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Facial Deblur Inference using Subspace Analysis
for Recognition of Blurred Faces
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Abstract— This paper proposes a novel method for recognizing
faces degraded by blur using deblurring of facial images. The
main issue is how to infer a Point Spread Function (PSF)
representing the process of blur on faces. Inferring a PSF from
a single facial image is an ill-posed problem. Our method uses
learned prior information derived from a training set of blurred
faces to make the problem more tractable. We construct a feature
space such that blurred faces degraded by the same PSF are
similar to one another. We learn statistical models that represent
prior knowledge of predefined PSF sets in this feature space. A
query image of unknown blur is compared with each model and
the closest one is selected for PSF inference. The query image
is deblurred using the PSF corresponding to that model, and
thus ready for recognition. Experiments on a large face database
(FERET) artificially degraded by focus or motion blur show that
our method substantially improves the recognition performance
compared to existing methods. We also demonstrate improved
performance on real blurred images on FRGC 1.0 face database.
Furthermore, we show and explain how combining the proposed
facial deblur inference with the local phase quantization (LPQ)
method can further enhance the performance.

Index Terms— Face Recognition, Inference, Point Spread Func-
tion, Deblur

I. INTRODUCTION

DUE to its many potential applications, face recognition has
become one of the most active topics in computer vision

research [1]. However, despite the significant progress in the last
decade, the design of recognition algorithms that are effective
over a wide range of viewpoints, occlusions, aging of subjects and
complex outdoor lighting is still a major area of research. While
there is a significant number of works addressing these issues,
problems caused by image degradations due to other factors such
as blur, noise and sampling are mostly overlooked. This is par-
ticularly surprising as such image degradations also significantly
affect the performance of face recognition systems and are often
present in images and videos in real-world applications such as
watch-list monitoring and video surveillance. Only recently has
research community started to look at facial image degradations
e.g. through facial denoising [2]. The focus of this paper is
therefore coping with blur and, in particular, automatic deblurring
of face images for enhancing the recognition performance.

Blur affects the appearance of faces in images, causing two
main problems for face recognition: (i) the facial appearance of
an individual changes drastically due to blur as Figure 1 (a)
and (b) depict; and (ii) different individuals tend to appear
more similar when blurred (for example, the difference in the
appearance between the two blurred faces in Figure 1 (b) and (d)
is much smaller than that between the corresponding sharp faces
in Figure 1 (a) and (c)).

A few existing methods attempt to handle these problems.
However, they are not yet satisfactory when facing the significant
amount of blur that is common in many real-world settings.
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Fig. 1. Variation in facial appearance caused by blur. We construct a new
frequency magnitude-based feature space in which faces with similar level of
blur are close to each other, regardless of identity. These sets are used to find
an appropriate PSF to deblur query images for accurate face recognition.

For instance, Stainvas & Intrator [3] match a query image to
artificially blurred copies of the original sharp target images
registered for identification. The method can alleviate the first
problem of dissimilarity caused by blur, but the second problem
of similarity remains. Moreover, the target images may already
be blurred themselves. Our approach is based on removing the
blur from facial appearances using blind image deconvolution [4].
The deblurred images can then be used to perform more robust
recognition. Obviously, such an approach can solve both problems
(i) and (ii) simultaneously, but requires a Point Spread Function
(PSF) that represents the blurring process.

In the field of blind image deconvolution, many methods have
been proposed for deblurring from a single image [5]. For in-
stance, Chan and Wong [6] simultaneously infer a PSF and deblur
an image using total variation regularization. Other methods
attempt to model the smoothness of intensity changes around
edges. A PSF is inferred using information derived from this
smoothness using the variation of Gaussian scale [7] [8], wavelet
coefficient [9] [10], the summation of image derivatives [11], or
alpha values representing the object boundary transparency [12].
These methods have to solve an ill-posed problem because they do
not adequately exploit the prior knowledge of the image content,
and so the quality of the deblurred image using an inferred PSF is
often poor. As our experiments will reveal, the deblurred images
using these methods are insufficient for accurate face recognition.
Yuan et al. [13] and Ancuti et al. [14] infer a PSF using multiple
images captured from the same scene. This setting limits face
recognition applications. Fergus et al. [15] infer a PSF using
heavy-tailed natural image priors, but these priors are very generic
and so fairly weak, and the PSF inference is computationally
expensive. It appears then that the majority of previous methods
for blind image deconvolution use the smoothness of intensity
changes around edges to infer the PSF from a single image
without prior knowledge of the image contents. These methods
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thus often infer a poor quality PSF as it is difficult to distinguish
between blurred edges and smooth object surfaces.

