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ABSTRACT

This paper presents a discussion of some of the issues associated with the multiple sources of
uncertainty and non-stationarity in the analysis and modelling of hydrological systems. Different
forms of aleatory, epistemic, semantic, and ontological uncertainty are defined. The potential for
epistemic uncertainties to induce disinformation in calibration data and arbitrary non-stationa-
rities in model error characteristics, and surprises in predicting the future, are discussed in the
context of other forms of non-stationarity. It is suggested that a condition tree is used to be
explicit about the assumptions that underlie any assessment of uncertainty. This also provides an
audit trail for providing evidence to decision makers.
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Introduction

I first started carrying out Monte Carlo experiments

with hydrological models in 1980, while working at the

University of Virginia. This was not a new approach at

that time, but the computing facilities available (a

CDC6600 “mainframe” computer at UVa) made it

feasible for the types of hydrological model being

used then. Adopting a Monte Carlo approach was a

response to a personal “gut feeling” that traditional

statistical approaches (at that time an analysis of uncer-

tainty around the maximum likelihood model) were

not sufficient to deal with the complex sources of

uncertainty in the hydrological modelling process.

Over time, we have learned much more about how to

discuss facets of uncertainty in terms of aleatory, epis-

temic, ontological, linguistic, and other types of uncer-

tainty (for one set of definitions see Table 1). Our

perceptual model of uncertainty is now much more

sophisticated but I will argue that this has not resulted

in analogous progress in uncertainty quantification

and, more particularly, uncertainty reduction. As one

referee on this paper suggested, it can be argued that

the classification of uncertainties is not really neces-

sary: there are only epistemic uncertainties (arising

from lack of knowledge) because we simply do not

know enough about hydrological systems and their

inputs and outputs. It is then a matter of choice as to

how to treat those uncertainties, including formal

probabilistic and statistical frameworks.

What is clear is that such epistemic uncertainties will

limit the inferences that can be made about hydrological

systems. In particular, we are often dependent on the

uncertainties associated with past observations (see, for

example, Fig. 1) and have not really done a great deal

about reducing hydrological data uncertainties into the

past. Some observational uncertainties can certainly be

treated as random variability or aleatory, but can also be

subject to arbitrary uncertainties. Here, I use the word

arbitrary to distinguish epistemic uncertainties that do

not have simple structure or stationary statistical char-

acteristics on the time scales used for model calibration

and evaluation. This time scale qualification is important

in this context since the only information we will have

about the impact of different sources of uncertainties on

model outputs will be contained in the sequences of

model residuals within some limited period of time. It

is easy to show that stochastic models based on purely

aleatory variability can exhibit apparent short-period

irregularity or non-stationarity (see, for example,

Koutsoyiannis 2010, Montanari and Koutsoyiannis

2012). However, there is then the question of how to

identify the characteristics of long-period variability

from shorter periods of model residuals that might

contain the type of arbitrary characteristics defined

above. It has been shown that some arbitrary
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uncertainties of this type might be disinformative to the

model calibration process (Beven et al. 2011, Beven and

Westerberg 2011, Kauffeldt et al. 2013; Fig. 1, Beven and

Smith 2014), even if they might be informative in other

senses (such as in identifying inconsistences in hydro-

logical observations, Beven and Smith 2014).

A disinformative event in this context is one for which

the observational data are inconsistent with the funda-

mental principles (or capacities in the sense of Cartwright

1999) that might be applied to hydrological systems and

models. Most hydrological simulation models (as

opposed to forecasting models, see Beven and Young

2013) impose a principle of mass balance. We expect

catchment systems to also satisfy mass balance (and

energy balance and momentum balance, see Reggiani

et al. 1999). The observational data, however, might not.

Figure 1 is a good example of this, with far more output as

discharge from the catchment than the recorded inputs

for that event. While there are some circumstances, such

as a rain-on-snow event, where this could be realistic

scenario, clearly no model that is constrained by mass

balance would be able to reproduce such an event, sug-

gesting that the residuals would induce bias in any model

inference. It also suggests that we should take a much

closer look at the data to be used inmodel calibration and

evaluation before running a model (including the neglect

of potential snowmelt inputs).

The implication of allowing that some model resi-

duals might be affected by this type of arbitrary episte-

mic uncertainty is that commonly used probabilistic or

statistical approaches to uncertainty estimation do not

take enough account of the epistemic nature of uncer-

tainty in the modelling process. It is not just a matter of

finding an appropriate statistical distribution or, alter-

natively, some non-parametric probabilistic structure for

the model residuals (e.g. Schoups and Vrugt 2010,

Sikorska et al. 2014), especially when the sample of

possible arbitrary uncertainties (or surprises) might be

small. It will be suggested in what follows that we need

to be more pro-active about methods for uncertainty

identification and reduction. This might help to resolve

some of the differences between current approaches.

Defining types of uncertainty (and why the

differences are important)

Past analysis in a variety of modelling domains in the

environmental sciences has distinguished several types

Table 1. A classification of different types of uncertainty.

