace C, by C,—Y,.,; C;

- replace C, by Ci+},; G,

- replace C; by C;+Y,_, Ci for the last element i of J.

Case 0<<c=n—f—b,. We consider the following n roots:

S={in+1}u[f+1,f+b+c—1] for2=i=f

S={2, n+1}u[f+1,f+b,+c]—-{i} for fH1=i=f+b,+c—1,
S={2,n+1}uf+1,f+by+c—1]u{i} for f+b,tc=i=<n,
S={2,3, n+1julf+1, f+b,+b;+c].

Their incidence matrix is shown below in Figure 17 (we set: s =b,+¢c—1,t=n—f—
b,—c+1). As before, I, J, K and {n} denote the index sets for the columns corres-
ponding to the block configuration of the matrix and its columns are denoted by
C;. One observes that its determinant is nonzero by performing the following
manipulation on the columns:

- replace C; by C,—C, for je J,

- replace C, by C,—Y..; Ci,

- replace C; by C,~Y,.x Ce. O

I J K n
1
I, X 0
1 1
1 K, 0
1
0
1 I, .
1 1
t]to... 0l .t 1]1.10..0[1
Fig. 17

Proof of Theorem 3.12. We take integers by=---=b;>0>by,,=---=b,.

Proof of (i). Suppose that v = Hyp,(b) is facet inducing and denote by R its set
of roots. If £=1, then b(S) <0 holds for all S< N; if f = n —1, the number of roots
is equal to the number of indices i such that b, = 1; hence both cases /=1, n—1
are excluded. Suppose now that f=2; for all roots 8(S), we can assume that 1£ S,
2e 8. Set F={(1,2), (2,3), (1, 3)}; then the set Ry (of projections on F of the roots)
consists exactly of the two vectors (1,1,0), (1,0, 1); hence, r(v, F)=2<|F|=3,
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which, from Lemma 2.3(ii), implies that v =0, i.e., n=3 and thus b= (1,1, —1).
We now suppose that f = n —2; for all roots 5(S), we can assume that n £ S. Suppose
for contradiction that b,>1. Then, for all roots 8(S), n—1¢ S whenever 1€ S;
therefore, setting F={(1,n—1), (1,n), (n—1, n)}, the set Ry consists of vectors
(0,1,1), (1,0, 1), (0,0, 0) and thus r(v, F} =2 which, from Lemma 2.3(ii), yields a
contradiction.

Proof of (ii)). We take b=(b,,..., by, —1,...,—1). The “only if”” part follows
from (i) and the “if’ part by applying iteratively the (—1)-lifting procedure from
Theorem 3.11(i} starting with the facet Hyp,(1, 1, —1). (Note that if, at some step,
one knows that Hyp,,(by,..., b, —1,...,—1) (with m=b+---+b,+k—1 and
k=f-1) is facet inducing, then one can apply repeated (—1)-lifting starting with
the facet Hyp,,..(0,b,,...,b,—1,...,~1) in order to obtain the facet
Hyp,(bgi1, b1y e ooy by, —1, ..., —1) with 1=b,+- - -+ b, +k).

Proof of (iii). We take b=(b,,..., b, ~1,...,—-1,b,) withb,=-2and n—f~1
coefficients —1. Hyp,(1,...,1,—1,—(n—4)) is (switching and permutation)
equivalent to Hyp,(n—4,1,1,—1,..., —1), the latter being a facet from (ii}. Hence
we can suppose that 3=<f=n-3.

