
manuscript number 3033 

          
 
Facial Attractiveness: Beauty and the Machine 
 
 
Yael Eisenthal 
School of Computer Science 
Tel-Aviv University 
Tel-Aviv 69978, Israel 
yre2101@columbia.edu 
 
Gideon Dror 
Senior lecturer 
Department of Computer Science 
Academic College of Tel-Aviv-Yaffo     
Tel-Aviv 64044, Israel 
Tel: 972-3-5211857 
Fax: 972-3-5211871 
gideon@mta.ac.il 
 
Eytan Ruppin 
Professor of Computer Science and Medicine 
School of Computer Science 
Tel-Aviv University 
Tel-Aviv 69978, Israel 
Tel: 972-3-6405528 
Fax: 972-3-6409357 
ruppin@post.tau.ac.il 
 
 
 
Corresponding author: 
Gideon Dror 
gideon@mta.ac.il 
 
 
 
 
 
None of this material has been published or is under consideration for publication 

elsewhere. 

 

  1



Abstract 

This work presents a novel study of the notion of “facial attractiveness” in a 

machine-learning context. To this end, we collected human beauty ratings for 

datasets of facial images and used various techniques for learning the 

attractiveness of a face. The trained predictor achieves a significant correlation of 

0.65 with the average human ratings. The results clearly show that facial beauty is 

a universal concept, which can be learned by a machine. Analysis of the accuracy 

of the beauty prediction machine as a function of the size of the training data 

indicates that a machine producing human-like attractiveness rating could be 

obtained given a moderately larger dataset.      
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1 Introduction 

 

In this work, we explore the notion of facial attractiveness through the 

application of machine learning techniques. We construct a machine which learns 

from facial images and their respective attractiveness ratings to produce human-

like evaluation of facial attractiveness. Our work is based on the underlying theory 

that there are objective regularities in facial attractiveness to be analyzed and 

learned. In the introduction, we first briefly describe the psychophysics of facial 

attractiveness and its evolutionary origins. We then provide a review of previous 

work done in the computational analysis of beauty, attesting the novelty of our 

work.  

 

 

1.1 The Psychophysics of Beauty 

 

1.1.1 Beauty and the Beholder 

The subject of visual processing of human faces has received attention from 

philosophers and scientists, such as Aristotle and Darwin, for centuries. Within 

this framework, the study of human facial attractiveness has had a significant part 

- “Beauty is a universal part of human experience, it provokes pleasure, rivets 

attention, and impels actions that help ensure survival of our genes” (Etcoff, 

1999). Various experiments have empirically shown the influence of physical 
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attractiveness on our lives, both as individuals and as part of a society; its impact 

is obvious by the amounts of money spent on plastic surgery and cosmetics each 

year. Yet, the face of beauty, something we can recognize in an instant, is still 

difficult to formulate. This outstanding question regarding the constituents of 

beauty has led to a large body of ongoing research by scientists in the biological, 

cognitive and computational sciences.   

 

Over centuries, the common notion in this research has been that beauty is "in 

the eye of the beholder", that individual attraction is not predictable beyond our 

knowledge of a person's particular culture, historical era or personal history. 

However, more recent work suggests that the constituents of beauty are neither 

arbitrary nor culture bound. Several rating studies by Perrett et al. and other 

researchers have demonstrated high cross-cultural agreement in attractiveness 

rating of faces of different ethnicities (Cunningham, Roberts, Wu, Barbee & 

Druen, 1995; Jones, 1996; Perrett, May & Yoshikawa, 1994; Perrett, Lee, Penton-

Voak, Rowland, Yoshikawa, Burt, Henzi, Castles & Akamatsu, 1998). This high 

congruence over ethnicity, social class, age and sex has led to the belief that 

perception of facial attractiveness is data-driven, i.e. that the properties of a 

particular set of facial features are the same irrespective of the perceiver. If 

different people can agree on which faces are attractive and which are not, when 

judging faces of varying ethnic background, then this suggests that people 

everywhere are using similar criteria in their judgements. 

This belief is further strengthened by the consistent relations, demonstrated in 

experimental studies, between attractiveness and various facial features, with both 
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male and female raters. Cunningham et al. showed a strong correlation between 

beauty and specific features, which were categorized as neonate (features such as 

small nose and high forehead), mature (e.g. prominent cheekbones) and 

expressive (e.g. arched eyebrows). They concluded that beauty is not an 

inexplicable quality which lies only in the eye of the beholder (Cunningham, 

1986; Cunningham, Barbee & Pike, 1990). 

A second line of evidence in favor of a biological rather than an arbitrary 

cultural basis of physical attractiveness judgements comes from studies of infant 

preferences for face types. Langlois et al. showed pairs of female faces (that had 

been previously rated for attractiveness by adults) to infants only a few months 

old (Langlois, Roggman, Casey, Ritter, Rieser-Danner & Jenkins, 1987). The 

infants preferred to look at the more attractive face of the pair, indicating that even 

at two months of age, adult-like preferences are demonstrated. Slater et al. 

demonstrated the same preference in newborns (Slater, Von der Schulenberg, 

Brown, Badenoch, Butterworth, Parsons et al., 1998). The babies looked longer at 

the attractive faces, regardless of the gender, race, or age of the face.  