Type of uncertainty Description

Aleatory Uncertainty with stationary statistical
characteristics. May be structured (bias,
autocorrelation, long term persistence) but can
be reduced to a stationary random distribution

Epistemic (system
dynamics)

Uncertainty arising from a lack of knowledge
about how to represent the catchment system
in terms of both model structure and
parameters. Note that this may include things
that are included in the perceptual model of
the catchment processes but are not included
in the model. They may also include things
that have not yet been perceived as being
important but which might result in reduced
model performance when surprise events
occur.

Epistemic (forcing and
response data)

Uncertainty arising from lack of knowledge
about the forcing data or the response data
with which model outputs can be evaluated.
This may be because of commensurability or
interpolation issues when not enough
information is provided by the observational
techniques to adequately describe variables
required in the modelling process. May be a
function of a limited gauging network, lack of
knowledge about how to interpret radar data,
or non-stationarity and extrapolation in rating
curves.

Epistemic
(disinformation)

Uncertainties in either system representation
or forcing data that are known to be
inconsistent or wrong. Real surprises. Will have
the expectation of introducing disinformation
into the modelling processes resulting in
biased or incorrect inference (including false
positives and false negatives in testing models
as hypotheses).

Semantic/linguistic Uncertainty about what statements or
quantities in the relevant domain actually
mean. (There are many examples in hydrology
including storm runoff, baseflow, hydraulic
conductivity, stationarity, etc.) This can partly
result from commensurability issues that
quantities with the same name have different
meanings in different contexts or scales.

Ontological Uncertainty associated with different belief
systems. Relevant example here might be
beliefs about whether formal probability is an
appropriate framework for the representation
of beliefs about the nature of model residuals.
Different beliefs about the appropriate
assumptions could lead to very different
uncertainty estimates so that every uncertainty
estimate will be conditional on the underlying
beliefs and consequent assumptions.
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Figure 1. Example of an event where the runoff coefficient
based on the measured rainfalls and stream discharges is
about 1.4. This clearly violates mass balance and will therefore
be disinformative in calibrating a model that is constrained to
maintain mass balance to represent that catchment area.
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of uncertainties and errors, including aleatory uncer-

tainty, epistemic uncertainty, semantic or linguistic

uncertainty, and ontological uncertainty (e.g. Beven

and Binley 1992, McBratney 1992, Regan et al. 2002,

Ascough et al. 2008, Beven 2009, Raadgever et al. 2011,

Beven and Young 2013, Beven et al. 2014). Table 1 lists

one such classification relevant to the application of

hydrological models. In particular, the definition of

aleatory uncertainty is constrained to the case of sta-

tionary statistical variation (noting that this might

involve a structural statistical model but with stationary

parameters), for which the full power of statistical

theory and inference is appropriate. Epistemic uncer-

tainties, on the other hand, have been broken down

into those associated with model forcing data and

observations of system response, and those associated

with the representation of the system dynamics. As in

Fig. 1, the observational data might sometimes be

hydrologically inconsistent, and might lead to disinfor-

mation being fed into the model inference process

(Beven et al. 2011, Beven and Smith 2014). Any of

these might be sources of the rather arbitrary nature

of errors in the forcing data and resulting model resi-

dual variability noted above.

Many aspects of the modelling process involve mul-

tiple sources of uncertainty, and without making very

strong assumptions about the nature of these different

sources it is not possible to separate the effects of the

different uncertainties (Beven 2005). Attempts to sepa-

rate the error associated with rainfall inputs to a catch-

ment, for example, result in some large changes to

event inputs and a strong interaction with model struc-

tural error (e.g. Vrugt et al. 2008, Kuczera et al. 2010,

Renard et al. 2010). The very fact that there are epis-

temic uncertainties arising from lack of knowledge

about how to represent the response, about the forcing

data, and about the observed responses, reinforces this

problem. If we knew what type of assumptions to make

then the errors would no longer be epistemic in nature.

Defining a method of uncertainty estimation

(and why there is so much controversy about

how to do so)

Uncertainty estimation has been the subject of consid-

erable debate in the hydrological literature. There are

those who consider that formal statistics is the only

way to have an objective estimate of uncertainty in

terms of probabilities (e.g. Mantovan and Todini

2006, Stedinger et al. 2008) or that the only way to

deal with the unpredictable is as probabilistic variation

(Montanari 2007, Montanari and Koutsoyiannis 2012).

There are those who have argued that treating all

uncertainties as aleatory random variables will lead to

overconfidence in model identification, so that more

informal likelihood measures or limits of acceptability

might be justified (e.g. within the GLUE framework of

Beven 2006a, 2012, Beven and Binley 1992, 2014, Freer

et al. 2004, Smith et al. 2008, Liu et al., 2009; and

within approximate Bayesian computation by Nott

et al. 2012, Sadegh and Vrugt 2013, 2014). There are

those who recognize the complex structure of hydro-

logical model errors but who use transformations of

different types to fit within a formal statistical frame-

work (e.g. Montanari and Brath 2004). Some of these

opinions have been explored in a number of commen-

taries and opinion pieces (Beven 2006a, 2006b, 2008,

2012, Hamilton 2007, Montanari 2007, Hall et al. 2007,

Todini and Mantovan 2007, Sivakumar 2008) as well as

in more technical papers.

