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Abstract

Automated analysis of facial expressions has remained an interesting and chal-

lenging research topic in the field of computer vision and pattern recognition due to

vast applications such as human-machine interface design, social robotics, and devel-

opmental psychology. This dissertation focuses on developing and applying transfer

learning algorithms – multiple kernel learning (MKL) and multi-task learning (MTL)

– to resolve the problems of facial feature fusion and the exploitation of multiple

facial action units (AUs) relations in designing robust facial expression recognition

systems. MKL algorithms are employed to fuse multiple facial features with dif-

ferent kernel functions and tackle the domain adaption problem at the kernel level

within support vector machines (SVM). lp-norm is adopted to enforce both sparse

and non-sparse kernel combination in our methods. We further develop and apply

MTL algorithms for simultaneous detection of multiple related AUs by exploiting

their inter-relationships. Three variants of task structure models are designed and

investigated to obtain fine depiction of AU relations. lp-norm MTMKL and TD-

MTMKL (Task-Dependent MTMKL) are group-sensitive MTL methods that model

the co-occurrence relations among AUs. On the other hand, our proposed hierarchical

multi-task structural learning (HMTSL) includes a latent layer to learn a hierarchical

structure to exploit all possible AU inter-relations for AU detection. Extensive ex-
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periments on public face databases show that our proposed transfer learning methods

have produced encouraging results compared to several state-of-the-art methods for

facial expression recognition and AU detection.
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Chapter 1

Introduction

Facial expressions are the most important non-verbal visual channel used by hu-

mans in face-to-face communication [1]. Psychologists believe that facial expressions

complete and reinforce verbal messages, and agree upon six basic facial emotions: joy,

anger, fear, sadness, disgust, and surprise [2, 3] that are considered to be fundamental

and common among different cultures. Moreover, in order to describe and quantify

facial expressions, Paul Ekman and Wallace Friesen proposed the Facial Action Cod-

ing System (FACS) [2], which defines all possible and visually detectable facial muscle

variations in terms of 44 action units (AUs). Table 1.1 lists the description of 12 AUs

involved in our work.

Automated analysis of facial expressions in visual data is an interesting topic in

the field of computer vision and pattern recognition. It has received great attention

in recent years due to the vast number of applications including human machine

interface design, robotics and developmental psychology. Although much progress

has been made [4, 5], recognizing basic facial expressions and action units with a high

accuracy still remained challenging due to the complexity, subtlety, and variations of

human facial behaviors.
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Table 1.1: AU description

AU Description Figure

AU1 Inner Brow Raiser

AU2 Outer Brow Raiser

AU4 Brow Lowerer

AU5 Upper Lid Raiser

AU6 Cheek Raiser

AU9 Nose Wrinkler

AU12 Lip Corner Puller

AU15 Lip Corner Depressor

AU17 Chin Raiser

AU20 Lip stretcher

AU25 Lips part

AU26 Jaw Drop
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This dissertation focuses on applying transfer learning algorithms to resolve two

major problems existed in facial expression analysis. One is the facial feature fu-

sion problem. In the recognition of basic facial expressions, which is a multiclass

classification problem, one type of facial features may not be distinguishable for all

expressions whereas using another type of features may produce better results in sev-

eral expressions. Since different features have different distributions, it is necessary

to fuse multiple facial feature representations to increase the discriminative power of

classifiers. However, it is usually difficult to represent a combination of features within

the widely used single-kernel-based support vector machines (SVM) when considering

the compatibility of different features domains. For the sake of this problem, we pro-

pose to apply multiple kernel learning (MKL) in the transfer learning methodology

to fuse multiple facial features at the kernel level with SVM. The “transferring skill”

of MKL is to optimally combine different kernel matrices calculated base on multiple

features with multiple kernels. Within this framework, the problem of feature data

representation through single type of features with a single kernel function in the

canonical SVM is transferred to set the optimal value of kernel combination weights

for multiple kernel matrices.

The other challenge is how to properly exploit the relations among facial AUs

and basic expressions during facial expression analysis. According to the description

in the FACS manual [6], there are some relationships among different AUs such as

simultaneous presence in basic facial expressions. For examples, AU4 (brow lowerer)

is usually co-occurred with AU1 (inner brow raiser) and AU2 (outer brow raiser)

to generate negative expressions such as fear and sadness. AU6 (cheek raiser) is

usually co-occurred with AU12 (lip corner puller) in the case of Duchenne smile [7].

These relationships are by their nature good resources for AU detection. However,

almost all the existing AU detection approaches, based on either static [8, 9, 10] or
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dynamic modeling [11, 12, 13, 14], turn to recognize AUs or certain AU combinations

separately without considering their inter-relations. In this dissertation, viewing the

detection of each AU as a task, we apply multi-task learning (MTL) algorithms to

simultaneously detection multiple AUs by properly modeling the AU inter-relations.

As surveyed in [15], MTL encodes the idea of inductive transfer learning, and aims

to learn one problem with the help of other related problems by properly modeling

their related structures.

In summary the main contributions of our works are two-folded.

• We present a novel facial expression recognizer via MKL by extending the lp-

norm MKL algorithm into multiclass classification problem. Different types

of facial features with multiple kernel functions are fused by adopting lp-norm

(p ≥ 1) to obtain both sparse and non-sparse kernel combinations. For solv-

ing the optimization problem of our proposed method, we learn one kernel

weight vector for each binary classifier in the multiclass-SVM. Compared to the

SimpleMKL-based multiclass-SVM [16], which jointly learns the same kernel

weight vector for all binary classifiers, our method has a better flexibility of

selecting different kernel combinations and also reflects the contribution of each

binary classifier to the whole objective function of MKL-based multiclass-SVM.