The "owner vs observer” hypothesis was further studied in various 

experiments. Zaidel explored the question of whether beauty is in the perceptual 

space of the observer or a stable characteristic of the face (Chen, German & 

Zaidel, 1997). Results showed that facial attractiveness is more dependent on 

physiognomy of the face than on a perceptual process in the 

observer - both for male and female observers. 
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1.1.2 Evolutionary Origins 

Since Darwin, biologists have studied natural beauty's meaning in terms of the 

evolved signal content of striking phenotypic features. Evolutionary scientists 

claim that the perception of facial features may be governed by circuits shaped by 

natural selection in the human brain. Aesthetic judgements of faces are not 

capricious but, instead, reflect evolutionary functional assessments and valuations 

of potential mates (Thornhill & Gangestad, 1993). These “Darwinian” approaches 

are based on the premise that attractive faces are a biological "ornament" that 

signals valuable information; attractive faces advertise a "health certificate", 

indicating a person's "value" as a mate (Thornhill & Gangestad, 1999). 

Advantageous biological characteristics are probably revealed in certain facial 

traits, which are unconsciously interpreted as attractive in the observer’s brain. 

Facial attributes like good skin quality, bone structure and symmetry, for example, 

are associated with good health and, therefore, contribute to attractiveness. Thus, 

human beauty standards reflect our evolutionary distant and recent past and 

emphasize the role of health assessment in mate choice, or, as phrased by 

anthropologist Donald Symons, “Beauty may be in the adaptations of the 

beholder". 

Research has concentrated on a number of characteristics of faces, which may 

honestly advertise health and viability. Langlois and others have demonstrated a 

preference for average faces: composite faces, a result of digital blending and 

averaging of faces, were shown to be more attractive than most of the faces used 

to create them (Grammer & Thornhill, 1994; Langlois & Roggman, 1990; 
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Langlois, Roggman & Musselman, 1994; O´Toole, Price, Vetter, Bartlett & Blanz, 

1999). Evolutionary biology holds that in any given population, extreme 

characteristics tend to fall away in favor of average ones, therefore, the ability to 

form an average-mate template would have conveyed a singular survival 

advantage (Symons, 1979; Thornhill & Gangestad, 1993). 

The averageness hypothesis, however, has been widely debated. Average 

composite faces tend to have smooth skin and be symmetric; these factors, rather 

than averageness per se, may lead to the high attractiveness attributed to average 

faces (Alley & Cunningham, 1991). Both skin texture (Fink, Grammer & 

Thornhill, 2001) and facial bilateral symmetry (Grammer & Thornhill, 1994; 

Mealey, Bridgstock & Townsend, 1999; Perrett, Burt, Penton-Voak, Lee, 

Rowland & Edwards, 1999) have been shown to have a positive affect on facial 

attractiveness ratings. The averageness hypothesis has also received only mixed 

empirical support. Later studies found that, although averageness is certainly 

attractive, it can be improved upon. Composites of beautiful people were rated 

more appealing than those made from the larger, random population (Perrett et al., 

1994). Also, exaggeration of the ways in which the prettiest female composite 

differed from the average female composite resulted in a more attractive face 

(O’Toole, Deffenbacher, Valentin, McKee, Huff & Abdi, 1997; Perrett et al., 

1994, 1998); these turned out to be sexually dimorphic traits, such as small chin, 

full lips, high cheekbones, narrow nose and a generally small face. These sex-

typical, estrogen dependent characteristics in females may indicate youth and 
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fertility, and are, thus, considered attractive (Perrett et al., 1998; Symons, 1979, 

1995; Thornhill & Gangestad, 1999). 

 

 

1.2 Computational Beauty Analysis 

 

The previous section clearly indicates the existence of an objective basis 

underlying the notion of facial attractiveness. Yet the relative contribution to 

facial attractiveness of the aforementioned characteristics and their interactions 

with other facial beauty determinants are still unknown. Different studies have 

examined the relationship between subjective judgements of faces and their 

objective regularity. 

Morphing software has been used to create average and symmetrized faces 

(Langlois & Roggman, 1990; Perrett et al., 1994, 1999), as well as attractive and 

unattractive prototypes (http://www.beautycheck.de), in order to analyze their 

characteristics. Other approaches have addressed the question within the study of 

the relation between aesthetics and complexity, which is based on the notion that 

simplicity lies at the heart of all scientific theories (“Occam's Razor” principle). 

Schmidhuber created an attractive female face composed from a fractal geometry 

based on rotated squares and powers of two (Schmidhuber, 1998).  

Exploring the question from a different approach, Johnston produced an 

attractive female face using a genetic algorithm, which evolves a “most beautiful” 

face according to interactive user selections (Johnston & Franklin, 1993). This 
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algorithm mimics, in an oversimplified manner, the way humans (consciously or 

unconsciously) select for features they find the most attractive. Measuring the 

features of the resulting face showed it to have “feminized” features. This study 

and others, which have shown attractiveness and femininity to be nearly 

equivalent for female faces (O’Toole et al., 1997), have been the basis for a 

commercial project, which uses these sex-dependent features to determine the sex 

of an image and predict its attractiveness (http://www.intelligent-earth.com). 