There is, of course, no right answer—precisely

because there are multiple sources of epistemic uncer-

tainty, including model structural uncertainty, that are

impossible to separate. There are also different frame-

works for assessing uncertainties and different ways of

formulating likelihoods. If we had knowledge of the

true nature of the sources of uncertainty then they

would not be epistemic and we might then be more

confident about using formal statistical theory to deal

with all the sources of unpredictability. Some epistemic

uncertainties should be reducible by further experi-

mentation or observation, so that there is an expecta-

tion that we might move towards more aleatory

residual error in the future. In hydrology, however,

this still seems a long way off, particularly with respect

to the hydrological properties of the subsurface. And if,

of course, there is no right answer, then this leaves

plenty of scope for different philosophical and techni-

cal approaches for uncertainty estimation—or, put

another way, how to define an uncertainty estimation

methodology involves ontological uncertainties

(Table 1). In this situation there is a lot of uncertainty

about uncertainty estimation, and this is likely to be the

case for the foreseeable future. This has the conse-

quence that communication of the meaning of different

estimates of uncertainty can be difficult. This should

not, however, be an excuse for not being quite clear

about the assumptions that are made in producing a

particular uncertainty estimate (Faulkner et al. 2007,

Beven and Alcock 2012, see later).

Defining non-stationarity (in catchments and

model residuals)

Many people think that the only important distinction

in the modelling process is between variables that are
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D
o
w

n
lo

ad
ed

 b
y
 [

U
p
p
sa

la
 U

n
iv

er
si

te
ts

b
ib

li
o
te

k
] 

at
 0

0
:1

3
 2

9
 J

u
ly

 2
0
1
6
 



predictable and uncertainties that are not. Model resi-

duals might have components of both: some identifi-

able predictable structure as well as some unpredictable

variability. The structure indicates some aspect of the

system dynamics (or boundary condition and evalua-

tion data) that is not being captured by the model. It is

often represented as a deterministic function: in the

very simplest case, a stationary mean bias; in more

complex cases the function might indicate some struc-

tured variability in time or space, such as a trend or

seasonal component. The unpredictable component, on

the other hand, is usually treated as if the variability is

purely aleatory on the basis that if something is not

predictable then it should be considered within a prob-

abilistic framework (e.g. Montanari 2007) albeit that, as

already noted, the nature of that variability might have

some long time scale properties (Koutsoyiannis 2010,

Montanari and Koutsoyiannis 2012).

This is important because it has implications for

evaluating models as hypotheses in the face of epis-

temic errors (or long time scale aleatory errors).

Hypothesis testing has traditionally been the realm

of statistical inference and probability, including the

recent application of Bayesian statistical theory to

hydrological modelling (e.g. Clark et al. 2011).

Purely empirically, probability and statistics can, of

course, describe anything from observations to model

residuals regardless of the actual sources of uncer-

tainty as an expression of our reasonable expectations

(Cox 1946). However, for any particular set of data,

the resulting probabilities are conditional on the sam-

ple being considered. This is one reason why we try

to abstract the empirical to a functional distributional

form or the type of empirical non-parametric distri-

butions used by Sikorska et al. (2014) or Beven and

Smith (2014).

For simple cases where the empirical sample is

random and stationary in its characteristics (after

taking account of any well-defined structure) then

there is a body of theory to suggest what we should

expect in terms of variability in statistical character-

istics as a function of sample size. There is also then

a formal relationship between the statistical charac-

teristics and a likelihood function that can be used in

model evaluation. The simplest case is when the

statistics of the sample have zero mean bias, constant

variance, are independent and can be summarized as

a Gaussian distribution. More complex likelihood

functions could take account of bias, heteroscedasti-

city, autocorrelation, and other assumptions about

the distribution. Even these more complex cases,

however, are what I have called ideal cases in the

past (e.g. Beven 2002, 2006a). Fundamentally, they

assume all variability in model residuals is aleatory in

nature.

But real problems are not ideal in this sense; as

illustrated above they are subject to arbitrary epistemic

errors. It is then debatable as to whether it is appro-

priate to treat the errors as if they are aleatory. The

reason is that the effective information content of any

observations (or model residuals) will be reduced by

epistemic uncertainties relative to the ideal case. Why

is this? It is because the stationary parameter assump-

tion of the aleatory component gives the possibility of

future surprise a very low likelihood. Yet evaluating the

performance of hydrological models in real applica-

tions often reveals surprises that are clearly not aleatory

in this way, including occasional surprises of gross

under or over predictions. This makes it difficult to

define a formal statistical model of the residual struc-

ture and consequently, if the methods of estimating

likelihoods in formal statistics are not valid, makes

hypothesis testing of models more difficult (e.g. Beven

2010, Beven et al. 2012).

Consider the situation where the estimates of rain-

fall over a catchment might be of variable quality dur-

ing a series of events in a model calibration period. The

error in the estimates is not aleatory or distributional in

nature because the distribution of events is not

expected to be stationary (except possibly over very

long periods of time, but that is not really of interest

for the period of calibration data that might be avail-

able). This is the context in which we can describe the

variability as rather arbitrary; i.e. we do not really know

whether the rainfall uncertainties conform to any sta-

tistical distribution or if the errors in a calibration

period are a good guide to the errors in the prediction

period that we are actually interested in. The same

could be true, of course, for aleatory errors with long-

term properties (see examples in Koutsoyiannis 2010,

Montanari and Koutsoyiannis 2012, Koutsoyiannis and

Montanari 2015). The underlying stochastic process

might then be stationary but it might be difficult to

identify the properties of that process from a short-

term sample with apparently non-stationary statistics.