Assume first that Hyp,(b) is facet defining. We prove that condition (QL) holds.
We can suppose that, for all roots 8(S), n2 S. If b+ b,=n+1-f, then S does not
contain {1,2} if 6(S) is root; set F={(1,2), (1, n), (2, n)}, then Ry consists of
vectors (1,1,0), (1,0,1) and thus r(v, F)=2<|F|, contradicting Lemma 2.3(ii).
Therefore, b, + b, = n— fholds and, if b, > b, then condition (QL) holds. We suppose
now that b, = b, and we prove that the case b, + b, = n—f is excluded, by counting
roots. If b, + b, = n —f, then, for 1 =i <j =/, there exists exactly one root containing
both i,j. Denote by A the family of intersection vectors (pointed at position n)
7(S) for which 8(S) is root with |[Sn[1,f]]=1. For any vector #w(S) of A,
its nonzero coordinates occur at positions (i, j) for (i,j)=(1,1),...,(f,f) or,
1=i=f and f+1=j=n-1, or f+1l=i=j=<n—1, yielding that rank(A)=
fHf(n—1-f)+(""}). Therefore, rank(R) =<rank(A)+ (4) <(%)—1, contradicting
the fact that Hyp, (b) is a facet. We prove now that, conversely, if condition (QL)
holds and 3=f=n—3, then Hyp,(b) is a facet. We distinguish two cases:

Case b, = by ; then condition (QL) becomes b, + b,=n—f~1. Applying 0-lifting
and (—1)-lifting from Theorem 3.11(i) starting with facet Hyp(1, 1, —1), we obtain
the facet Hyp,(l,b,,b,~1,...,-1) (m=b+b+3=b,+b,+3). Applying
Theorem 3.11(ii) with ¢ = b, (which is possible since b,= m —3 —b,), we obtain that
Hypn+:(1=by, by, by, by, —1,...,—1) is a facet. Similarly, applying successively
Theorem 3.11(ii) with ¢=bs,..., bs,, we deduce that Hyp,, s o(1—by—- - —
bry, b1, by, ..., b, —1,...,—1)is a facet with m+f—2=b,+ b,+f+1=< n. Finally

“apply (—1)-lifting until obtaining the facet Hyp,(b,, b,, ..., b, —1,...,—1) where
b,=1-by~+~by+n—(m+f-2)=n—f—b,~--—bp

Case b;>b,; then condition (QL) becomes b +b,=<n-—f As before, by
(—1)-lifting, we obtain the facet Hyp,(b,—b;, b, by, —1,...,~1) with k=
b,+b,+2. We can apply Theorem 3.11(ii) with c¢=5b, and obtain facet
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Hypis1(=bs, by, ba, by, —1,..., —1), then with ¢c=bs, ..., by, until deducing facet

Hypiesa(=bs—-—bpby,..., b, —1,...,—1) where k+f-2=b,+b,+f=n.
Finally, apply (—1)-lifting until obtaining facet Hyp,(b,, b,,..., b, —1,...,-1)
where b,=—bs;—---~btn~(k+f-2)=n—f~b—--—b. O

5.2. Proofs for Section 3.2 on cycle inequalities

Proof of Theorem 3.26. We use again our lifting technique. We prove Theorem 3.26
by induction on n=7; for n =7, the result holds since {b,, b,, b5} ={3,2,2}. We
denote respectively by wv,0v’ the inequalities Cyc,(b,, b,, b5,—1,...,—1) and
Cyc, (b1 +1, by, b3, —1,...,—1, —1). By the inductive assumption, we know that
v is facet defining; we prove that v’ is facet defining by using Proposition 2.7.
Condition (2.4) always holds; condition (2.5) holds because, if S is a subset of
N =[1, n] with 1£ S defining a root of v, then S also defines a root of v’ since both
cycle inequalities v, v’ have the same positive support: {1,2,3} and 1,n+1£S. In
order to satisfy condition (2.6), we must find n roots of v’ with n+1& S whose
incidence vectors projected on {2, ..., n+1} are linearly independent; these roots
must be chosen from the following list:

S={2,n+1}u{b,~2 or b,—3 points from (4, ni},
S={3,n+1}u{b;—2 or b;—3 points from [4, n]},
S={2,3,n+1}u{b,+b;—2 or b,+ b;—3 points from [4, n]}.