Our idea is to exploit prior knowledge of how facial appear-
ances are changed by blur. We thus introduce a new method called
FAcial DEblur INference (FADEIN) for inferring PSFs using
learned statistical models of the variation in facial appearance
caused by blur. In our method, we define a representative set of
PSFs for a particular application during training. We artificially
blur the sharp training images for each PSF in the set and use them
to build a model of facial appearance under that PSF. The method
infers a PSF by comparing the query image (with unknown
identity and amount of blur) to each model during testing.

A. Overview of FADEIN

We briefly describe the overview of our FADEIN algorithm.
We map blurred images to a feature space for learning statistical
models. Simply vectorizing the images does not generalize well
for the feature space, since the vectorized images are not clearly
separated and yields in poor performance as our experiments
in Section III show. We instead design a new ‘magnitude-based
feature space’ in the frequency domain, as illustrated in Figure 1,
in which the variation of facial appearance caused by blur is
larger than the variation of facial appearance between individuals.
Faces blurred by the same PSF are similar in the new feature
space. We learn the statistical models by approximating each set
as a low-dimensional linear subspace using principal component
analysis (PCA). We compare query images to each subspace
during testing. The most similar subspace gives an accurate
inferred PSF that is used to deblur the query image. The resulted
image can then be fed to a standard face recognition algorithm.
Our extensive experiments on real and artificially blurred face
images show high PSF inference and significant face recognition
performance improvements in comparison to existing methods.

B. Extension of FADEIN

The preliminary results of this research have been published
in [16]. In this article, we provide improved results including a
more thorough investigation and extended experimental evaluation
of the algorithm.

We also take the following method into consideration. Recently,
Ahonen et al. [17] proposed another interesting approach to
the problem of recognizing blurred faces. Instead of performing
deblurring, the authors aimed to directly derive blur invariant
features from the original face images using the phase informa-
tion in the frequency domain. The method, called Local Phase
Quantization (LPQ), showed promising results. In our extended
evaluation, we compare our proposed facial deblur inference
against the LPQ approach and demonstrate the superiority of our
proposed approach. Furthermore, we describe a combined scheme
exploiting the advantages of both methods for further enhancing
the face recognition performance.

The rest of this paper is organized as follows. Section II
describes our method for PSF inference, and Section III demon-
strates its effectiveness through extensive experiments and analy-
sis. We summarize our contributions and conclude in Section IV.

II. FACIAL DEBLUR INFERENCE

In this section we present our new approach (FADEIN) for
inferring PSFs using learned statistical models of the variation in
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Fig. 2. FADEIN comprises two steps: (a) learning statistical models of facial
blur appearance, and (b) using these models to recognize individuals in query
images of unknown blur.
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Fig. 3. Examples of detected faces from blurred images using the face
detector proposed in [18].

facial appearance caused by blur. The degradation process caused
by blur is defined as

g = Hf + n , (1)

where vector g represents the blurred image g(u, v), matrix H the
PSF, vector f the original sharp image, and vector n the noise.
Equation (1) represents an explicit appearance model for blur.
Note that g and f consist of only the facial region given by a
face detector. Blur is not a major problem to face detection as the
existing method [18] can detect small faces even at 15×15 pixels.
Figure 3 shows facial regions detected from blurred images.

If the PSF H and noise n are known, a sharp image f can be
exactly recovered from the blurred image g. Our work focuses
on accurately inferring a PSF H from a blurred facial image
g, though we also compare in our experiments how, given our
inferred PSF, two existing deblurring methods cope with the noise.

As illustrated in Figure 2, our approach consists of first learning
statistical models of facial blur appearance and then using these
models to recognize individuals in query images of unknown blur.