These are then both forms of epistemic uncertainty. In

both cases we lack knowledge about the arbitrary nat-

ure of events or the stochastic process. We could in

principle, of course, constrain that uncertainty by bet-

ter observational methods, or longer data series—

though that is not very useful when we only have access

to calibration data collected in the past, even if we

might hope to have improved data into the future.

An interesting example in this respect is the post-

audit analyses of a number of groundwater modelling

studies presented in Konikow and Bredehoeft (1992)
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and Anderson and Woessner (1992). Model predic-

tions of future aquifer behaviour were compared with

what actually happened as the future evolved. In most

studies the models failed to predict the future that

actually happened. In some cases this was because,

with hindsight, the original model turned out to be

rather poor; in other cases it was because the future

boundary conditions for the simulations had not been

well predicted. In hindcasting with the correct bound-

ary conditions the predictions were much better.

Hindcasting is not all that useful, however. Where

modelling is used to inform decision making (as in

these groundwater cases) it is predictions of the future

that are required. In these studies therefore, error char-

acteristics were not stationary and the future turned

out to hold epistemic surprises (either that the cali-

brated model was poor, or that the changes in bound-

ary conditions were not those expected).

These examples involve a number of forms of non-

stationarity. These are summarized in Table 2. In Class

1 we place the classical definition of non-stationarity

discussed by Koutsoyiannis and Montanari (2015) in

the context of stochastic process theory. They, in fact,

consider that this is the only legitimate use of the word

non-stationarity in being consistent with its technical

definition. In doing so, they are assuming that once any

deterministic structure has been taken into account, all

forms of epistemic error can be represented by a sta-

tionary stochastic model. The parameters of that model

will, under the ergodic hypothesis, converge to the true

values of the stochastic process as more and more

observations are collected. That might, in the case of

a complex stochastic process (or even some simple

fractal processes) take a very large sample, but that

does not negate the principle. Indeed, for a determi-

nistic dynamical system, a stochastic representation

will have stationary properties only if it is ergodic. If

non-stationarity is assumed, then the system will not

have ergodic properties and, Koutsoyiannis and

Montanari (2015) suggest, inference will be impossible.

This view means either we are back to treating all

epistemic uncertainty as aleatory and stationary, once

any deterministic structure has been removed, or we

are simply left with unpredictability as a result of lack

of knowledge.

This view has the backing of formal stochastic the-

ory, but I think there are two issues with it. The first is

the difference between what might hold in the ergodic

case and the limited sample of behaviours we have in

calibrating models in practical applications. The exam-

ple of a stationary stochastic process giving rise to

apparently non-stationary behaviour and statistics

used to illustrate Koutsoyiannis and Montanari (2015)

illustrates this nicely. If we have access only to a limited

part of the full record, we might see periods of different

statistical characteristics, or periods that include jumps.

Real hydrological data might certainly be of this form,

but the identification of the true stochastic process

would not be possible without very long series (this is

true for any fractal type behaviour). The fact that we

know that the changing statistics are produced by a

stationary process in such a hypothetical example, does

not negate the fact that the statistics are changing and

we should be wary of using an oversimplified error

model (see discussion of Fig. 2 below).

Secondly, the dynamics of a nonlinear catchment

model will introduce changes in the statistical proper-

ties of residuals both in the way it processes errors in

the inputs and as a result of model structural error that

cannot be compensated by a simple deterministic non-

stationarity. From a purely hydrological point of view

we expect that model residuals should have rather

different characteristics on the rising limb to those

around the peak to those on the falling limb in terms

of bias, changing variance, and changing autocorrela-

tion. The problem will be greater for the type of arbi-

trary event to event epistemic input (or model

structure) error discussed above. The error in that

Table 2. Defining non-stationarity. Different classes of episte-
mic error that lead to non-stationarity in model residual
characteristics.

Class Source Description

1 Non-stationarity of a
stochastic process

Change over time that can be
described by a deterministic function,
including structure in model residuals
that might compensate for consistent
model or boundary condition error.
All other variability will be stochastic
in nature (see Koutsoyiannis and
Montanari 2015).

2 Non-stationarity in
catchment characteristics

Expectation that model parameters
and possibly structure representing
catchment characteristics will change
over time or space in a way that will
induce model prediction error if
parameters are considered stationary

3 Non-stationarity in
boundary conditions

Expectation that model boundary
conditions will change over time or
space in a way that will induce model
prediction error if boundary
conditions are poorly estimated. In
some cases may include
disinformative data as defined in the
text.