 

 

1.3 This Work 

 

Previous computational studies of human facial attractiveness have mainly 

involved averaging and morphing of digital images and geometric modeling to 

construct attractive faces. In general, computer techniques used include 

delineation, transformation, prototyping and other image processing techniques, 

most requiring fiducial points on the face. In this work, rather than attempt to 

morph or construct an attractive face, we explore the notion of facial 

attractiveness through the application of machine learning techniques. Using only 

the images themselves, we try to learn and analyze the mapping from two-

dimensional facial images to their attractiveness scores, as determined by human 

raters. The cross-cultural consistency in attractiveness ratings demonstrated in 

many previous studies has led to the common notion that there is an objective 

basis to be analyzed and learned. 
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The remainder of this paper is organized as follows: Section 2 presents the 

data used in our analyses – both images and ratings, where section 3 describes the 

representations we chose to work with. Section 4 describes our experiments with 

learning facial attractiveness, presenting prediction results and analyses. Finally, 

section 5 consists of a discussion of the work presented and general conclusions. 

Additional details are provided in Appendix A. 

 

 

2 The Data 

 

2.1 Image Datasets 

To reduce the effects of age, gender, skin color, facial expression and other 

irrelevant factors, subject choice was confined to young Caucasian females in 

frontal view with neutral expression, without accessories or obscuring items (e.g. 

jewelry). Furthermore, to get a good representation of the notion of beauty, the 

dataset was also required to encompass both extremes of facial beauty: very 

attractive as well as very unattractive faces. 

We obtained two datasets, which met the above criteria, both of relatively 

small size of 92 images each: 

1. Dataset #1 contains 92 young Caucasian (American) females in frontal 

view with neutral expressions, face and hair comprising the entirety of the 
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picture. The images all have identical lighting conditions and nearly 

identical orientation, in excellent resolution, with no obscuring or 

distracting features, such as jewelry and glasses. The pictures were 

originally taken by Japanese photographer Akira Gomi. Images were 

received with attractiveness ratings. 

2. Dataset #2 contains 92 Caucasian (Israeli) females, aged approximately 18, 

in frontal view, face and hair comprising the entirety of the picture. Most of 

the images have neutral expressions, but, in order to keep the dataset 

reasonably large, smiling images in which the mouth was relatively closed 

were also used. The images all have identical lighting conditions and nearly 

identical orientation. This dataset required some image preprocessing and is 

of slightly lower quality. The images contain some distracting features, 

such as jewelry. 

 

The distributions of the raw images in the two datasets were found to be too 

different for combining the sets, and, therefore, all our experiments were 

conducted on each dataset separately.  Dataset #1, which contains high-quality 

pictures of females in the preferred age range, with no distracting or obscuring 

items, was the main dataset used. Dataset #2, which is of slightly lower quality, 

containing images of younger women with some distracting features (jewelry, 

smiles), was used for exploring cross-cultural consistency in attractiveness 

judgement and in its main determinants. Both datasets were converted to grayscale 

to lower the dimension of the data and to simplify the computational task. 
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2.2 Image Ratings 

 

2.2.1 Rating Collection 

Dataset #1 was received with ratings, but, to check consistency of ratings 

across cultures we collected new ratings for both datasets. To facilitate both the 

rating procedure and the collection of the ratings, we created an interactive html-

based application, which was used by all our raters. This provided a simple rating 

procedure, in which all participants received the same instructions and used the 

same rating process. The raters were asked to first scan through the entire dataset 

(in grayscale), to obtain a general notion of the relative attractiveness of the 

images, and only then to proceed to the actual rating stage. They were instructed 

to use the entire attractiveness scale, and to consider only facial attractiveness in 

their evaluation. In the rating stage, the images were shown in random order to 

eliminate order effects, each on a separate page. A rater could look at a picture for 

as long as he or she liked and then score it. The raters were free to return to 

pictures they had already seen and adjust their ratings. 

Images in dataset #1 were rated by 28 observers - 15 male, 13 female, most in 

their twenties. For dataset #2, 18 ratings were collected from 10 male and 8 

female raters of similar age.  

Each facial image was rated on a discrete integer scale between 1 (very 

unattractive) and 7 (very attractive). The final attractiveness rating of a facial 

image was the mean of its ratings across all raters. 
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2.2.2 Rating Analysis 

In order to verify the adequacy and consistency of the collected ratings, we 

examined the following properties: 

 

• Consistency of ratings: 

The raters were randomly divided into two groups. We calculated the mean 

ratings of each group and checked consistency between the two mean ratings. This 

procedure was repeated numerous times and consistently showed a correlation of 

0.9-0.95 between the average ratings of the two groups for dataset #1 and a 

correlation of 0.88-0.92 for dataset #2. The mean ratings of the groups were also 

very similar, for both datasets, and a t-test confirmed that the rating means for the 

two groups were not statistically different. 