Let us assume that a representative fixed set Ω = {Hi}
N
i=1

of N PSFs are constituted as described in [19]. These PSFs are
chosen for a particular application. We represent statistical models
for PSF inference as subspaces in the frequency magnitude-based
feature space (see Section II-A). We denote a set of statistical
models as

Φ = { (Hi , φi) }N
i=1 , (2)

where φi represents the subspace modeling the variation in facial
appearance induced by PSF Hi. We learn subspaces φi from a set
of M training images Ψ = {f′k}

M
k=1 . A training image f ′k is a sharp

image artificially blurred by each Hi to learn the subspace φi

(see Section II-B). Note that the subjects in Ψ can be completely
different to ones for identification. This means that the training
images for PSF inference do not depend on the target images
registered for identification. The method we are proposing in this
article not only overcomes both problems cited in Section I but
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Fig. 4. Comparison of feature vectors. The blue curves are feature vectors generated from the top-left sharp image and the red curves are ones generated
from the bottom-left blurred image. The average of images of 200 persons is shown. The vectors in our feature space (c) are much more clearly separated
than in (a) using raw pixels. (a) One scan-line through a simple vectorization of the image. (b) One row of the 2D Fourier transform of the images. (c) The
same row after taking logarithms. The transformations create our feature space. The horizontal axis of (a) represents dashed lines in the face images. The ones
of (b), (c) represent frequency on dashed lines in the Fourier domain, with low frequency in the center and higher frequencies further away from the center.

also needs only a single target example and works even for real-
life capture settings where the target images are blurred.

A query image g of unknown blur and identity is compared
to each subspace using the subspace method [20]. This method
is easy to implement and gives an accurate and stable similarity
measure (see Section II-C). The closest subspace φs is selected
and the corresponding PSF Hs is the result of our PSF inference.
The query image g is deblurred using Hs (see Section II-D), and
finally identification of the deblurred image is performed.

A. Frequency magnitude-based feature space

We construct a feature space that is sensitive to the appearance
variations of different blurs but insensitive to the difference
between individuals. We base the feature space on frequency do-
main amplitude, because of the phenomenon that high-frequency
amplitudes for blurred images become smaller than those for
sharp images [21]. Since we want a feature space invariant to
identity, we deliberately ignore phase information (note that,
without blur, phase information is, of course, a good feature for
face recognition [22]).

Inferring a PSF using frequency domain amplitude is a well-
known technique [19], [23]–[25]. The method in [19] selects
a PSF from a representative fixed set Ω using amplitude of a
sharp image and noise. But, it is difficult to correctly estimate
these amplitudes from the blurred image because the sharp
image is unknown. Other methods [23]–[25] use the relationship
between PSF parameters and the positions of the zero crossings
of amplitude. However, detecting these positions is difficult for
real blurred images because the zero crossings are affected by
the noise amplitude. Our method instead uses the whole frequency
amplitude domain for constructing the feature space. The variation
caused by noise is included in the subspaces φi learned in our
feature space by adding noise to training images (see Section II-
B).

We emphasize discriminative high-frequency amplitude to im-
prove the PSF inference accuracy. Our method first transforms
a blurred image g(u, v) in the space domain to a feature image
x(ξ′, η′) as

x(ξ′, η′) = [ C(|g(ξ, η)|) ] ↓ , (3)

where g(ξ, η) is the 2D Fourier transform of g(u, v), | | takes the
amplitude, C takes dynamic range compression, and [ ] ↓ repre-
sents downsampling. Dynamic range compression is performed

to emphasize high-frequency values because non-discriminative
low-frequency values are much larger than discriminative high-
frequency values. For the function C, we simply take logarithms
that shift from a large value to a small value while maintaining
order relation. Downsampling helps reduce noise and accelerate
subspace learning. Bilinear interpolation is used for downsam-
pling. We choose the procedures C and [ ] ↓ from the viewpoints
of computation time and inference accuracy. The feature vector x

is generated by raster scanning x(ξ′, η′). Finally, as preprocessing
for the subspace method, vector x is normalized so that ‖x‖2 = 1.

Figure 4 compares feature vectors generated from a sharp
image and its blurred version. The vectors in Figure 4 (a) to (d)
are the outputs of each step in Equation (3) and the normalization.
Note that the waveforms of the vectors in Figure 4 (a) are almost
the same, but the difference between sharp and blurred images
appears most cleanly in our feature space in Figure 4 (d).