4 Non-stationarity in model
residual characteristics

Expectation that the statistical
characteristics of the model residuals
will vary significantly in time and
space because of epistemic
uncertainties about the causes of the
unpredictable model error. May result
from arbitrary epistemic uncertainties
in boundary conditions, long-term
stochastic variability, or inclusion of
disinformative calibration data.
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event will also have an effect on setting up the ante-

cedent conditions for the following event, and in some

catchments, for some time into the future. The statis-

tics of the error will be changing. Again, therefore, we

should be wary of using an oversimplified error model.

It is possible that again there may be a complex sto-

chastic model that would describe all the potential

changes in error statistics, but it is doubtful if it

would be identifiable given the small sample of poten-

tial errors in a calibration period. It is notable that,

even given a long period of calibration data, Sikorska

et al. (2014) did not attempt to identify an underlying

stochastic model of the residuals, but instead used a

non-parametric probabilistic approach (in the reason-

able expectation tradition of Coxian probability, Cox

1946) to represent the changing variability of the mod-

elling uncertainties under different circumstances (see

also Beven and Smith 2014). There is a difficulty with

any non-parametric method, however, of how to deal

with potential uncertainties in the future that are out-

side the range of those seen in the past.

Why is it important to make these distinctions? It is

because it has an impact on what we should expect in

testing a model as a hypothesis of how a catchment

functions, and in particular whether it should be

considered to be fit for purpose. For example, catch-

ments change over time (Non-stationarity Class 2) but

models are often fitted with parameters that are

assumed constant in time (and often space). Why is

this considered acceptable practice? Perhaps, because

there is an implicit expectation that this type of non-

stationarity will be dominated by uncertainty in the

boundary conditions used to drive a model (including

the potential for Non-stationarity Class 3). There may,

of course, be some clues as to whether these non-

stationarities are important if there is some identifiable

structure in the model residuals that could be included

as a deterministic component in Non-stationarity Class

1. But we might only see the net effect of all these non-

stationarities in the changing properties of the unpre-

dictable errors (Non-stationary Class 4). But these are

rarely investigated. In practical applications, statistical

model inference is normally carried out as if all sources

of error were aleatory with simple stationary proper-

ties. This assumption allows the full power of statistical

inference to be applied to model calibration but would

seem to be an unrealistic assumption for hydrological

and other environmental models.

Defining likelihood (and the implications for

information content and hypothesis testing)

The advantage of taking a formal statistical approach to

model calibration is that there is a formal link between

the structure of a set of model residuals and the appro-

priate likelihood function. If, and only if, the assump-

tions about the structure of the errors are valid, then

there is an additional advantage that there is a theore-

tical estimate of the probability of predicting a new

observation. These advantages are undermined by the

non-stationarities that arise from epistemic error which

will generally reduce the information content (or intro-

duce more disinformation) in the inference process

than would be the case if all errors were simply aleatory

with stationary parameters. So treating all sources of

error as if aleatory will result in over-conditioning (and

less protection against surprise in prediction). There is

evidence for this in the very tight posterior parameter

distributions that often arise in Bayesian calibrations of

rainfall–runoff models. The likelihood surface is made

very peaky such that models with very similar error

variance can have tens or even hundreds of orders of

magnitude difference in likelihood (Fig. 2). That really

does not seem realistic to me, and did not when I first

started evaluating likelihoods of multiple runs in the

1980s. The origins of the GLUE methodology lie there.

So one way ahead here might be to find more

realistic likelihood functions that reflect the reduced
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Figure 2. (Top) Root mean square errors for four model para-
meter sets within the same model structure (a simple single
tank conceptual rainfall–runoff model, see Beven and Smith
2014). (Bottom) Likelihood ratios or posterior odds for three of
the models, relative to the first (+ symbol in upper plot),
evaluated using a formal likelihood and updated after the
addition of further years of model residuals. The formal like-
lihood used allows for a mean bias, constant variance, and first-
order autocorrelation and assumes a Gaussian distribution of
model residuals. While similar in RMSE (and visual perfor-
mance), the different models have likelihood ratios that evolve
to be 1040 different as 6 years of data are added, followed by a
rapid reduction in likelihood ratio over the next 3 years.
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information content for these non-ideal cases and are

robust to epistemic error. The question then is how to

properly reflect the real information in a set of data

when the variations are clearly not aleatory and when

the summary statistics might be significantly period

dependent. Again, whether the long-term properties

are stationary or not is not really relevant, we want to

protect against surprise in prediction (as far as is pos-

sible for an epistemic problem). In the rainfall–runoff

modelling case it has been suggested that the use of

summary statistics for model evaluation, such as the

flow duration curve, might be more robust to error in

this sense (e.g. Westerberg et al. 2011b, Vrugt and

Sadegh 2013).

Beven et al. (2011) and Beven and Smith (2014)

show how, for the relatively flashy South Tyne catch-

ment in northern England (322 km2), it is possible to

differentiate obviously disinformative events from

informative events in model calibration within the

GLUE methodology. They take an event-based

approach to model evaluation that tries to reflect the

relative information content expected for informative

and disinformative events. They suggest that factors

that will increase the relative information content of

an event include: the relative accuracy of estimation of

the inputs driving the model; the relative accuracy of

observations with which model outputs will be com-

pared (including commensurability issues); and the

unusualness of an event (extremes, rarity of initial

conditions, . . .). Factors that will decrease the relative

information content of an event include: repetition

(multiple examples of similar conditions); inconsis-

tency of the input and output data; the relative uncer-

tainty of observations (e.g. highly uncertain overbank

flood discharges would reduce information content of

an extreme event, discharges for catchments with ill-

defined rating curves might be less informative than in

catchments with well defined curves); and also a pre-

ceding disinformative/less informative event over the

dynamic response time scale of the catchment.