 

• Clustering of raters: 

The theory underlying the project is that individuals rate facial attractiveness 

according to similar, universal standards. Therefore, our assumption was that all 

ratings are from the same distribution. Indeed, clustering of raters produced no 

apparent grouping. Specifically, a chi-square test that compared the distribution of 

ratings of male versus female raters showed that there are no statistically 

significant differences between these two groups. In addition, the correlation 

between the average female ratings and average male ratings was very high: 0.92 

for dataset #1 and 0.88 for dataset #2. The means of the female and male ratings 
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were also very similar, and a t-test confirmed that the means of the two groups 

were not statistically different. The results show no effect of observer gender. 

 

An analysis of the original ratings for dataset #1 (collected from Austrian 

raters) vs. the new ratings (collected from Israeli raters) shows a high similarity in 

the images rated as most and least attractive. A correlation of 0.82 was found 

between the two sets of ratings. These findings strongly reinforce previous reports 

of high cross-cultural agreement in attractiveness rating. 
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3 Face Representation 

 

Numerous studies in various face image processing tasks (e.g. face recognition 

and detection) have experimented with various ways to “specify” the physical 

information in human faces. The different approaches tried have demonstrated the 

importance of a broad range of shape and image intensity facial cues (Bruce & 

Langton, 1994; Burton, Bruce & Dench, 1993; Valentine & Bruce, 1986). 

The most frequently encountered distinction regarding the information in faces 

is a qualitative one between feature-based and configurational-based information, 

i.e. discrete, local, featural information vs. spatial interrelationship of facial 

features. Studies suggest that humans perceive faces holistically and not as 

individual facial features (Baenninger, 1994; Haig, 1984; Young, Hellawell & 

Hay, 1989), yet experiments with both representations have demonstrated the 

importance of features in discriminative tasks (Bruce & Young, 1986; 

Moghaddam & Pentland, 1994). This is a particularly reasonable assumption for 

beauty judgement tasks, given the correlation found between features and 

attractiveness ratings. Our work uses both kinds of representations. 

 

In the configurational representation, a face is represented with the raw 

grayscale pixel values, in which all relevant factors, such as texture, shading, 

pigmentation and shape, are implicitly coded (though difficult to extract). A face 

is represented by a vector of pixel values created by concatenating the rows or 
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columns of its image. The pixel-based representation of a face will be referred to 

as its "pixel image". 

 

The featural representation is motivated by arguments tying beauty to ideal 

proportions of facial features such as distance between eyes, width of lips, size of 

eyes, distance between the lower lip and the chin etc. This representation is based 

on the manual measurement of 37 facial feature distances and ratios that reflect 

the geometry of the face (e.g. distance between eyes, mouth length and width). 

The facial feature points, according to which these distances were defined, are 

displayed in figure 1. The full list of feature measurements is given in Appendix 

A, along with their calculation method. All raw distance measurements, which are 

in units of pixels, were normalized by the distance between pupils, which serves 

as a robust and accurate length scale. To these purely geometric features we added 

several non-geometric ones: average hair color, an indicator of facial symmetry 

and an estimate of skin smoothness. The feature-based measurement 

representation of a face will be referred to as its "feature vector". The pixel-based 

representation of a face will be referred to as its "pixel image". 

 

Figure 1: Feature landmarks used for feature-based representation 
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4 Learning Attractiveness 

 

We turn to present our experiments with learning facial attractiveness, using 

the facial images and their respective human ratings. The learners were trained 

with the pixel representation and with the feature representation, separately. 

 

4.1 Dimension Reduction 

 

The pixel images are of an extremely high dimension, of the order of 100,000 

(equal to image resolution). Given the high dimensionality and redundancy of the 

visual data, the pixel images underwent dimension reduction with Principal 

Component Analysis (PCA). PCA has been shown to relate reliably to human 

performance on various face image processing tasks, such as face recognition 

(O’Toole, Abdi, Deffenbacher & Valentin, 1993, Turk & Pentland, 1991) and race 

and sex classification (O’Toole, Deffenbacher, Abdi & Bartlett, 1991), and to be 

semantically relevant: The eigenvectors pertaining to large eigenvalues have been 

shown to code general information, such as orientation and categorical 

assessment, which has high variance and is common to all faces in the set 

(O’Toole et al., 1993; O´Toole, Vetter, Troje & Bülthoff, 1997; Valentin & Abdi, 

1996). Those corresponding to the smaller eigenvalues code smaller, more 

individual variation (Hancock, Burton & Bruce, 1996; O’Toole et al., 1997). 
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PCA was also performed on the feature-based measurements, in order to 

decorrelate the variables in this representation. This is important since strong 

correlations, stemming, for example, from left-right symmetry, were observed in 

the data. 

 

4.1.1 Image Alignment 

For PCA to extract meaningful information from the pixel images, the images 

need to be aligned, typically by rotating, scaling and translating, to bring the eyes 

to the same location in all the images. To produce sharper eigenfaces, we aligned 

the images according to a second point as well – the vertical location of the center 

of the mouth, a technique known to work well for facial expression recognition 

(Padgett & Cottrell, 1997). This non-rigid transformation, however, involved 

changing face height to width ratio. To take this change into account, the vertical 

scaling factor of each face was added to its low-dimensional representation. 