Further, Figure 5 uses PCA to visualize two feature spaces con-
taining images blurred by three different PSFs. Raw pixel based
feature space (center) directly vectorizes the blurred facial images.
Observe that our frequency magnitude-based feature space (right)
gives sets that are much better separated. Our experiments below
compare these two feature spaces and confirm that our feature
space gives more accurate PSF inference and face recognition.

B. Learning subspaces

We generate subspaces for the statistical models to represent
sets in the feature space. Training images are blurred by applying
each PSF Hi to sharp training images f′k in a training set Ψ as
g′

ik = Hif
′

k + n′, where n′ is the noise that we assume to be
white Gaussian.

Next, we apply PCA to blurred training images {g′ik}
M
k=1 in

our feature space, as follows. Having transformed image g′ik to
feature vector x′

ik, the correlation matrix [26] is defined as Ai =
1
M

∑M

k=1 x′

ik(x′

ik)T. Note that the mean vector of {x′ik}
M
k=1

is not subtracted for the correlation matrix because our imple-
mentation of the subspace method uses an angle for similarity
measure (see Equation (4)). Eigenvectors and eigenvalues of the
correlation matrix Ai are calculated. The first D eigenvectors,
sorted by decreasing eigenvalue, form the basis vectors of the
subspace φi = {bij}

D
j=1. The low-dimensional subspace spanned

by the basis vectors φi is defined by maximizing the variance of
training feature vectors {x′

ik}
M
k=1 in this subspace.
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Fig. 5. Visualization of sets in two feature spaces. Artificially blurred facial images (left) are vectorized either directly (center, raw pixels) or using the
frequency domain amplitude (right, our method). Colors represent the particular PSFs used to blur the faces. Our evaluation highlights the importance of the
much cleaner separation of the PSF sets using our method.

C. Determining the PSF

Given a blurred query image g of unknown blur, we find the
closest subspace φs in a set of statistical models Φ as

s = arg max
i

cos2 θi

= arg max
i

D
∑

j=1

(bij
T
x)2, (4)

where x is the feature vector of g, θi is the angle between vector
x and subspace φi, and i ∈ {1, . . . , N}. A small angle θi indicates
that the blurred query image g is similar to a set of the training
images blurred by PSF Hi that generated the subspace. The
maximization of cos2 θi over i thus infers the most appropriate
PSF Hs.

D. Restoration

Given PSF Hs, we can then remove blur from the degraded
query image g. Simple matrix inverse-based deconvolutions give
a poor quality result because of existing noise n in Equation
(1). We thus use the BTV regularization from [27]. The detail of
BTV is described in the Appendix of [16]. Deconvolution using
the BTV regularization recovers not only a sharp image but also
a noiseless image.

III. EXPERIMENTAL ANALYSIS ON FACE RECOGNITION USING

FACIAL DEBLUR INFERENCE

To demonstrate the effectiveness of FADEIN in recognizing
blurred (and also sharp) faces, we performed extensive experi-
ments on two publicly available databases, namely FERET [28]
and FRGC 1.0 [29]. We investigate camera focus blur by artifi-
cially degrading sharp images. Camera focus blur arises when the
camera focal length is not correctly adjusted to the subject. We
also investigate camera motion blur that arises when the camera
is moved while capturing an image. Furthermore, we test our
method on real blurred images. In the experiments with artificial
blur, only the face regions are blurred while in the experiments
with real blurred images, the entire images are blurred and
automatic face detection is used for detecting the facial regions.

Facial deblur inference can be used as preprocessing before
feature extraction for face recognition. Thus, it can be used
with any traditional face recognition algorithm. In our previous
work [16], we evaluated the performance using only raw pixel
values as features which are computed by simply raster scanning

(a) No blur (b) σ = 2 (c) σ = 4 (d) σ = 6 (e) σ = 8

Fig. 6. Examples of synthesized images of camera focus blur from the subset
‘fb’ of FERET. Blurred images (b), (c), (d), and (e) are synthesized from the
original image (a) using Gaussian PSFs with given standard deviations σ.

the deblurred image. For extensive experimentation, this paper
considers baseline face recognition techniques for feature extrac-
tion from the deblurred images. We use the local binary pattern
‘LBP’ [30], the eigenfaces ‘EF’ [31], and the laplacianfaces
‘LF’ [32]. LBP is a face descriptor which makes histograms
derived by counting labels assigned to every pixel. The label of
LBP is computed by thresholding the neighborhood of each pixel
with the center pixel value. EF is a coefficient vector derived
by projecting the deblurred image to a linear subspace computed
using PCA. LF is a coefficient vector computed by PCA and
locality preserving projections that keeps the local structure of
neighborhood samples in the feature space.