We distinguish 3 cases:
Case b,, b;=3. Then, we choose the following n roots:

S={3,n+1tuln—bs;+4,n],

S={2,n+1}uU[4,b,],

§={2,3,n+1}ul4, b,+3]lu[n-by+4,n],
S={3,i,n+1}uln-by+4,n] ford=i=n—-b;+3,
S={2,in+1}ul4,b,] forn—-by+d=i=<n,

(setting [a, b]=0 if b<a). Their incidence matrix is shown below in Figure 18
(setting: u=n—>b;, v=>by;—3), Denote by {1}, {2}, I, J, K, {n} the partition of the
index set of the columns corresponding to the block configuration of the matrix
and denote by C; its columns. One verifies that the matrix has nonzero determinant
by performing the following manipulations on its columns:

- replace C, by C,—C,—C,,

- replace C; by C;—C, for ie I,

- replace C by C,,— C, for ke K.

Case b, = b;=2. Then, choose the following n roots:

§={2,3,4,5,n+1}, {2,n+1}, {3, n +1}1,{2,3,i, n+1} ford=i=n.
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Fig. 18.

Case b,=2, b;=3. We choose the n roots:

S={3,in+1}uln—bs+4,n] fordi=n-by+1,

S={2,3,n+1,n—b;+1}u[n—by+2,n]—{i} forn—b+2=<i=n,

S={2,3,n+1}u[n—-by+2,n],
S={2,3,n+1}uln—bs+1,n],

S={2,n+1}.
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Their incidence matrix is shown in Figure 19 (we set: u=n—b,—2, v=>b;—1).
Denote by {1}, {2}, I, {a}, J and {n} the partition of the index set of the columns
corresponding to the block configuration of the matrix. One verifies that its deter-
minant is nonzero by performing the following manipulations on the rows and

columns:
- replace C, by C,—C,,
- replace C; by C;— C, for je J,

[—*F'
011 00 1
.. 1
I, o 1 .
0l1 0 0
111 1
. 0 K,
111 1
1/1{0....... 0|0 ........ 1
1]0....... of111........ 1
110(0....... Q1010........
[1°] | '
1 2 I a J ol
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- replace C, by C,~C,-C,~% .., C,

- replace C, by C,—C,, C; by C,+C,,

- replace L; by L;— L,, where L,, L, denote the second and third rows (starting
from the bottom of the matrix). O

Proof of Theorem 3.27. As for Theorem 3.26, the proof goes by induction on n=7.
It is similar, so we simply indicate which additional n roots must be chosen:
S={2,n+1},{2,3,n+1},{3,4,n+1},{2,3,4,5, n+1} and {2,3,i,n+1} for5=i=<
n. One verifies easily that their incidence vectors are linearly independent. [

Proof of Theorem 3.25. We prove that Cye,(1,...,1,—1,...,—1) is facet defining
by using the “polyhedral” method discussed in 1.4(a). We denote by 1,2, ..., k+3
the k+ 3 points corresponding to coefficients b;=1and by 1',2’,.. ., k' the k points
corresponding to coefficients —1, so n =2k +3 with k=2. We denote by v the cycle
inequality Cyc,(1,...,1,—1,...,—1) and we consider a valid inequality b- x=<0
of C, such that b- x =0 holds whenever v+ x =0. In order to show that v is facet
defining, it suffices to prove the following statements:

(a) by=B forall l=i=k+3,1<j<k,

(b) byy=—B forall 1=i<j=k,

(¢c) by=-p for all 1=i<j=k+3 where (i,j) is not an edge of the cycle
(1,2,...,k+3),

(d) b;y=0forall 1=i=k+3 (setting k+4=1),
where B is some scalar; negativity of 8 will then follow from relation: b- §({1,1}) =
B <.

We first observe that the roots of v, which are then also roots of b, are of the
form 8(S) with §= T u T’ where T is a circular interval of [1, k+3], T’ is a subset
of [V, k] and |T|=|T'[+1 or [T'|+2.