As the input data in our case is face images and the eigenvectors are of the 

same dimension as the input, the eigenvectors are interpretable as faces and are 

often referred to as “eigenfaces” (Turk & Pentland, 1991). The improvement in 

sharpness of the eigenfaces from the main dataset as a result of the alignment can 

be seen in figure 2. Each eigenface deviates from uniform gray where there is 

variation in the face set. The left column consists of two eigenfaces extracted from 

PCA on unaligned images; face contour and features are blurry. The middle 

column shows eigenfaces from images aligned only according to eyes. The eyes 

are indeed more sharply defined, but other features are still blurred. The right 
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column shows eigenfaces from PCA on images aligned both by eyes and vertical 

location of mouth – all salient features are much more sharply defined. 

 

Figure 2: Left column: eigenfaces from unaligned images, middle: 
eigenfaces from images aligned only by eyes, right: eigenfaces from 

images aligned both by eyes and mouth 

 

  

4.1.2 Eigenfaces 

PCA was performed on the input vectors from both representations, 

separately. Examples of eigenvectors extracted from the pixel images from the 

main dataset can be seen in figure 3. The eigenfaces in the top row are those 

pertaining to the highest eigenvalues, the middle row shows eigenfaces 

corresponding to intermediate eigenvalues and the bottom row presents those 

pertaining to the smallest eigenvalues. As expected, the eigenfaces in the top row 
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seem to code more global information, such as hair and face shape, while the 

eigenvectors in the bottom row code much more fine, detailed feature information. 

Each eigenface is obviously not interpretable as a simple single feature (as is 

often the case with a smaller dataset), yet it is clearly seen in the top-row 

eigenfaces that the directions of highest variance are hair and face contour. This is 

not surprising as the most prominent differences between the images are in hair 

color and shape, which also causes large differences in face shape (due to partial 

occlusion by hair). Smaller variance can also be seen in other features, mainly 

eyebrows and eyes. 

 

Figure 3: Eigenfaces from largest to smallest eigenvalues (top to bottom) 
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4.2 Feature Selection 

The eigenfaces are the features representing the face set; they can be combined 

in a certain weighting to represent a specific face. A low-dimensional 

representation using only the first eigenvectors minimizes the squared-error 

between the face representation and the original image, and is sufficient for 

accurate face recognition (Turk & Pentland, 1991). However, omitting the 

dimensions pertaining to the smaller eigenvalues decreases the perceptual quality 

of the face (O’Toole et al., 1993, 1997). Consequently, we anticipated that using 

the first m eigenfaces would not produce accurate results in our attractiveness 

evaluation task. Indeed, these experiments resulted in poor facial attractiveness 

predictions. We therefore selected the eigenfaces most important to our task by 

sorting them according to their relevance to attractiveness ratings. This relevance 

was estimated by calculating the correlation of the eigenvector projections with 

the human ratings across the various images. Interestingly, in the pixel 

representation, the features found most correlated with the attractiveness ratings 

were those pertaining to intermediate and smaller eigenvalues. Figure 4 shows the 

eigenfaces, where the top row displays those pertaining to the highest eigenvalues 

and the bottom row presents the eigenfaces with projections most correlated with 

human ratings. While the former show mostly general features of hair and face 

contour, the latter also clearly show the lips, the nose tip and eye size and shape to 

be important features. 
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The same method was used for feature selection in the feature-based 

representation. The feature measurements were sorted according to their 

correlation with the attractiveness ratings. 

It should be noted that, despite its success, using correlation as a relevance 

measure is problematic, as it assumes the relation between the feature and the 

ratings to be monotonic. Yet, experiments with other ranking criteria that do not 

make this assumption, such as chi-square and mutual information, produced 

somewhat inferior results. 

 

 

Figure 4: Eigenfaces pertaining to highest eigenvalues (top row) and 
highest correlations with ratings (bottom row)

 

4.3 Attractiveness Prediction 

The original data vectors were projected onto the top m eigenvectors from the 

feature selection stage (where m is a parameter on which we performed 

optimization) to produce a low-dimensional representation of the data as input to 

the learners in the prediction stage.  
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4.3.1 Classification into Two Attractiveness Classes 

Although the ultimate goal of this work was to produce and analyze a facial 

beauty predictor using regression methods, we begin with a simpler task, on which 

there is even higher consistency between raters. To this end, we recast the 

problem of predicting facial attractiveness into a classification problem -  

discerning "attractive" faces (the class comprised of highest 25% rated images) 

from "unattractive" faces (the class of lowest 25% rated images). The main 

classifiers used were standard K-Nearest Neighbors (KNN) (Mitchell, 1997) and 

Support Vector Machines (SVM) (Vapnik, 1995).  

The best results obtained are shown in Table 1, which displays the percentage 

of correctly classified images. Classification using the KNN classifier was good; 

correct classifications of 75%-85% of the images were achieved. Classification 

rates with SVM were slightly poorer, though, for the most part, in the same 

percentage range. Both classifiers performed better with the feature vectors than 

with the pixel images; this is particularly true for SVM. Best SVM results were 

achieved using a linear kernel. In general, classification (particularly with KNN) 

was good for both datasets and ratings, with success percentages slightly lower for 

the main dataset. 