Once the features are extracted, we adopt in all our experiments
the nearest-neighbor (NN) classifier with the Euclidean distance
for face recognition. This choice is motivated by the fact that, in
most cases, only one query image per person is available.

A. PSF inference accuracy

To gain insight into the PSF inference accuracy, we analyzed
synthesized images by blurring sharp query faces from FERET
database. Sharp faces are blurred by shift-invariant Gaussian

PSFs as H(u, v) = 1
Z exp

(

−(u2+v2)
2σ2

)

, where σ is the standard

deviation, and Z is a normalization term as
∫ ∫

H(u, v)dudv = 1.
This PSF is defined in the space domain. White Gaussian noise
of 30dB is added to the synthesized images. Examples are shown
in Figure 6. The facial images are registered using determined
facial feature points. Image g(u, v) is of size 128 × 128, and
downsampled x(ξ′, η′) is of size 64 × 64. For the representative
fixed set Ω of PSFs, we use N = 18 PSFs, including 17 Gaussians
and 1 ‘no blur’ delta function. The parameters of the Gaussian
PSFs are set from σ = 1 to 9 in increments of 0.5. The database
includes three subsets: ‘bk’, ‘fa’, and ‘fb’. Each subset contains a
single image per person. Subset ‘bk’ is used as training set Ψ to
learn the subspaces in a set of statistical models Φ. The dimension
of each subspace is D = 20. The number of training images is
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Fig. 7. PSF inference accuracy on FERET of artificially camera focus blur.

TABLE I

RESTORATION PERFORMANCE OF ARTIFICIAL CAMERA FOCUS BLUR.

Method PSNR

Raw pixel feature space 28.8dB

Hu & Haan [7] 28.4dB

Magnitude-based feature space 30.4dB

M = 200. We evaluate inference accuracy on the 1001 images
that remain in subsets ‘fa’ and ‘fb’ after removing the individuals
present in subset ‘bk’. The identification target set is ‘fa’ and the
query set is ‘fb’.

Figure 7 shows PSF inference accuracy on the query images
‘fb’. Average error is defined as ‖σc −σs‖1 where σc is the stan-
dard deviation of the PSF used for synthesizing the blurred image
(groundtruth), and σs is that of the inferred PSF. We compare our
method ‘magnitude-based feature space’ against two alternatives:
‘raw pixel feature space’ which uses a directly vectorized feature
space (cf. Figure 5) and ‘Hu & Haan [7]’ which estimates the
standard deviation of Gaussian PSF from the smoothness of inten-
sity changes around edges. Hu & Haan’s method can handle only
camera focus blur. From the results in Figure 7, we can clearly
see that our PSF inference method performs much better than
the alternatives. An interesting anomaly is that the PSF inference
accuracy of ‘raw pixel feature space’ increases with blur. This
is probably because increasing the blur reduces variation, which
can thus be more adequately represented by a low-dimensional
subspace. In Table I, we demonstrate restoration performance in
terms of peak signal-to-noise ratio (PSNR) computed between the
original image and the deblurred image. We report the average
PSNR over different values of σc. Our method (30.4dB) performs
better than ‘raw pixel feature space’ method (28.8dB) and Hu &
Haan’s method (28.4dB).

B. Face recognition performance with and without FADEIN

To analyze the effectiveness of our proposed facial deblur
inference (FADEIN), we consider different face recognition meth-
ods (EF, LF, and LBP) and compare the recognition results
obtained with and without the use of FADEIN. We evaluated
the performance on the target set ‘fa’ and the artificially blurred
query set ‘fb’ of FERET, which are synthesized using the same
settings described in Section III-A.