We also comprehensively studied the impact of “p” on controlling the sparsity of

the kernel combinations, and provide insight explanation of why our proposed

method outperforms the state-of-the-art methods based on the discussion of the

experimental results.

• We cast the AU detection problem into MTL frameworks, where given a specific

facial image, multiple AUs are detected simultaneously by exploiting the rela-

tions of their discriminative hyperplanes in SVM. Moreover, we take the advan-
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tage of MKL to increase the discriminant power of the MTL classifiers by fusing

different types of facial feature representations with multiple kernels. Three task

structures are designed in our proposed methods to achieve proper modeling of

AU inter-relations. lp-norm multi-task multiple kernel learning (MTMKL) and

task-dependent MTMKL (TD-MTMKL) are group-sensitive MTL methods for

modeling AU inter-relations, where AUs are packaged into different groups via

our pre-knowledge of AU co-occurrence relations. Whereas, hierarchical multi-

task structure learning (HMTSL) is proposed to avoid of such pre-knowledge

and utilize all possible AU inter-relations via a hierarchical model in HMTSL.

The remainder of this dissertation is organized as follows. Chapter 2 reviews the

related works on facial expression analysis including feature representation and classi-

fier design for basic expressions and AUs as well as the existing transfer learning algo-

rithms including MKL and MTL. Chapter 3 introduces the public databases utilized

in this dissertation for both basic expression recognition and AU detection. Chapter 4

presents the formulation of our proposed transfer learning framework, lp-norm MKL-

based Multiclass-SVM, for basic facial expression recognition. Experiments on three

public face databases are presented and discussed based on the comparison with sev-

eral state-of-the-art methods. Chapter 5 presents our proposed group-sensitive MTL

methods for AU detection on four AU packages. Chapter 6 describes the designed hi-

erarchical model and the optimization formulation for HMTSL. Experimental results

on two face databases with posed and spontaneous AUs are shown and discussed

in Chapter 5 and Chapter 6 based on the comparison with several state-of-the-art

methods. Finally, Chapter 7 concludes the paper and envisions the future work.
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Chapter 2

Related work

Automatic facial expression analysis has made good progresses in the last decade.

For a detailed survey on the existing and state-of-the-art methods in this topic, we

refer our reader to [4, 5]. Most recently, the Facial Expression Recognition and Anal-

ysis Challenge (FERA 2011) [17] outlined the evaluation protocol, the data used, and

the results of a baseline method for facial action unit (AU) detection and expression

recognition. Here, we briefly review some previous works on two main aspects of

this challenge, facial feature extraction and classifier design. The transfer learning

algorithms including MKL and MTL methods are also introduced.

2.1 Facial feature representation

Facial images are represented by extracting a set of features from registered im-

ages, where procrustes analysis is usually applied for image registration using several

annotated facial landmark points such as in [18, 19]. Good features are those with

small inner-class variations of facial expressions and large intra-class variations. Three
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categories of features are commonly seen in the literatures: geometric features, ap-

pearance features, and combination of geometric and appearance features.

Geometric representations usually utilize shapes and locations of facial compo-

nents to model the face geometry. Chang et al. [20] learned a specific active shape

model (ASM) [21] defined by 58 fiducial points to avoid incorrect matching due to

non-linear image variations. Pantic et al. [8, 22] tracked a set of facial characteristic

points around the mouth, eyes, eyebrows, nose, and chin. Some approaches combined

geometric and appearance features (i.e., active appearance models (AAM) [23]) and

applied them for facial expression recognition [24, 25]. AAM are statistical models

that can provide good spatial information of key facial landmark points for valid ex-

amples. However, they are highly dependent of an accurate matching of the model

to facial images, and usually need manual labor for their construction.

Appearance features are often used for representing facial textures such as wrin-

kles, bulges and furrows exhibited in facial expressions. Gabor wavelet analysis

[26, 27] is one of the first appearance-based features used to represent the facial

appearance variations. These features are usually applied to either the entire face or

specific face regions. The computation of Gabor-wavelet representation is both time

and memory intensive [18]. LBP operator was introduced as an effective appearance

feature for facial image analysis [28, 29]. Shan et al. [18] achieved better results for

facial expression recognition using LBP features compared to Gabor features. The

most important properties of LBP features are their tolerance against illumination

changes and computational simplicity. HOG features were firstly described in [30]

for pedestrian detection, which count occurrences of gradient orientations in local-

ized portions of an image. It has further been determined in [31] that when HOG

features are combined with LBP descriptors, detection performances are improved.

Recently, HOG features were used and revised to extract facial appearance and shape
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variations for facial expression recognition in [32, 33]. The invariance to geometric

transformations and good description of edge orientations are the key advantages of

HOG descriptor over other methods. In our work, we fuse the LBPH features with

HOG features at kernel level within SVM classifiers and study its impact on facial

expression recognition and AU detection.

2.2 Facial expression recognition

Several studies have evaluated different classifiers for facial expression recognition.

Bartlett et al. [10] and Shan et al. [18] respectively performed systematic comparison

of different techniques including AdaBoost, SVM and Linear Discriminant Analysis

(LDA), and the best results were obtained by selecting a subset of facial features

using AdaBoost and then sent to SVM for automatic expression labeling. Sebe et

al. [34] evaluated 14 different classifiers like SVM, Bayesian Nets and Decision Trees

and achieved the best classification results using k-nearest neighbor (kNN) algorithm.

They also used voting algorithms such as bagging and boosting to improve the results

of facial expression recognition.