(1) Condition (d) follows from Lemma 1.1, since the sets {i}, {i+1}, {, i+ 1} all
define roots (of v, hence of b) for any 1=i=<k+3.

(2) For proving that condition (a) holds, observe that, for A=[4, k+3]u {3, k'],
the sets Au{l’}, Au{2}, Au{l, 1}, Au{l,2} all define roots; hence we deduce
from Lemma 1.2 that b, = b, and the general result follows by symmetry. We set
b;=p for any i, j.

(3) Take ie[3, k] and set A=[1, kJu[3, k']—{i'}; the sets Au{2}, Au{il,
Auil’, 27}, Au{Y, i} all define roots; hence we deduce from Lemma 1.2 that
by = by By symmetry, we conclude that, for some scalar o, b;y=a for all
l=sisj<k

(4) Take v, 1=v=k+3; then §({v}) is a root. From the preceding statements
and the equality: b- 6({v}) =0, we can deduce the following relation:

(Sv) z bvt+kB :0
I=i=k+3
i#v—1,v,0+1
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(5) Claim. 8 =—-a.
Proof. Since the set {1,2,1'} defines a root, equality b- 8({1, 2, 1'}) =0 yields
6) b+ Y b+b+BBk-1)+a(k—1)=0.

4=i=k+3
By adding relations (S;) and (S,), we obtain

(7)  biz+ Y by+by+2kB=0.
d=i=k+3

Subtracting (6) from (7), we deduce that 8 = —«a.

(8) Claim. byy=-8.

Proof. Using the fact that {1, 2,3, 1'} is a root, we deduce the relation

9) Z bli+b2i+b3i+(3k_2)B:O'

4=j=k+3

Adding relations (S,), (S,), (S;) and then subtracting the resulting relation from (9)
vields equality b;; = —B.

In order to finish the proof, we must show that condition {¢) holds. For this, we
prove by induction on u, 3= u < k+3, the following statement:

(H,) b,,=—B foralll=v<w=uyand w#ov+1.

From (8), the inductive assumption holds for u=3. Take u=4 and assume that
(H,_,) holds; we prove that (H,) holds, i.e., b,, = by, =+ -=b,_,, = —B. We show
the latter again by induction on v, 1 =v=<u—2, in the following claims (10), (14).

(10) Claim. b,, = —p.

Proof. Using the fact that both sets [1, u]U[1’, (u—2)'T and [2, u]U[1’, (u—3)']
are roots, we deduce respectively

(11) ¥ by+by+-+b,;+2B(k—u+2)+B(u—-2)(k—u+3)=0,

utl=isk+3

(12) b+ ¥ byt byt -+b,;+B(k—u+3)(u—1)=0.
utl=si=k+3
Relation (S,) together with the inductive assumption becomes
(13) b, + % bii+B8(k—u+3)=0.
utl=i=k+3
By computing (12) —(11)+(13), we deduce that b,, = —g8.
(14) Claim. Assume that b,, =b,,=-+-=b,_,,=—~p where 2=v=u—3. Then,
bvu = #B
Proof. Using the fact that both sets [v+1, u]u{l,(u—v—-2)], [v,u]u
[1, (u~v—1)"]are roots and the inductive assumptions b, = —Bif l=s<w=u~1,
w#s+1 and b,, =B if 1=s=0v—1, we deduce respectively
(15) bvu+ Z bv+1i+'"+bui+B(u_U)(k~u+3):09

utl=sisk+3
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(16) > b+ +b,—B+B(u—v+1)(k—u+3)=0.

utl=i=k+3
Relation (S,) becomes

(17) b, + Y b, +Bk—u+4)=0.

utl=i=k+3

Now, computing (15) —(16)+(17) yields b, =—8. O

5.3. Proof of Theorem 4.1 on the parachute facet

The nodes of the parachute graph are denoted as 0,1,2,...,k1,2,... k", E.
denotes the set of edges with weight +1 consisting of the path P=
(k,k—1,...,1,1,...,(k—1), k') while E_ denotes the set of edges with weight —1
consisting of the pairs (0, i), (0, i) for 1=i=<k—1 and the pairs (k, i"), (k', i) for
1=i=k We suppose that k is odd. We subdivide the proof into two parts: first,
we show that the parachute inequality Par,, denoted by v, which can be written as
VX =Y her, X~ Lo pee. Xy =0, is valid for the cut cone and, then, that it is facet
defining.