Figure 8 reports identification accuracy as recognition rate:
the probability that a query image is matched to the correct
target image of the same individual. We demonstrate the average
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Fig. 8. Identification performance with and without FADEIN on FERET for
artificial camera focus blur. Query set are blurred with Gaussian PSF.

TABLE II

IDENTIFICATION PERFORMANCE ON FERET OF ARTIFICIAL CAMERA

FOCUS BLUR USING FACE RECOGNITION METHODS CONSIDERING BLUR.

Method Recognition rate

Hu & Haan [7] 73.4%

LPQ 78.0%

FADEIN 83.4%

recognition rates over different values of σc of blur PSFs. It is
clearly shown that FADEIN significantly enhances identification
performance for all considered methods. For instance, LBP with
and without FADEIN yields in identification rates of 82.6%
and 67.2%, respectively. FADEIN overcomes the sensitively of
LBP to blur which was reported in [17] and also confirmed
in our experiments. This very significant gain in recognition
performance demonstrates the effectiveness of our proposed facial
deblur inference.

In our unoptimized implementation on a single-core 3.4GHz
processor, learning in FADEIN takes about 5 minutes and PSF
inference takes about 0.5 seconds per image. The BTV regular-
ization [27] takes up to 1.5 seconds per image.

C. Comparing FADEIN-based face recognition to state-of-the-

art methods addressing the blur problems

How does our FADEIN-based face recognition technique com-
pare to state-of-the-art methods addressing the blur problem?
To investigate this question, we evaluate and compare FADEIN
against two alternative methods designed for identifying blurred
faces: deconvolution using existing PSF inference before identifi-
cation and extraction of blur invariant features from blurred faces
for identification. For the deconvolution approach, we used the
PSF inference of Hu & Haan [7] and the restoration of the BTV
regularization. After the deconvolution, we used raw pixel values
as features for identification. For the invariant feature approach,
we used the local phase quantization (LPQ) method [17] [33].
LPQ works like LBP for extracting face descriptors by assigning
quantized label to phase value in the frequency domain. Ahonen
et al. have recently adopted LPQ for identifying blurred faces
yielding in very good results [17]. Note that LPQ was originally
proposed by Ojansivu and Heikkila for blurred texture analysis
in [33]. In our approach, we adopted FADEIN for deconvolution
and raw pixel values as features. We evaluated the performance
on the same database as in Section III-B. The parameters for
FADEIN are the same as in Section III-A.

Table II shows identification performance of our method and
the two alternatives. We demonstrate the average recognition rates
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Fig. 9. Identification performance by combining PSF inference methods with
LPQ on FERET for artificial camera focus blur.

(a) (b)

Fig. 10. Examples of images artificially blurred with random standard
variation of Gaussian PSF in (0, 8] on FERET. (a) Target images from the
subset ‘fa’. (b) Query images for the subset ‘fb’. Note that both target and
query images are blurred to simulate real-life face capture conditions.

on the same setting described in Section III-B. Though LPQ
shows better performance compared to Hu & Haan’s method
(78.0% versus 73.4%), FADEIN significantly outperforms both
methods, yielding an identification rate of 83.4%.

D. Combining FADEIN and LPQ

While our FADEIN for face recognition is based on deblurring
the face images before recognition, the LPQ method uses a
different strategy as it aims at extracting blur invariant features
from the original face images using the phase information in
the frequency domain. Although the results clearly demonstrate
the superiority of FADEIN over LPQ (as shown in Table II and
Figure 9), the experiments revealed very interesting properties:
while LPQ works very well with small amount of blur and
suffers when the amount of blur increases, the FADEIN approach
significantly decreases the amount of blur in the face images
but uses simple raw pixels as features for recognition. This
means that one can look at FADEIN and LPQ as complementary
methods for further enhancing the recognition performance. Thus,
to exploit the advantages of FADEIN and LPQ, we derived a
new approach combining both methods: we extract the LPQ
features from the deblurred face images. Figure 9 shows then
the results of this combination ‘FADEIN + LPQ’. As expected,
the combined approach enhances the recognition performance
compared to the use of FADEIN and LPQ separately. We also
studied other combination schemes such as fusing FADEIN with
LPQ and/or LBP at feature level but the results were not better
than ‘FADEIN + LPQ’.