The approach depends on classifying events prior to

running the model into different classes based on rain-

fall volume and antecedent conditions. Outlier events

can be identified and examined to see if they are dis-

informative in terms of their runoff coefficients or

other characteristics. Limits of acceptability are estab-

lished for model performance in each class of informa-

tive events and a likelihood measure is based on

average model performance in each class. The informa-

tion content for informative events following disinfor-

mative events is weighted less highly.

Models that do not meet the limits of acceptability

are rejected (given zero likelihood) in the GLUE

methodology and do not therefore contribute to the

set of models to be used in prediction. This is one way

of testing models as hypotheses. Epistemic error also

plays a role here in that we would not want to make

false negative (Type II) errors in rejecting a model that

might be useful in prediction because it has been forced

with poor input data. This is more serious than a false

positive error in that if a poor model is not initially

rejected we can hope that future evaluations would

reveal its limitations. Statistical inference deals with

this problem by never giving a zero likelihood, only

very very small likelihoods to models that do not per-

form well (as seen in the orders of magnitude change

in Fig. 2). This also means, however, that no model is

ever rejected and hypothesis testing has to depend on

some other subjective criterion, such as some informal

limits on the Bayes ratios for competing models. One

implication for this is that if no model is rejected there

is no guarantee that the best model found is fit for

purpose. This must also be assessed separately.

For the South Tyne catchment it turns out that

using a standard dataset, as collected by the

Environment Agency, there were a large number of

disinformative events as distinguished by unrealistically

high or low runoff coefficients. Excluding these events

from the model calibration results in different posterior

distributions of the model parameters (see Fig. 3). It

also allows the characteristics of informative and dis-

informative events to be considered separately.

When it comes to prediction, however, we do not

know a priori whether the next event will be informa-

tive or disinformative. This can only be evaluated post

hoc, once the future has evolved (in model testing, of

course, the “future” considered is some “validation”

dataset). This may involve non-stationarities of error

characteristics that have not been seen in the calibra-

tion period. Beven and Smith (2014) allowed for this by

evaluating the error characteristics for informative and

disinformative events separately and treating each new

event as if it might be either informative or disinfor-

mative (Fig. 4). It was shown to help in spanning the

observations for events later shown to be disinforma-

tive, but clearly cannot deal with every surprise that

might occur in prediction, particularly when the system

itself is non-stationary.

Defining model rejection in hypothesis testing

(and why uncertainty estimation is not the end

point of a study)

In the case of the modelling study of the South Tyne

catchment, some models were found that satisfied the

limits of acceptability. This is not always the case; in
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other studies no models have satisfied all the criteria of

acceptability imposed (see, for example, the attempts at

“blind validation” of the SHE model by Parkin et al.

1996, Bathurst et al. 2004, and the studies of Brazier

et al. 2000, Page et al. 2007, Pappenberger et al. 2007,

Choi and Beven 2007, Dean et al. 2009, Mitchell et al.

2011, within the GLUE framework using a variety of

different models).

In terms of the science this is, of course, a good

thing in that if all the models are rejected then

improvements must be made to either the data or the

model structures and parameter sets within those

structures being used. That is how real progress is

made. But the possibility of epistemic errors in the

data used to force a model might make it difficult to

make an assessment of how constrained any limits of

acceptability should be. We know that all models are

approximations and so such limits should be set to

reflect the expectation of how well a model should be

able to perform. This is a balance. We should not

expect a model to predict to a greater accuracy than

the assessed errors in the input and evaluation data. If

it does we might suspect that it has been over-fitted to

accommodate some of the particular realization of

error in the calibration data.

But we also do not want to make that Type II false

negative error of rejecting a model that would be

useful in prediction, just because of epistemic errors

and disinformation in the forcing or evaluation data.

This suggests that, if we do reject all the models tried

as not fit for purpose, we should look first at the data

where the model is failing and assess the potential for

error in that data, especially if the failures are consis-

tent across a large number of models. In rainfall–

runoff modelling this is rarely done, but hydrological

modellers are beginning to become more aware of the

issues (e.g. Krueger et al. 2009, McMillan et al. 2010,

2012, Westerberg et al. 2011a, Kauffeldt et al. 2013).

We also have to be careful that we have searched the

model space adequately to ensure that no models have

been missed. This can be difficult with high numbers

of parameters, when the areas of acceptable models in

the model space might be quite local. Iorgulescu et al.

(2005) for example made 2 billion runs of a model in

a 17 parameter space of which 216 were found to

satisfy the (rather constrained) limits of acceptability.

Blazkova and Beven (2009) made 600 000 runs of a

continuous simulation flood frequency model and

found that only 37 satisfied all the limits of accept-

ability. They also demonstrated that whether this was

the case depended on the stochastic realization of the

inputs used. Improved efficiency of sampling within

this type of rejectionist strategy might then be valu-

able (e.g. the DREAMABC code of Sadegh and Vrugt

2014).