KNN does not use specific features, but rather averages over all dimensions, 

and, therefore, does not give any insight into which features are important for 

attractiveness rating. In order to learn what the important features are, we used a 
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C4.5 Decision Tree (Quinlan, 1986, 1993) for classification using feature vectors 

without preprocessing by PCA.  

In most cases, the results did not surpass those of the KNN classifier, but the 

Decision Tree did give some insight into which features are “important” for 

classification. The features found most informative were those pertaining to size 

of the lower part of the face (jaw length, chin length), smoothness of skin, lip 

fullness and eye size. These findings are all consistent with previous 

psychophysics studies. 

 

 Dataset #1 Dataset #2 

KNN 75%  77%  pixel 

images SVM 68%  73% 

KNN 77% 86% feature 

vectors SVM 76%  84%  

 
Table 1: Percentage of correctly classified images 

 

 

4.3.2 The Learners for the Regression Task 

Following the success of the classification task, we proceeded to the 

regression task of rating prediction. The predictors used for predicting facial 

beauty itself were, again, KNN and SVM. For this task, however, both predictors 

were used in their regression version, mapping each facial image to a real number 

that represents its beauty. We also used linear regression, which served as a 
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baseline for the other methods. Targets used were the average human ratings of 

each image. 

The output of the KNN predictor for a test image was computed as the 

weighted average of the targets of the image's k nearest neighbors, where the 

weight of a neighbor is the inverse of its Euclidean distance from the test image. 

That is, let v1,…,vk be the set of k nearest neighbors of test image v with targets 

y1,…yk, and let d1,…,dk be their respective Euclidean distances from v. The 

predicted beauty y for the test image v is then  

ki
w

yw
y

i
i

i
ii

K2,1, ==
∑
∑ 

 

where wi = ( σ+id )-1 is the weight of neighbor vi and where σ is a smoothing 

parameter. On all subsequent uses of KNN we set σ =1. KNN was run with k values 

ranging from 1 to 45.  

As a predictor for our task, KNN suffers from a couple of drawbacks. First, it 

performs averaging, and, therefore, its predicted ratings had very low variance, 

and all extremely high or low ratings were evened out and often not reached. In 

addition, it uses a Euclidean distance metric, which need not reflect the true metric 

for evaluation of face similarity. Therefore, we also studied an SVM regressor as 

an attractiveness predictor, a learner which does not use a simple distance metric 

and does not perform averaging in its prediction. 

The SVM method, in its regression version, was used with several kernels: 

linear, polynomials of degree 2 and 3 and Gaussian with different values of γ, 

where log2γ∈{-6, -4, -2, 0}. γ is related to the width parameter σ by γ = 1/(2σ2). 
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We performed a grid search over the values of slack parameter c and the width of 

regression tube w such that log10c∈{-3, -2, -1, 0, 1} and w∈{0.1, 0.4, 0.7, 1.0}. In 

all runs we used a soft-margin SVM implemented in SVMlight (Joachims, 1999). 

Due to the relatively small sample sizes, we evaluated the performance of the 

predictors using cross validation; predictions were made using leave-n-out, with 

n=1 for KNN and linear regression and n=5 for SVM. 

 

4.3.3 Results of Facial Attractiveness Prediction 

Predicted ratings were evaluated according to their correlation with the human 

ratings, using the Pearson correlation. The best results of the attractiveness 

predictors on the main dataset are shown in figure 5. The left figure shows the best 

correlations achieved with the pixel-based representation, and the right figure 

shows the best results for the feature-based representation. Prediction results for 

the pixel images show a peak near m=25 features, where the maximum correlation 

achieved with KNN is approximately 0.45. Feature-based representation shows a 

maximum value of nearly 0.6 at m=15 features, where the highest correlation is 

achieved both with SVM and linear regression. Highest SVM results in both 

representations were reached with a linear kernel. Results obtained on the second 

dataset were very similar. 

The normalized MSE of the best predicted ratings is 0.6-0.65 (vs. a 

normalized MSE of 1 of the "trivial predictor", which constantly predicts the mean 

rating). KNN performance was poor, significantly worse than that of the other 

regressors in the feature-based representation. These results imply that the 
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Euclidean distance metric is most probably not a good estimate for similarity of 

faces for this task. It is interesting to note that the simple linear regressor 

performed as good as or better than the KNN predictor. However, this effect may 

be attributed to our feature selection method, ranking features by the absolute 

value of their correlations with the target, which is optimal for linear regression. 

Figure 5: Prediction results obtained with pixel images (left) and with feature-based 

representation (right). Performance is measured by the correlation between the 

predicted ratings and the human ratings. 