E. Experiments with different artificial blur settings

1) Random focus blur: We tested identification performance on
FERET when the query set images were blurred by an unknown
random Gaussian sigma in the range (0, 8]. Figure 10 shows

TABLE III

IDENTIFICATION PERFORMANCE OF ARTIFICIAL CAMERA FOCUS BLUR

WITH RANDOM STANDARD VARIATION OF GAUSSIAN PSF.

Method Recognition rate

LPQ 84.0%

Hu & Haan [7] + LPQ 83.8%

FADEIN 82.8%

FADEIN + LPQ 88.3%

TABLE IV

IDENTIFICATION PERFORMANCE FOR ARTIFICIAL CAMERA MOTION BLUR.

Method Recognition rate

LPQ 59.3%

Yitzhaky & Kopeika [11] + LPQ 49.1%

FADEIN 82.0%

FADEIN + LPQ 82.3%

examples used in this experiment. Some faces are blurred only in
target images and other faces are blurred only in query images.
Note that facial deblur inference is performed on both target and
query images. From Table III, an improvement over the other
methods by combining our deblurring and LPQ is again evident
and consistent performance is demonstrated for unknown blurs
that do not precisely coincide with the training PSFs.

2) Camera motion blur: In the second experiment, tests were
performed on synthesized images by blurring sharp query faces
from FERET using shift-invariant linear motion blur PSFs as
H(u, v) = 1/Z if ‖(u, v)‖2 < b and v = u tan θ, otherwise
H(u, v) = 0,where b is the length of camera motion, θ is the
angle, and Z is a normalization term. White Gaussian noise of
30dB is added to the synthesized images. Identification query
images are blurred by the PSF in the range b = 5, 10, 15, 20 and
θ = 0, 0.25π, 0.5π, 0.75π. Examples are shown in Figure 11. For
the representative fixed set Ω of PSFs, we use N = 41 PSFs,
including 10× 4 = 40 motion blur function and 1 ‘no blur’ delta
function. The parameters are set from b = 2.5 to 25 in increments
of 2.5 and from θ = 0 to 0.75π in increments of 0.25π. The
other parameters for learning statistical models are the same as
in Section III-A.

Table IV reports average recognition rate. We compare our
methods to two alternatives. The first one is LPQ as in Section III-
C. While the PSF inference of Hu & Haan [7] cannot be applied
because it is only considers focus blur, we instead use the
method of Yitzhaky & Kopeika [11]. As Table IV shows, our
approaches yield again in significantly better results compared to
the two alternatives (LPQ and Yitzhaky & Kopeika’s method).
The average errors between the correct parameters of blurred
query images and the inferred ones using Yitzhaky & Kopeika’s
method [11] were b = 6.2, θ = 0.1 while FADEIN yielded in
significantly better performance (b = 0.7, θ = 0.0).

3) Putting 2 PSF types together: For simultaneously handling
both types of blur (out-of-focus and camera motion), we con-
ducted experiments by putting the two types of PSF together.
We used 18 PSFs of focus blur described in Section III-A and
40 PSFs of motion blur described in Section III-E.2 to learn the
statistical models Φ. Given an unknown PSF image, FADEIN
selects a PSF from the 18 + 40 = 58 PSFs. Target set is no blur
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b = 5, θ = 0 b = 5, θ = 0.25π

b = 10, θ = 0

b = 15, θ = 0

b = 20, θ = 0

b = 5, θ = 0.5π b = 5, θ = 0.75π

b = 10, θ = 0.25π b = 10, θ = 0.5π b = 10, θ = 0.75π

b = 15, θ = 0.25π b = 15, θ = 0.5π b = 15, θ = 0.75π

b = 20, θ = 0.25π b = 20, θ = 0.5π b = 20, θ = 0.75π

Fig. 11. Examples of synthesized images of camera motion blur from the
subset ‘fb’ of FERET. Blurred images are synthesized from Figure 6 (a) using
linear motion blur PSFs with given b, θ.

TABLE V

IDENTIFICATION PERFORMANCE FOR PUTTING 2 PSF TYPES TOGETHER

(FOCUS AND MOTION BLURS).

Method Recognition rate

LPQ 66.6%

FADEIN 79.6%

FADEIN + LPQ 82.9%

‘fa’ and query set is ‘fb’ artificially blurred by focus blur (the
same setting described in Section III-B) and motion blur (the
same one described in Section III-E.2).