But where all the models tried consistently fail, and

we do not have any reason for suggesting that the

failure is due to disinformative data, then it suggests
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Figure 3. Posterior probability density functions for model parameters evaluated both with (solid line) and without (dotted line)
calibration events classified as disinformative. Further details of this study can be found in Beven and Smith (2014).
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that a better model is needed. This might lead to new

hypotheses about how the system is functioning, or

new ways of representing some processes (see also

Gupta and Nearing 2014). Model rejection is not a

failure, it is an opportunity to improve either the

model or data or both. Finding a better model will

not provide total protection against future epistemic

surprises but would, we hope, be a step in the right

direction. How big a step is possible, however, will also

depend on reducing uncertainty in the forcing and

evaluation data.

Communicating uncertainty to users of model

predictions

There are two main reasons for incorporating uncer-

tainty estimation into a study. One is for scientific

purposes, to improve understanding of the problem

and carry out hypothesis testing more rigorously. The

second is because taking account of the uncertainty in

model predictions might make a difference to a deci-

sion that is made in a practical application: for exam-

ple, whether the planning process can take account of

uncertainty in the predicted extent of flooding for the

statutory design return period. For this second purpose

it is necessary to communicate the meaning of the

model predictions, and their associated uncertainties,

to decision makers (e.g. Faulkner et al. 2007).

But, as we have seen, there can be no right answer to

the estimation of uncertainty. Every estimate is condi-

tional on the assumptions that are made and in most

applications there are many assumptions that must be

made (see, for example, Beven et al. 2014). In this case

it might be useful to the communication process if the

users, or particular groups of users, are introduced to

the nature of those assumptions. In fact, it will gen-

erally facilitate the communication process if the users

can be involved in making decisions about the rele-

vant assumptions whenever possible. The collection of

assumptions that underlie any particular application

can be considered to be a form of “condition tree”

(Beven and Alcock 2012, Beven et al. 2014). At each

level of the condition tree the assumptions must be

made explicit, forming an audit trail for the analysis.

It has even been suggested1 that every uncertainty

assessment should be labelled with the names of

those who produced it (and, by extension, perhaps

those who agreed the assumptions on which it is

based).
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Figure 4. A sample of events taken from the model evaluation
period. Each event is treated as if it is either informative
(shaded 95% prediction bounds) or disinformative (dotted
95% prediction bounds). The first event is evaluated (a poster-
iori) as disinformative, the last two as informative. Further
details of this study can be found in Beven and Smith (2014).

1For example by Jonty Rougier at Bristol University.
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Can we talk of confidence rather than

uncertainty in model simulations?

Decisions about hydrological systems are made under

uncertainty, and often severe uncertainty, all the time.

Decision and policy makers are, however, far more

interested in evidence than uncertainty. Evidence-

based framing has become the norm in many areas of

environmental policy (e.g. Boyd 2003). In the UK, the

Government has considered standards for evidence

(Intellectual Property Office 2011) and the

Environment Agency has an Evidence Directorate and

produces documents summarizing the evidence that

underpins its corporate strategy. Clearly such an

agency wants to have confidence in the evidence used

in such policy framing. Confidence should be inversely

related to error and uncertainty, but is often assessed

without reference to quantifying uncertainty in either

data or model results.

An example case study is the benchmarking exercise

carried out to test 2D flood routing models

(Environment Agency 2013). Nineteen models were

tested on 12 different test cases, ranging from dam

break to fluvial and urban flooding. All the test cases

were hypothetical with specified roughness parameters,

even if in some of the cases the geometry was based on

real areas. Some had some observations available from

laboratory test cases. Thus, confidence in this case

represents agreement amongst models. It was shown

that not all models were appropriate for all test cases,

particularly those involving supercritical flow, and that

some models that used simplified forms of the St.

Venant equations while faster to run had more limited

applicability. Differences between models depended on

model implementation and numerics, so that accept-

ability of a model in terms of agreement with other

models was essentially a subjective judgment.

There is an implicit assumption in assessing confi-

dence in this way that in real applications to less than

ideal datasets, the models that agree can be calibrated

to give satisfactory simulations for mapping and plan-

ning purposes. While the report did recommend that

future comparisons should also aim to assess the value

of models in assessing uncertainty in the predictions,

the impacts of epistemic uncertainty in defining the

input, roughness parameters, and details of the geome-

try of the flow domain would seem to be more impor-

tant than the differences between models in which we

have confidence after such testing (see Beven et al.

2014). In real applications confidence can only be

assessed by comparison with observed data, while

allowing for uncertainties in inputs. Even then, there

is evidence that effective values of roughness

parameters might change with the magnitude of an

event, so that confidence in calibration might not

carry over to more extreme events (Romanowicz and

Beven 2003). Yet, for planning purposes, the

Environment Agency is interested in mapping the

extent of floods with annual exceedence probabilities

(AEP) of 0.01 and 0.001. It is, of course, rather rare to

have observations for floods within this range of AEP,

more often we need to extrapolate to such levels.