 

4.3.4 Significance of Results 

All predictors performed better with the feature-based representation than with 

the pixel images (in accordance with results of classification task). Using the 

feature vectors enabled a maximum correlation of nearly 0.6 vs. a correlation of 

0.45 with the pixel images. To check the significance of this score, we produced 

an empirical distribution of feature-based prediction scores with random ratings. 
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The entire preprocessing, feature selection and prediction process was run 100 

times, each time with a different set of randomly generated ratings, sampled from 

a normal distribution with mean and variance identical to those of the human 

ratings. For each run, the score taken was the highest correlation of predicted 

ratings with the original (random) ratings. The average correlation achieved with 

random ratings was 0.28 and the maximum correlation was 0.47. Figure 6(a) 

depicts the histogram of these correlations. Using QQplot, we verified that the 

empirical distribution of observed correlations is approximately normal; this is 

shown in figure 6(b). Using the normal approximation, the correlation of 0.6 

obtained by our feature-based predictor is significant to a level of α=0.001. The 

numbers and figures presented are for the KNN predictor. Correlations achieved 

with linear regression have different mean and standard deviation, but a similar z-

value. The distribution of these correlations was also verified to be approximately 

normal and the correlation achieved by our linear regressor was significant to the 

same level of α=0.001. This test was not run for the SVM predictor due to 

computational limitations. 
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Figure 6: Correlations achieved with random ratings: (a) Histogram of correlations 

(left), (b) QQplot of correlations vs. standard normal distributed data (right). 

Correlations were obtained with KNN predictor. 

 

 

4.3.5 Hybrid Predictor 

Ratings predicted with the two representations were very different; the best ratings 

achieved using each representation had a correlation of only 0.3-0.35. The 

relatively low correlation between the feature-based and pixel-based predictions 

suggests that results might be improved by using the information learned from 

both representations. Therefore, an optimal weighted average of the best feature-

based and pixel-based ratings was calculated.  We produced a hybrid machine that 

generates the target rating , where  is the 

rating of the feature-based predictor,  is the prediction of the pixel-based 

machine and 0≤ α ≤1. Figure 7 shows the correlation between the hybrid machine 

ratings and the human ratings as a function of the weights tried (weights shown 

are those of the feature-based ratings, α). The hybrid predictor was constructed 

using the best feature-based and pixel-based ratings obtained with linear 

regression. As evident from the graph, the best weighted ratings achieve a 

pixelfeaturehybrid yyy )1( αα −+= featurey

pixely
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Figure 7: Correlation of the weighted machine ratings with human ratings vs. 

the weighting parameter, α. 

correlation of 0.65 with the human ratings. The hybrid predictor with the optimal 

value of α = 0.65 improves prediction results by nearly 10% over those achieved 

with a single representation. Its normalized MSE is 0.57, lower than that of the 

individual rating sets. These weighted ratings have the highest correlation and 

lowest normalized MSE with the human scores. Therefore, in subsequent analysis 

we use these weighted ratings as the best machine-predicted ratings, unless stated 

otherwise. 

 

4.3.6 Evaluation of Predicted Rating Ranking 

An additional analysis was performed to evaluate the relative image ranking 

induced by the best machine predictions. Figure 8 shows the probability of error in 

the predicted relative ordering of two images as a function of the absolute distance 

d in their original, human ratings. The distances were binned into 16 bins. The 

probability of error, for each distance d, was computed over all pairs of images 

with an absolute difference of d in their human ratings. As evident from the graph, 

the probability decreases almost linearly as the absolute difference in the original 
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ratings grows (the small peak observed at a distance of 3.6 is insignificant and 

stems from one erroneous relative ranking). 

 

 

 

 

 

 

 

 

 

 

 

4.3.7 The Learning Curve of Facial Attractiveness  

For further evaluation of the prediction machine, an additional experiment was 

run, in which we examined the learning curve of our predictor. We produced this 

curve by iteratively running the predictor for a growing dataset size, in the 

following manner: The number of input images, n, was incremented from 5 to the 

entire 92 images. For every n, the predictor was run ten times, each time with n 

different, randomly selected images (for n=92 all images were used in a single 

run). Testing was performed on the subsets of n images only, using leave-one-out, 

and results were evaluated according to the correlation of the predicted ratings 

Figure 8: Probability of error in the predicted relative order of two images 

as a function of the absolute difference in their original, human ratings. 
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with the human ratings of these images. Figure 9 shows the results for the KNN 

redictor trained using the feature representation with k=16 and m=7 features. The 

 are the average over the ten runs. The figure clearly 

shows that the performance of the predictor improves with the increase in the 

number of images. The slope of the graph is positive for every n≥50. Similar 

ehavior was observed with other parameters and learners. This tendency is less 

istinct in the corresponding graph for the pixel images. 

 

 

 

 

p

correlations shown in the plot

b

d

 

Figure 9: Accuracy of prediction as a function of the training-set size 
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5 Discussion 

 

This paper presents a predictor of facial attractiveness, trained with fema e 

facial images and their respective average human ratings. Images were 

represented both as raw pixel data and as measurements of key facial features. 

Prediction was carried out using KNN, SVM and linear regression, and the best 

predicted ratings achieved a correlation of 0.65 with the human ratings. We 

consistently found that the measured facial features were more informative for 

attractiveness prediction, on all tasks tried. 

In addition to learning facial attractiveness, we also examined some 

cha riments. 