In order to exploit the temporal information of facial behaviors, different methods

have been presented for facial expression recognition in image sequences. Several early

works [35, 36] attempted to track and recognize facial expressions over time based on

optical flow methods. Hidden Markov Models (HMM) are widely used to model the

temporal relations between consecutive facial behaviors [37, 38]. In [37], a multi-level

HMM classifier was proposed to combine temporal information and automatically

segment long video sequences. In their work, a Bayesian classifier was used for still

images while a HMM classifier was applied to deal with emotion recognition in video

sequences. However, as HMM can not model the dependencies among observed facial
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features, some other research groups applied Dynamic Bayesian networks (DBN)

for facial expression classification. Zhang and Ji [39] exploited DBN with a multi-

sensory information fusion strategy while in [40] a novel Bayesian temporal model

was formulated to capture the dynamic facial expression transition in a manifold.

Recently, MKL algorithms were proposed to combine multiple kernels instead

of using a single one in training kernel-based classifiers such as SVM. These meth-

ods, as surveyed in [41], have been applied to affective analysis and achieved better

recognition results compared to single kernel SVM equipped with a single type of

facial feature [42, 43]. The authors of [43] combined two types of facial features with

two kernel functions, local Gabor binary pattern histograms (LGBPH) [44] with his-

togram intersection kernel and AAM coefficients with RBF kernel, and tuned the

parameters of kernel functions during experiments on facial action unit detection.

The SimpleMKL algorithm [16] was applied for solving the optimization problem of

MKL in their work, which is a binary classification task.

Since different types of features can represent different information in facial im-

ages, by combining multiple features with different kernel functions in MKL frame-

work, plenty of useful facial representations and kernel functions can be utilized simul-

taneously during classification. In this work, a novel MKL framework is presented

for multiclass classification using SVM, and comprehensive study is conducted to

evaluate the effect of our method on the application in facial expression recognition.

2.3 Facial action unit detection

AU detection is a binary classification problem. There are mainly two approaches

in the literatures: one is the static modeling as presented in [8, 9, 10], where each

face image is recognized separately by solving a binary discriminative classification
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problem; the other one is the dynamic modeling such as in [45, 12, 13], where video

frames are segmented into subsequences to exploit the temporal behaviors based on a

variant of dynamic models such as Hidden Markov Models (HMMs), and are usually

described in terms of onset, apex and offset. However, almost all these methods turn

to recognize AUs or certain AU combinations independently without considering the

inter-relations among different AUs.

There are only a few studies in the literatures that exploit the relations among

AUs in detecting them. The research group of Qiang Ji proposed to use Dynamic

Bayesian Network (DBN) to model the AU inner-relations. In [46, 47, 48], a two-step

processing technique was engaged, where the learned DBN model from training data

was employed to infer the AU labels of video frames based on the output of adaboost

SVM. In this framework, the DBN can be viewed as a reasoning module that post-

processes the predicted AU labels from the previous module with adaboost classifiers.

Thus, necessary theoretical discussions on how the two modules can cooperatively in-

crease the overall detection performance and the impact of overfitting are needed.

Further, unified frameworks [49, 50] were presented to learn more complete graphical

models to combine the classification and inference steps together using probabilistic

classifiers instead of SVM. However, the DBN-based classifiers and the Restricted

Boltzmann Machines (RBMs) in [50] need some prior assumptions of samples’ proba-

bility distribution models such as the Gaussian distribution function, which may not

be accurate for real applications. In comparison, our proposed method is based on

SVM classifiers, which are more robust since the convex optimization problems are

defined to learn the maximum-margin hyperplanes between samples from different

classes in the feature space. In contrast to the works in [46, 47, 48, 49], which model

the AU relations based on probabilistic dependencies among the presence and absence

of multiple AUs, our work aims to exploit the relations among the SVM classifiers
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that detect different AUs. That is, in our approach the detection of multiple AUs

and the utilization of their intrinsic relations are conducted simultaneously.

2.4 Transfer learning algorithms

In this section, we introduce the general idea of two topics in the transfer learning

framework – MKL and MTL, and review some famous methods proposed in the

literatures.

MKL is proposed to deal with the domain adaption problem, which minimizes the

data distribution mismatch between feature domains. For a detailed survey of MKL

algorithms, we refer our readers to [41]. Usually, the parameters of kernel functions

in canonical SVM classifiers are tuned during the training-validation experiments,

and the parameters that result in the best classification rate on validation samples

are applied to recognize the test samples. However, it is known that different kernels

with different parameters correspond to different representation of features. Instead

of trying to find which works the best, MKL-based SVM use a combination of them

and define automatic learning methods to pick the optimal parameters. It is defined

to learn both the decision boundaries between data from different classes and the

kernel combination weights in a single optimization problem [51]. Therefore, features

in different domains are transferred and fused at the kernel level in SVM.

Lanckriet et al. [51] considered a linear combination of basis kernels. By restrict-

ing the kernel combination weights to have nonnegative values, the authors formu-

lated their algorithm to a Quadratically-Constrained Quadratic Program (QCQP),

where the support vector coefficients and the kernel combination weights were jointly

learned. Sonnenburg et al. [52] proposed a formulation of linearly combining ker-

nels in the primal form of SVM. In their method, a l1-norm restriction was used on

11



the regularizer of the SVM objective function to enforce sparse kernel combinations.

Later on, Rakotomamonjy et al. [16] proposed a modified regularizer with explicit

kernel combination weights in their primal formulation. The authors exploited the

weighted l1-norm across different kernel spaces and the l2-norm within each kernel

space. This formulation named as SimpleMKL was then proved to be equivalent to

the optimization problem of [52].

Instead of constraining kernel weights via l1-norm regularization, Cortes et al.