(i) The parachute inequality is valid. Consider a cut vector §(S); we can assume
that 0¢ S. Set a=|S[1,k—1] and a'=|S~[1, (k-1)], s, =|6(S)~E,] and
s.=|8(S)n E_|. In order to prove validity, we must show that s, =s_ holds. We
first compute the value of s_ by distinguishing four cases (whether k, k'€ S):

(a) k k'€ S. Then, s_=2k-2.

(b) k k' S. Then, s_=2a+2a’.

(c) keS, k'éS. Then, s_=2a+k

(d) kg8, k'e S. Then, s_=k+2a’.

(1) Claim. Let P=(1,2,...,n) be a path, S be a subset of {1,n] and set
B=|Sn[2,n—1]. Then, |6(S)n P|=2B+|S {1, n}l.

The proof is easy. Validity is now checked:

- In case (a), 5. =|P|—1=2k—2, since both endpoints of P belong to S and k
is odd.

- In case (b), s.=2a+2a’ from Claim (1).

- In case (¢) (idem for (d)), decomposing P into paths P,=(1,...,k) and
P,=(1,1,...,k') and wusing claim (1), we have: s,=|Sn{l,k}+2|Sn
(2, k=11 +[6(S)n Py=2a+1—|Sn{1}|+|6(S)n Py|; hence s,=s_  holds
whenever |5§(S) N Py| < k—1; if |8(S) n Pl = k, then, since k'¢ S and k is odd, 1€ S
and we have again s, =s_.

(ii) The parachute inequality is facet inducing. Our proof for facetness is based on
the polyhedral method. Let b+ x <0 be a valid inequality of C, such that b+ x=0
whenever v+ x = 0. In order to show that the parachute inequality v is facet inducing,
it is enough to prove the following statements:

(a) by=0forall (i, )¢ E, UE_,

(b) b; =B for all (i, j)e E4,

(¢) b=« forall (ij)e E_,
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for some scalars a, 8. Then, using the fact that {1} defines a root of v, hence of b,
one deduces that @ =—f holds; positivity of g will then follow from relation
b-8({0}) =2(k—1)a =-2(k—-1)B <0, implying that v is indeed facet defining.

We now give a sketch of proof for assertions (a), (b), (¢), the detailed verifications
(which are easy but tedious) being left to the reader.

(2) Claim. Assertion (a) holds.

Proof. Given i,i’, 1<i=<k—1 with (i, i')# (1, 1'), the sets {i}, {i'}, {i, i’} all define
roots; hence, Lemma 1.1 implies that b; = 0.

Given $=1{1,3,5,...,k}u{2,4',...,(k—1)}, the sets S, Su{0}, SU{k’} and
S {0, k'} all define roots, hence Lemma 1.1 implies that by =0.

(3) Claim. For some scalar a, by; = by =a forall 1=i<k—1.
Proof. Take i, 1=i=k-2, and set A={3,5,...,k'}u{l,3,...,i—1}lu
{i+2,i+4,..., k—1} when i is even and set B={1',3',..., k'}u{2,4,...,i—1}u
{i+2,i+4,..., k} when i is odd. Using Lemma 1.2 applied to the set A when i is
even, or B when i is odd, and to the points p=0, g=1i, r=i+1, we deduce that
bo; = by;1. Applying Lemma 1.2 to set A={3,5,...,k}u{3",5, ..., k'} and points
p=0,g=1, r=1', we deduce that by, = by;.. This concludes the proof.

(4) Claim. b,y = —byp=—bo, S B, and b, =b,» = ~a.