In particular, we ran our predictor on the "average" face, i.e. the mathematical 

average of the faces in the dataset. This face received only an average rating, 

showing no support for the averageness hypothesis in our setting. This strengthens 

previous experiments that argued against the averageness hypothesis (as described 

in section 1.1.2). The high attractiveness of composite faces may be attributable to 

their smooth skin and symmetry and not to the averageness itself, explaining the 

fact that the mathematical average of the faces was not found to be very attractive. 

 

Given the high dimensionality and redundancy of visual data, the task of 

learning facial attractiveness is undoubtedly a difficult one. We tried additional 

preprocessing, feature selection and learning methods, e.g. Wrapper (Kohavi & 

John, 1996), Isomap (Tenenbaum, de Silva & Langford, 2000) and Kernel PCA 

l

racteristics found correlated with facial attractiveness in previous expe
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(Scholkopf, Smola & Muller, 1999), but these all produced poorer results. The 

non-linear feature extraction methods probably failed due to an insufficient 

number of training examples, as they require a dense sampling of the underlying 

manifold. Nevertheless, our predictor ach

ent in the predictor’s performance 

as the num

ieved significant correlations with the 

human ratings. However, we believe our success was limited by a number of 

hindering factors. 

The most meaningful obstacle in our project is likely to be the relatively small 

size of the datasets available to us. This limitation can be appreciated by 

examining figure 9, which presents a plot of prediction performance vs. the size of 

the dataset. The figure clearly shows improvem

ber of images increases. The slope of the graph is still positive with the 

92 images used and does not asymptotically level off, implying that there is 

considerable room for improvement by using a larger, but still realistically 

conceivable, dataset. 

Another likely limiting factor is insufficient data representation. While the 

feature-based representation produced better results than the pixel images, it is, 

nonetheless, incomplete; it includes only Euclidean distance-based measurements 

and lacks fine shape and texture information. The relatively lower results with the 

pixel images show that this representation is, likewise, not informative enough. 

 

In conclusion, this work, novel in its application of computational learning 

methods for analysis of facial attractiveness, has produced promising results. 

Significant correlations with human ratings were achieved despite the difficulty of 
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the task and several hindering factors. The results clearly show that facial beauty 

is a universal concept which can be learned by a machine. There are sufficient 

grounds to believe that future work with a moderately larger dataset may lead to 

an “attractiveness machine” producing human-like evaluations of facial 

attractiveness. 
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Appendix A 

 

Feature-based representation 

Following is a list of the measurements comprising the feature-based 

presentation: 

. face length  

 face width – at eye level 

3. face width – at mouth level 

4. distance between pupils 

9. right eyebrow thickness (above pupil) 

10. left eyebrow thickness (above pupil) 

11. right eyebrow arch – height difference between highest point and inner edge 

12. left eyebrow arch – height difference between highest point and inner edge 

13. right eye height 

14. left eye height 

15. right eye width 

16. left eye width 

17. right eye size = height * width 

re

1

2.

5. ratio between 2 and 3 

6. ratio between 1 and 2 

7. ratio between 1 and 3 

8. ratio between 4 and 2 
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18. left eye size = height *width 

19. distance between inner edges of eyes 

0. nose width at nostrils 

idth  = (2 - 3) 

 23 and 2 

 lip 

 lip 

p lip 

p lip 

ttom of lower lip 

 to right bottom face edge 

 from nostrils to eyebrow top) to (distance from face bottom 

e from nostrils to face top) to (distance from face bottom to 

 follows) 

2

21. nose length 

22. nose size = width * length 

23. cheekbone w

24. ratio between

25. thickness of middle of top

26. thickness of right side of top

27. thickness of left side of to

28. average thickness of to

29. thickness of lower lip 

30. thickness of both lips 

31. length of lips 

32. chin length – from bottom of face to bo

33. right jaw length – from bottom of face

34. left jaw length – from bottom of face to left bottom face edge 

35. forehead height – from nose top to top of face 

36. ratio of (distance

to nostrils) 

37. ratio of (distanc

nostrils) 

38. symmetry indicator (description
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39. skin smoothness indicator (description follows) 

s) 

ator 

was set between the eyes of each image and two 

indows, surrounding only mouth and eyes, were 

s of the axis. The symmetry measure of the image was 

40. hair color indicator (description follow

 

Symmetry indic

A vertical symmetry axis 

rectangular, identically-sized w

extracted from opposite side

calculated as ( )∑ −YX 21 , where N
i

iiN
 is the total number of pixels in each window, Xi 

is the value of pixel i in the right window and Yi is the value of the corresponding 

pixel in the left window. The value of the indicator grows with the asymmetry in a 

face. This indicator is indeed a measure of the symmetry in the facial features, as 

the images are all consistent in lighting and orientation.   

 

Skin smoothness indicator 

The “smoothness” of a face was evaluated by applying a Canny edge detection 

operator to a window from the cheek/forehead area; a window representative of 

the skin texture was selected for each image. The skin smoothness indicator was 

the average value of the output of this operation, and its value monotonously 

decreases with the smoothness of a face. 

 

Hair color indicator 
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A window representing the average hair color was extracted from each image. 

alue of the window, thus increasing 

ith lighter hair. 

The indicator was calculated as the average v

w
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