[53] studied the performance of l2-norm for MKL, and found that the l2-norm out-

performed l1-norm when larger sets of basis kernels were utilized. Sun et al. [54]

proposed a new kernel evaluation technology to utilize both l1 and l2 norms in their

Selective Multiple Kernel Learning (SMKL) method. SMKL obtained a sparse solu-

tion by a pre-selection procedure, and meanwhile preserved a subset of kernels with

complementary information out of the entire set of basis kernels. Kloft et al. [55, 56]

generalized these MKL algorithms and formulated lp-norm MKL with arbitrary p

(p ≥ 1) to regularize over kernel combination coefficients in a binary classification

problem. In our paper, we proposed lp-norm MKL multiclass-SVM by extending the

original method to a multi-class classification problems. Recently, Yan et al. [57]

compared the performance of l1-norm and l2-norm MKL in the applications of im-

age and video classification tasks, and concluded that the l2-norm should be used

as it carries complementary information resources. Following this idea, we apply

our proposed method for facial expression recognition, and study the performance of

nonsparse kernel combinations (p > 1) versus sparse ones (p = 1).

Multi-task learning is a transfer learning approach that learns multiple related

problems simultaneously using a common representation. It seeks to improve the

performance of a task with the help of other related tasks by properly leveraging

information across the involved tasks in the learning process. The multi-class classi-
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fication problem can be viewed as a special case in the MTL framework. Koby et al.

[58] proposed an MTL method to solve the one-vs-the-rest multi-class classification

problem. Several works have extended the kernel-based classifier SVM to the case of

MTL. One set of algorithms, such as [59, 60], propose to present the task relations

via the classification hyperplanes of SVM and can make closer the parameters of the

hyperplanes for similar tasks. Whereas, other methods aim to learn the common

structure among data from all the tasks. For example, the authors of [61] model the

task relations by assuming that there only exists a small set of features shared across

multiple tasks. The approach in [62] learns a shared feature map across all the tasks

that can projects the input features of classifiers into a low-dimensional space with

higher discriminative power. Our work presents a unified framework of the above two

categories of MTL approaches, where task relations are encoded based on both SVM

classification functions and a set of shared kernels for feature representation across

all the tasks.

Recent works also explored the utilization of multiple kernel learning (MKL) for

classification with multiple tasks. The authors of [63] model the task relations by

defining meta-tasks. Each meta-task corresponds to a subset of all tasks, represent-

ing the common properties of the tasks within this subset. Without utilizing multiple

kernel functions as usually done to fuse different types of features in MKL algorithms,

a lp-norm MKL solver [55] is employed for solving the proposed MTL problem. In

[64, 65], multiple kernels are fused to enhance the discriminative power of MTL-based

classifiers. However, these methods assume uniform kernel combinations and weight

too much on the commonalities among multiple tasks without considering their diver-

sities. Sharing exactly the same kernel combination weights might be too restrictive

for weakly correlated tasks. Tang et al. [66] propose to simultaneously learn multiple

kernels for multiple tasks. Similar to our methods, a specific kernel combination is

13



assigned for each task, but the relations of SVM classification functions are not uti-

lized for task structure modeling. We will compare this work with our method in the

experiment section, and confirm the importance of modeling the relations of SVM

hyperplanes in the application of facial AU detection.
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Chapter 3

Face databases for facial expression

analysis

In this chapter, we introduce the face databases utilized in this dissertation for

basic expression recognition and action unit detection.

Facial expressions can be categorized into spontaneous expressions and posed ex-

pressions. Spontaneous expressions are those that occur in real life. Whereas, posed

facial expressions are assumed to be artificially behaved and can differ markedly in

configuration, intensity, and timing from spontaneous expressions. Especially, some

facial actions that usually co-occur or are highly correlated in posed facial behaviors

may rarely be seen in spontaneous ones. Therefore, in order to investigate the robust-

ness of our proposed methods for facial expression analysis, we used four databases

in our experimental works: the extended Cohn-Kanade (CK+) [67] database, the

MMI database [68, 69] and the GEMEP-FERA data [17, 70] with posed expressions

and the Denver Intensity of Spontaneous Facial Action (DISFA) database [71] with

spontaneous expressions.
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Anger Disgust Fear Joy Sadness Surprise Neutral

Figure 3.1: Sample images in the CK+ database

The three posed facial expression databases – CK+, MMI and GEMEP-FERA –

were utilized for the experiments on basic facial expression recognition. Both within-

database and cross-database tests were conducted to evaluate our proposed lp-norm

MKL-based multiclass-SVM. For AU detection, we used the CK+ database and the

DISFA database to verify the performance of our proposed MTL-based methods in-

cluding lp-norm MTMKL, TD-MTMKL and HMTSL, which simultaneously detect

multiple AUs by exploiting their inter-relations.

3.1 The CK+ database

The CK+ database is one of the most comprehensive face databases available in

the research community. It consists of 593 image sequences from 123 subjects. The

image sequences vary in duration from 10 to 60 frames and incorporate the neutral

frame to peak formation including seven facial expressions: Anger, Disgust, Fear, Joy,

Sadness, Surprise and Contempt as well as 30 AUs. All the images were digitized into

640 × 480 pixel arrays, and the X–Y coordinates of 68 landmark points were given

for every image in the database. Figure 3.1 shows the sample images of the CK+

database with seven expressions.
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In our work on AU detection, we used the first frame (neutral face) and the last

three frames (peak frames) in each of the 593 image sequences, resulting in 2372

images. Since some of the image sequences do not necessarily represent six basic

expressions and may just be a combination of various AUs, for basic facial expression

recognition, we only used the images that are labeled as one of the six basic emotions

including Anger, Disgust, Fear, Joy, Sadness and Surprise, resulting in 1236 images

(135 Anger, 177 Disgust, 75 Fear, 207 Joy, 84 Sadness, 249 Surprise and 309 neutral

faces). These images are selected from 309 image sequences with 106 subjects.