Table V reports the average recognition rates over all the
query images. The obtained results show that our proposed
approach (FADEIN) yields better performance than LPQ. Miss
classification rate of the two PSF types (i.e. confusion between
motion and focus blurs) was only 1.0%.

F. Evaluation on real blurred face images

The final experiment used real blurred images from FRGC 1.0.
We evaluated identification performance in terms of verification
rate under the setups ‘Exp4’ that is evaluated on uncontrolled still
query images including blurred faces. Each query set consists of
608 images of 152 individuals. We count that 366 query images
are degraded by camera focus blur. Target images are collected
under a controlled still condition. A single image is captured per
person for target. The number of target images is 152. Figure 12
shows example images from FRGC 1.0. Camera focus blur arises
in Figure 12 (b) as the camera focal length is adjusted to the
background. The amount of blur in both the target and query
images is not constant and is unknown. Note that facial deblur
inference is performed on both target and query images, since
real face target databases already contain considerable focus blur.
For the representative fixed set Ω of PSFs, we use N = 8

PSFs, including 7 Gaussians and 1 ‘no blur’ delta function. The
parameters of the Gaussian PSFs are set from σ = 1 to 4 in
increments of 0.5. Three subsets ‘bk’, ‘fa’, and ‘fb’ in FERET
are used as training set Ψ to learn the subspaces in a set of
statistical models Φ. The dimension of each subspace is D = 20.
The number of training images is M = 2591.

(a) (b)

Fig. 12. Example images from FRGC 1.0. (a) Target image. (b) Query image
in Exp4. Real camera focus blur arises in (b).

(b) Faces deblurred using FADEIN(a) Faces with real blur

Fig. 13. (a) Example images from FRGC 1.0 with real blur. (b) Faces
deblurred using FADEIN.

We show some deblurred images in Figure 13. The deblurred
images are sharp compared with the blurred images. We evaluated
ROC curves in terms of verification rate and false acceptance rate.
As shown in Figure 14, the use of FADEIN for deblurring real
face images also enhances the performance of LPQ and outper-
forms the PSF inference of Hu & Haan [7], confirming our earlier
findings. We can also notice in Figure 14 that the performance
enhancement using only FADEIN is not as significant as with the
artificially blurred faces in the previous experiments e.g. Figure 6.
This is mainly due to the fact that these real blurred faces contain
less blur than the artificially blurred faces. Figure 15 shows
the inferred amount of blur in these real blurred face images.
The median value is σ = 2.5 excluding no blurred faces. With
additional blur, we expect much more performance enhancement
using FADEIN.

IV. CONCLUSION

We proposed a novel approach for recognizing blurred faces
using facial deblur inference. Our algorithm inferred PSF using
learned models of facial appearance variation under different
amounts of blur. The inferred PSFs were used to sharpen both
query and target images. Our extensive experiments on both real
and artificially blurred face images demonstrated substantially
more accurate PSF inference and face recognition than existing
methods. The salient contributions of this paper are the following:

• Learning statistical models of the variation in facial appear-
ance caused by blur to accurately infer PSFs from blurred
images.

• A new frequency magnitude-based feature space in which
these statistical models are learned. This feature space is
designed to emphasize the different appearances of different
levels of blur but be invariant to facial identity.

• A demonstration that these statistical models generalize well,
maintaining PSF inference accuracy: the models are trained
on faces that are completely different to target images for
identification.

• A new scheme combining facial deblur inference with LPQ
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(which is one of the state-of-the-art methods) is introduced,
yielding in excellent results.

We believe that our deblurring method has relevance not only
for face recognition, but also for other restricted classes of
images, such as recognizing textual character, hand and body
postures under blur. However, our method may not work well for
other objects consisting of uniform texture, e.g. plaster sphere,
plastic cup, and metal fork. Note also that our proposed approach
(FADEIN) has not yet been proven for images blurred with multi
unknown factors or with severe blur such as camera shake. As
future work, we are planning to explore and improve the tolerance
of our approach to such factors. A promising direction consists
of modeling the PSF inference as a regression problem rather
than a classification problem, which is likely to scale better when
multiple factors are considered together.
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