It is possible to assess the uncertainty associated

with such predictions and to visualize that uncertainty

either as probability maps (e.g. Leedal et al. 2010, Neal

et al. 2013; Beven et al. 2014) or as different line styles

depending on the uncertainty in flood extent in differ-

ent areas (Wicks et al. 2008). In some areas, where the

flood fills the valley floor, the uncertainty in flood

extent might be small, but the uncertainty in water

depth, with its implications for damage calculations,

might be important. In other, low slope, areas the

uncertainty in extent might be significant. The advan-

tage of doing both estimates is that confidence can be

given a scale, even if, as in the Intergovernmental Panel

on Climate Change (IPCC), that scale is expressed in

words rather than probability. In fact, the IPCC distin-

guishes a scale of confidence (from “very low” to “very

high”) from a scale of likelihood (from “exceptionally

unlikely” to “virtually certain” based on a probability

scale) (IPCC 2010). Confidence indicates how conver-

gent the estimates of past and future change are at the

current time; likelihood the degree of belief in particu-

lar future outcomes. Thus the summary of the out-

comes from IPCC5 states: “Ocean warming

dominates the increase in energy stored in the climate

system, accounting for more than 90% of the energy

accumulated between 1971 and 2010 (high confidence).

It is virtually certain that the upper ocean (0–700 m)

warmed from 1971 to 2010, and it likely warmed

between the 1870s and 1971. It is very likely that the

Arctic sea ice cover will continue to shrink and thin

and that Northern Hemisphere spring snow cover will

decrease during the 21st century as global mean surface

temperature rises.” (IPCC 2013).

Now the IPCC will not assign any probability esti-

mates to any of the model runs that contribute to their

conclusions. They are described as projections, subject

to both model limitations and conditional on scenarios

of future greenhouse gas emissions. The future scenar-

ios, and hence any probability statements, are necessa-

rily incomplete. This has not, however, stopped the

presentation of future projections in probabilistic

terms in other contexts, such as those derived from

an ensemble of regional model runs in the UK Climate

Projections (UKCP09, see http://ukclimateprojections.
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defra.gov.uk). The outcomes from UKCP09 are being

used to assess impacts on UK hydrology (e.g. Cloke

et al. 2010, Bell et al. 2012, Kay and Jones 2012) but

there is sufficient epistemic uncertainty associated with

both the input scenarios and the climate model imple-

mentations to be concerned about expressions of con-

fidence or likelihood in these cases, when the

probabilities may be incomplete and we should be

aware of the potential for the future to surprise

(Beven 2011, Wilby and Dessai 2010). Incomplete

probabilities are inconsistent with a risk-based decision

theoretic approach based on the exceedence probabil-

ities of risk, although it might be possible to assess a

range of exceedence curves under different assump-

tions about future scenarios (Rougier and Beven 2013).

We are often in this situation. Hence the need to

agree assumptions and methodologies with potential

users of model outcomes as discussed in the last

section. Consequently, any expressions of confidence

or likelihood are conditional on the assumptions, a

conditionality that depends not only on what has

been included, but also what might have been left

out of an analysis. There will of course be epistemic

uncertainties that are “unknown unknowns”. Those

we do not have to worry about until, for whatever

reason, they are recognized as issues and become

“known unknowns”. More important are factors

that are already “known unknowns”, but which are

not included in the analysis because of lack of knowl-

edge or lack of computing power or some other

reason. Confidence and likelihood need to reflect

the sensitivity of potential decisions to such factors

since they are not easily quantified in uncertainty

estimation.

An uncertain future?

So, while quantitative uncertainty estimation is valu-

able in assessing the range of potential outcomes con-

sistent with an (agreed) set of assumptions, it will

generally be the case that difficult to handle epistemic

uncertainties will mean that the assessment is incom-

plete (for good epistemic reasons). Future surprises

come from that incompleteness (e.g. Beven 2013).

Assessments of evidence and expressions of confidence

and likelihood should reflect the potential for surprise,

and robust decisions need to be insensitive to both the

assessed uncertainty and the potential for surprise

(erring on the side of caution, risk aversion or being

precautionary). From a modeller’s perspective this has

the advantage that it will reduce the possibility of a

future post-audit analysis showing that the model pre-

dictions were wrong, even if why that is the case might

be obvious with hindsight (it is quite possible that this

will be the case with the current generation of climate

models as future improvements start to reduce the

errors in predicting historical precipitation, for

example).

From a decision maker’s perspective, the issues are

more problematic. If, even with a detailed (and expen-

sive) assessment of uncertainty, there remains a poten-

tial for surprise, then just how risk averse or

precautionary is it necessary to be in order to make

robust decisions about the future. The answer is prob-

ably that we often cannot afford to be sufficiently

robust in adapting to change; it will just be too expen-

sive. The costs and benefits of protecting against dif-

ferent future extremes can be assessed, even if the

probability of that extreme might be difficult to esti-

mate. In that situation, the controlling factor is likely to

be the available budget (Beven 2011). That should not,

of course, take away from the responsibility for ensur-

ing that the science that underlies the evidence is as

robust as possible, and communicated properly, even if

those uncertainties are high and we cannot be very

confident about future likelihoods in providing evi-

dence to decision makers.
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