After converting the selected images to 8-bit gray-scale ones, we calculated the

average X–Y coordinates of the located 68 landmark points among them. Then,

each image was registered using a similarity transformation [72]. The transformation

matrix was calculated between the X–Y coordinates of the 68 landmark points in that

image and the average X–Y coordinates. Afterwards, we cropped the face region from

each registered image based on the boundary described by its 68 landmark points,

and resized them to 128×128 pixels. Histogram of oriented gradient (HOG) [30] and

local binary pattern histogram (LBPH) [73] features with 8× 8 windows and 59 bins

in each window were separately extracted from each cropped facial image, and the

size of each window is 16× 16 pixels without overlap between windows. Further, for

each feature category (LBPH and HOG) the PCA algorithm [74] was used for data

dimensionality reduction to preserve 95% of the energy. The block diagram of our

manipulation on image registration and feature extraction are shown in Figure 3.2.

3.2 The MMI database

The MMI facial expression database includes subjects from students and research

staff members of both sexes aged 19-62 years old. It is a continually growing resource
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Figure 3.2: Facial feature extraction on the CK+ database

for AU and basic emotion recognition from face videos, of which the online search

engine will facilitate researchers’ selection of samples by setting different criteria.

Figure 3.3 shows the sample images of the MMI database with seven expressions.

In our work, 209 sessions were chosen from the database. Our selection criteria

were that for each selected session it could be labeled as one of the six basic emotions

and contains frontal or near-frontal view of the participant’s faces. The selected

sessions were from 30 subjects. Facial images in each session were digitized into

720 × 576 pixels with 24-bit color values. Similar to our experiments on the CK+

database, for each selected session, the first frame and three peak frames were used

for prototypic expression recognition resulting in 836 images (99 Anger, 96 Disgust,

87 Fear, 126 Joy, 96 Sadness, 123 Surprise and 209 neutral faces). Different from the

CK+ databae, the locations of 68 landmark points on facial images are not provided in

the MMI database. Therefore we apply the recently proposed facial feature tracking

method in [75] to extract their geometric information (X–Y coordinates). Then,
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Anger Disgust Fear Joy Sadness Surprise Neutral

Figure 3.3: Sample images in the MMI database

the image registration, LBPH and HOG feature extraction and data dimensionality

reduction were conducted the same as on the CK+ database.

3.3 The GEMEP-FERA database

The GEMEP-FERA database is provided by the 2011 Facial Expression Recog-

nition and Analysis Challenge (FERA2011). The emotion challenge of the GEMEP-

FERA database [17, 70] contains 289 portrayals of five emotions: anger, fear, joy,

sadness, and relief. Figure 3.4 shows the sample images of GEMEP-FERA with five

expressions.

Of all the portrayals, 155 sessions are for training including seven subjects (three

men) with three to five instances of each emotion for each subject. The remaining

134 sessions are provided for testing including six subjects (three men), where half of

the subjects are not present in the training set. Each actor contributed three to ten

instances per emotion in the test set. For this database, the facial feature extraction

process were kept the same as on the MMI database including the face landmark
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Anger Fear Joy Sadness Relief

Figure 3.4: Sample images in the GEMEP-FERA database

tracking, image registration, and HOG and LBPH feature extraction from all video

frames.

3.4 The DISFA database

The DISFA database contains videos with facial activities from 27 adult subjects.

Each subject was video-recorded using a high resolution camera (1024 × 768) at 20

frames per second (fps) while the subject was viewing a 4-minute stimulus video clip.

The video clip was designed with the intent of eliciting subjects’ spontaneous facial

expressions. For each video frame, the intensity of 12 AUs was manually annotated

at a six-point ordinal scale (i.e, from 0 to 5). This database also provides 66 facial

landmark points for all video frames of each subject. Figure 3.5 shows the sample

images of the DISFA database.

In our experiments, to be consistent with the study on DISFA reported in [76],

for each AU the video frames with intensity 0–1 were labeled as the absence of that

AU while the frames with intensity 2–5 were labeled as the presence of that AU.

Afterwards, the image registration, LBPH and HOG feature extraction and data
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Figure 3.5: Sample images in the DISFA database

dimensionality reduction were conducted by following the same settings as on the

CK+ database.
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Chapter 4

lp-norm MKL-based

multiclass-SVM for basic facial

expression recognition

This chapter presents the formulation of our proposed transfer learning method

to fuse different types of facial features with multiple kernel functions for facial ex-

pression recognition. We first introduce the optimization problem of the MKL with

sparse kernel combinations (l1-norm MKL) and the lp-norm MKL algorithm for bi-

nary classification problems, and then formulate our multiclass extension, lp-norm

MKL-based multiclass-SVM, via one-against-one and one-against-all techniques [77].

Experimental works on CK+, MMI and GEMEP-FERA databases are shown and

discussed based the comparison with several state-of-the-art methods.
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4.1 l1-norm MKL-based binary SVM

Usually, the parameters of kernel functions in canonical SVM classifiers are tuned

during the training-validation experiments, and the parameters that result in the best

classification rate on validation samples are applied to recognize the test samples.

However, it is known that different kernels with different parameters correspond to

different representation of features. Instead of trying to find which works the best,

MKL-based SVM use a combination of them and define automatic learning methods

to pick the optimal parameters.