Proof. Set A={1,3,...,k}u{3,5,...,k'}; both A and Au{1'} define roots,
which yields 0=b-86(A)—b- 8(Au{l}) and thus

(5) O0==by+by+a—b.
Using the fact that {1’} defines a root, we obtain
(6) 0= by +byy+a+by.

Combining (5), (6), we have: b,».=—a and b,;, = —b, and claim (4) follows by
symmetry.

We now proceed to compute the value of b, along the path P and on edges (k, i’),
(k', 7). For this, we prove by induction on i the following relations:

(O,) bii+1:bi'(i+1)':_a fOI' i Odd, i:1’3,.. . k'—2.
(B) by =—~bpi=—bpis & B; forieven,i=2,4,..., k-3.
(Bi)  biiisry= b= by & B, forieven i=24,... k-3

By symmetry, it is enough to show (E;) or (E}). For i =1, relation (O,) follows
from claim (4). The next claim shows that relation (E,) holds.

(7) Claim. byy;=~—by,=—by.

Proof. Since {2} is root, 0=b-6({2}) = by +b,;>+by;+ by, which, from the
precedings claims, implies that b,;=—b,,. Set A={1,3,...,k}u{5,7,...,k'};
since both AU {2’} and Au{1’,3'} are roots, we deduce

0=b-86(AU{1,3})-b-8(AL{2Y})
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and therefore
(8) O0=byyta—b+be.

From the fact that {3’} is root, we deduce
(9)  O=a+byy+bystbyy.

Combining (8), (9) and using b,y = —by,, we obtain b, = —a and then, from (8),
by = by, which concludes the proof.

In claim (10), we proceed to show that induction is possible. Take i even,
4=i=k—2, and assume that (E;), (E}) hold for all j even, j=i—2, and (O,) holds
for all k odd, k=i-3.

(10) Claim. (E,), (E}), (O,_,) hold.

Proof. The sets A={1,3,...,k}u{13,...,k'}, B={1,3,..., ktu{2,4,...,
(i-2)Yu{+1), (i+3),..., k't and C={1,3,...,ktu{2,4, ..., i u{(i+3),
(i+5),...,k'} are all roots. Hence O0=5b-6(A)—b-6(B) and 0=5bH-8(A)~
b- 8(C), from which we deduce respectively, using the inductive assumption,

(11) 0:a+b(f*1)’i"bk(if17)'+bk(i—z)’a
(12) 0:a+b(i+1)'<f+2)"bk(i+1)'+bki'-

Using (Ei_,) and (11}, we deduce b, ;= —uq, i.e., (O;_;) holds. From the fact that
{i'} is root, we have

(13) O=a+by_1yit+bigsryt b,

from which we deduce
(14)  bygirry = —by

From the fact that {(i +1)’} is root, we have
(15) O0=a+biusiyt bariyaray T brgry-

Adding (12), (15) and using (14) yields b;11y(+2y=—a and then (15) implies
biiv1y==by+1y, i-e., (E}) holds, which concludes the proof.

(16) Claim. by k= —bpi & By and bryw =~byry = Bror.

Proof. Both sets A=1{1,3,....k}u{1,3,...,k't and B={1,3,...,k}u
{2,4,...,(k—1), k'} give roots, implying 0=b- §(A) — b - 5(B) which, using pre-
ceding results, yields claim (16).

(17) Claim. by =B1—Bi—1 = Bi-1-

Proof. Use relation 0=>5b- §(A) where A={3,5,...,k}u{2,4,...,(k—1)}isa
root.

We conclude the whole proof by showing that 8, =- - - =8, =Bi=- =8, =
— .

(18) Claim. B;=Bi=—ca forall i=i=k-1.

Proof. For i even, 2=i=k-2, set B={k}u{1,3,...,G-1D)Fu{+2),...,
(k—1)"}, B and Bu {i’} are both roots, yielding Bi=—-a. O
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