In this section, we present the formulation of the MKL optimization problem

with sparse constraints and review some algorithms for solving it. Given a set of N

training samples {(xi, yi)}Ni=1, where xi is the ith feature vector of the training set

X with dimension D, and yi ∈ {−1,+1} is its corresponding class label, the MKL

optimization problem in [52] is formulated either by Equation 4.1.1 or in its equivalent

form by Equation 4.1.2 as proposed in [16]:

min
w,w0,ξ

J(w,w0, ξ) =
1

2
(

M∑

m=1

∥wm∥2)2 + C
N∑

i=1

ξi

s.t. yi(
M∑

m=1

wT
mφm(xi) + w0) ≥ 1− ξi, i = 1, 2, ..., N

ξi ≥ 0, i = 1, 2, ..., N

(4.1.1)

Here ξ = (ξ1, ξ2, ..., ξN)
T is known as the vector of slack variables in canonical SVM

for nonseparable classification problems, and C is a positive constant preset to control

the relative influence of nonseparable samples. φm(·) is a map that maps the feature

domain X into the mth reproducing kernel Hilbert space (RKHS) Hm, based on which

kernel function km(·, ·) is defined as km(·, ·) =< φm(·), φm(·) >. M is the number of
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kernels in use. wm is the direction of hyperplane in Hm, w denotes the set {wm} and

w0 is the exact in-space position of hyperplanes.

min
w,w0,ξ,θ

J(w,w0, ξ, θ) =
1

2

M∑

m=1

1

θm
∥wm∥22 + C

N∑

i=1

ξi

s.t. yi(
M∑

m=1

wT
mφm(xi) + w0) ≥ 1− ξi, i = 1, 2, ..., N

ξi ≥ 0, i = 1, 2, ..., N

M∑

m=1

θm = 1, θm ≥ 0, m = 1, 2, ...,M

(4.1.2)

θ = (θ1, θ2, ..., θM)T is the kernel combination vector that controls the weight of the

squared form of wm in the objective function. When θm = 0, ∥wm∥2 should also be

equal to zero to yield a finite objective value.

Several MKL algorithms are proposed in [52, 16, 78] to solve the above two equiv-

alent optimization problems. In [52], Equation 4.1.1 was transformed to be a semi-

infinite linear program (SILP), and a chunking algorithm was proposed to solve the

SILP by simultaneous optimization of SVM and kernel combination weights. This

algorithm can be applied to large scale learning tasks. The SimpleMKL and Hessian-

MKL algorithms are two other optimization techniques proposed to solve Equation

4.1.2. These techniques utilize two nested loops that iteratively learn the decision

hyperplanes in C-SVM and the kernel combination vector. In the inner iteration,

both algorithms solve the canonical binary SVM by fixing the kernel combination

vector. In the outer iteration, the SimpleMKL utilizes a reduced gradient descent

algorithm [79] with a 1D search algorithm – the golden section search method [80]

– to update the combination weights, whereas the HessianMKL expands the weight

updating problem to be a standard quadratic programming problem.

24



All these methods solve the same convex optimization problem and give the same

optimum, though. The HessianMKL algorithm turns out to be the most efficient

one as justified in [78, 16]. However, as presented in [81], the objective function in

Equation 4.1.1 contains a l2,1-norm penalizer 1
2
(
∑M

m=1 ∥wm∥2)2, which calculates the

l1-norm of the squared hyperplane directions over multiple kernel spaces and will

promote a sparse solution for the usage of kernel functions. Similarly, the l1-norm

constraint on the vector θ in Equation 4.1.2 is a sparsity constraint that encourages

sparse basis kernel combinations. Thereafter, very limited number of basis kernel

functions (km(·, ·), m = 1, 2, ...,M) are used to represent the test samples during

classification tasks, which may reduce the discriminative power of MKL-based SVM.

4.2 lp-norm MKL-based binary SVM

To allow for non-sparse kernel mixtures, the authors of [55, 56] extended MKL

to arbitrary norms, that is lp-norm MKL with p ≥ 1. In this part, we present the

formulation and the solution of this generalized MKL optimization problem for binary

classification tasks.

The lp-norm MKL is named from the novel regularizer of SVM as follows:

Ω(w) =
1

2
∥w∥22,p, p ≥ 1,

where the l2,p-norm is defined as ∥w∥2,p = (
∑M

m=1 ∥wm∥p2)
1
p , and wm is the direction of

discriminative hyperplane to be learned in each RKHS. Together with the hinge loss
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function of SVM, the primal form of lp-norm MKL-based binary SVM is obtained as:

min
w,ξ

J(w, ξ) =
1

2
∥w∥22,p + C

N∑

i=1

ξi, p ≥ 1

s.t. yi

(
M∑

m=1

wT
mφm(xi)

)

≥ 1− ξi, i = 1, 2, ..., N

ξi ≥ 0, i = 1, 2, ..., N

(4.2.1)

which is a convex optimization problem as proved in [55, 56].

Note that when p = 1 the formulation is the same as the one defined in Equation

4.1.1, which enforces sparse kernel combinations. Equation 4.2.1 is solved based on

its dual form shown as follows:

min
θ

max
α

L(θ, α) = 1Tα− 1

2
αTY KθY α, p ∈ [1, 2)

max
θ

max
α

L(θ, α) = 1Tα− 1

2
αTY KθY α, p ∈ (2,+∞)

s.t. Kθ =
M∑

m=1

θmK
(m),

N∑

i=1

αiyi = 0, 0 ≤ αi ≤ C,

M∑

m=1

θp/(2−p)
m ≤ 1, θm ≥ 0

(4.2.2)

where α = (α1, α2, · · · , αN)
T is the vector of Lagrangian dual variables corresponding

to each training sample, and Y = diag(y1, y2, · · · , yN) is an N ×N diagonal matrix.

K(m) is the kernel matrix corresponding to the mth kernel function, and K
(m)
i,j =

km(xi, xj).

In [56], the authors proposed a simple macro-wrapper algorithm for solving Equa-

tion 4.2.2, and proved its convergence in the case of p > 1. The macro-wrapper solver

contains two nested steps for parameter updating. In the outer one, the kernel com-
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bination weights are updated by fixing the variables of SVM. Whereas in the inner

iteration, with fixed kernel combination weight vector the optimization problem is

transformed to the canonical C-SVM problem, and can be solved by any SVM solver.

Detailed steps are shown in Algorithm 1.

Algorithm 1 The simple macro-wrapper algorithm

Require: p ∈ (1,+∞)\{2}, C and Y
for all m ∈ {1, 2, · · · ,M} do

initialize θm := (1/M)(2−p)/p

compute K(m)

end for

while optimality conditions are not satisfied do

compute Kθ based on the constraint in Equation 4.2.2
update α based on a canonical SVM solver
for all m ∈ {1, 2, · · · ,M} do

if p < 2 then

update θm := θm(αTY K(m)Y α)
2−p
2

[

∑M
m′=1 θm(αTY K(m′)Y α)

p
2

]

2−p
p

else

update θm := (αTY K(m)Y α)
2−p
2p−2

[

∑M
m′=1 (α

TY K(m′)Y α)
p

2p−2

]

2−p
p

end if

end for

end while

Ensure: α and θ

We implement Algorithm 1 for the case p > 1. The optimality conditions are

set based on number of total iterations and the variations of updated θ between

consecutive iterations. For the case of p = 1, we apply the HessianMKL algorithm

due to its higher computational efficiency.

In the test phase, given a test sample x0 ∈ R
D, the label of x0 (denoted by y0)

can be calculated as follows.

y0 = sgn[
∑M

m=1
θm

(∑N

i=1
αiyikm(xi, x0)

)

︸ ︷︷ ︸

single kernel with single feature

] (4.2.3)
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The formulation within the under bracket is the discriminant function used for

classifying new samples in canonical binary SVM. In other words, by using MKL-

based SVM the label of a sample is determined based on weighted summation of

the results obtained from each RKHS, which enhances the discriminant power for

classification. In Appendix A, we justify the superiority of MKL-based SVM to the

canonical single kernel SVM by showing that the minimized the objective function in

Equation 4.2.1 preserves the lower boundary of the one in canonical SVM.

4.3 lp-norm MKL-based multiclass-SVM

In this section, we present our proposed MKL-based multiclass-SVM framework

by extending the binary lp-norm MKL classifier described by Equation 4.2.2 for multi-

class classification. Suppose we want to classify U classes using binary classifiers. Two

techniques are commonly used in the literature: one-against-one and one-against-rest.

In the one-against-one technique, U(U − 1)/2 binary classifiers are built for all pairs

of distinct classes, whereas in the one-against-rest technique U binary classifiers are

built for each class of data.

The authors of [16] presented a structure of MKL-based multiclass-SVM using the

SimpleMKL algorithm. In their structure, a single kernel combination weight vector

is jointly learned for all binary classifiers in the multiclass-SVM as:

min
θ

L(θ) =
∑

u∈Φ

Lu(θ) (4.3.1)

where Φ is the set of all pairs of distinct classes considered in the multiclass-SVM,

and Lu(θ) denotes the objective function for optimizing kernel combination vector θ

with fixed SVM parameters in Equation 4.2.2 (p = 1). By this definition, the inner
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loop of the SimpleMKL-based multiclass-SVM is to solve the multiclass-SVM while

in the outer loop a single kernel weight vector is learned to minimize the summation

of the objective functions from all binary classifiers. Therefore, the learned optimal

kernel weight vector can be used for all binary classifiers, which generally increases

the recognition result of multiclass-SVM.

However, only one kernel weight vector may not be good enough to reflect the

contribution of each binary classifier in the whole objective function. Since features

are projected into different spaces using different kernel functions, for a binary clas-

sifier the values of kernel combination weights reflect the choice of optimal kernel

functions and features used for distinguishing between two classes. Therefore, in the

MKL-based multiclass-SVM it is most likely that different binary classifiers may have

different optimal kernel weight vectors for classification. However, the structure of

the SimpleMKL-based multiclass-SVM, which uses the same kernel weight vector for

all binary classifiers, does not have a good resolution of selecting kernel combinations

for different pairwise classifiers.

Based on the discussion above, we are looking for one combination weight vector

θu to optimize each pairwise SVM’s objective function Lu as in Equation 4.3.2, and

the proof of the superiority of our method over SimpleMKL-based multiclass-SVM is

shown in B.

min
θu

L̂ =
∑

u∈Φ

Lu(θu), if p ∈ [1, 2)

max
θu

L̂ =
∑

u∈Φ

Lu(θu), if p ∈ (2,+∞)

(4.3.2)

We implemented the structure of our MKL-based multiclass-SVM proposed in

Equation 4.3.2 using the lp-norm MKL algorithm for the p > 1 case and the Hessian-

MKL algorithm for the p = 1 case. Similar to the SimpleMKL-based multiclass-SVM,
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in the inner loop the common multiclass-SVM is solved by a C-SVM solver – SVM-

KM [82] with either the one-against-one rule or the one-against-rest rule while in the

outer loop the two MKL algorithms for different cases are implemented to learn one

kernel weight vector for each binary classifier. In our application for facial expression

recognition, the one-against-rest rule is used and the classification of novel samples is

done by a max-wins voting strategy. The pseudo code of our framework is shown in

Algorithm 2.

Algorithm 2 The lp-norm MKL-Based Multiclass-SVM

Ensure: p(≥ 1), K(m)(m = 1, · · · ,M), yu and feasible θu(u ∈ Φ)
Require:

if p = 1 then

for all u ∈ Φ do

run the HessianMKL for θ⋆u and α⋆
u

end for

else

for all u ∈ Φ do

run the Algorithm 1 for θ⋆u and α⋆
u

end for

end if

4.4 Facial expression recognition experiments

This section illustrates the settings of the lp-norm MKL-based multiclass-SVM

for facial expression recognition. The experimental results on the CK+ and MMI

databases are shown and discussed to evaluate the performance of our proposed

method.

4.4.1 Classifier Settings

We used the following configuration for fusing LBPH and HOG features at the

kernel level with different kernel function parameters based on our proposed MKL
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framework. In the experiments, we used HtRBF and polynomial functions as defined

in Equation 4.4.1.

kHtRBF (x, y) = e−ρ
∑

i |x
a
i −yai |

b

, ρ > 0, 0 ≤ a ≤ 1, 0 ≤ b ≤ 2

kpoly(x, y) = ⟨x, y⟩r, r ∈ N

(4.4.1)

where a, b and ρ are the kernel parameters of the HtRBF kernel, xi is the i
th element of

feature vector x, and r is the order of the polynomial function. The HtRBF was first

defined in [83], where the commonly used Gaussian function or RBF [84] is a special

case when a = 1, b = 2. As stated in [83], it achieves better classification results

than polynomial function and Gaussian function for image classification within SVM

classifiers.

In our experiments, we set different values for parameters of the above two ker-

nel functions with the criterion that they fill a proper range of the defined do-

main. For the HtRBF, we set a ∈ {0.1, 0.3, 0.7, 1}, b ∈ {0.1, 0.5, 1, 1.5, 2} and

ρ ∈ {0.01, 0.1, 0.5, 1, 10, 50, 100}; for the polynomial function, we set r ∈ {1, 2, 3}.

Thereafter, we obtained 143 parameterized kernels from the two defined kernel func-

tions (i.e., 4 × 5 × 7 + 3 = 143). Hence given any pair of samples (e.g., the ith and

jth registered images), the fusion of extracted LBPH ({xi, xj}) and HOG features

({zi, zj}) at the kernel level within our framework is handled as follows:

Ki,j =
143∑

m=1

[θmkm(xi, xj) + θm+143km(zi, zj)] (4.4.2)

where km(·, ·) is one of the 143 parameterized kernels, and θ = (θ1, θ2, ..., θ286)
T

(∥θ∥2/(2−p) = 1, p ≥ 1) is the kernel combination vector to be optimized during MKL.
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4.4.2 Experimental results on CK+

We designed eight independent SVM classifiers in our experiments based on the

CK+ database. A standard 10-fold cross-validation scheme was adopted to find the

best values of the parameters for the classifiers while conducting person-independent

experiments. We randomly separated subjects into 10 folds including training, valida-

tion and test sets. In each round of our cross-validation, one fold was left out as test

set. Among the rest 9 folds, we use one as validation set and repeat 9 times to find

the best classifier parameters for the test set. Hence, the samples in the test sets were

never used in training or validating the algorithm. By comparing the experimental

results of these classifiers, we empirically studied the advantage of our framework

for the application of facial expression recognition. The detailed information of the

designed classifiers is listed in Table 4.1.

Table 4.1: Information of designed eight SVM classifiers

# Classifier Feature
# of

Kernels
Kernel

Parameters
C1 Canonical SVM LBPH 1 C, a, b, ρ, r
C2 Canonical SVM HOG 1 C, a, b, ρ, r

C3
SimpleMKL-based
multiclass-SVM

LBPH
HOG

143 C

C4
lp-norm MKL-based

multiclass-SVM(p = 1)
LBPH
HOG

143 C

C5
lp-norm MKL-based

multiclass-SVM(p > 1)
LBPH
HOG

143 C, p

C6
lp-norm MKL-based

multiclass-SVM(p ≥ 1)
LBPH
HOG

1 C, p, a, b, ρ, r

C7
Canonical SVM

with averaging kernels
LBPH
HOG

143 C

C8
Canonical SVM

with product kernels
LBPH
HOG

143 C

In classifiers C1, C2 and C6, we tuned single kernel from the 143 parameterized

kernels among the selected two kernel functions listed in Section 4.4.1 as well as
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the parameter C (C ∈ {0.01, 0.1, 1, 10, 100, 500, 800, 1000}) in C-SVM during the

training and validation steps. However, by fusing the HtRBF and polynomial kernels

in Equation 4.4.2, both the SimpleMKL-based multiclass-SVM (C3) and our proposed

lp-norm MKL-based multiclass-SVM (C4, C5) can automatically learn the optimal

kernel combination weights, leaving only C or p to be tuned during cross-validation.

In our work, we set p ∈ {1, 1.05, 1.2, 1.35, 1.5, 1.65, 1.8, 1.95, 2.1, 4, 8, 16}. In order

to further show the benefit of using MKL-based SVM, we evaluate two other kernel

combination methods within C-SVM, averaging kernels (C7) and product kernels

(C8), as other baseline classifiers. The kernel combination matrices in these two

methods can be precalculated without learning, then their optimization problems for

learning the discriminant hyperplanes are equivalent to only solving the canonical

multiclass-SVM. Finally, for all the eight classifiers, the parameters that correspond

to the highest overall recognition rates on the validation data were applied to predict

the facial expressions of the test samples.

Figure 4.1 lists the overall recognition rate of the designed classifiers. Figure 4.2

shows the performance of the eight classifiers on each of the 7 expression classes (six

basic facial expressions and the neutral faces), and Table 4.2 shows the confusion

matrix of classifier C5, where we achieved the highest overall recognition rate using

our MKL framework for the case p > 1.

In the following, we focus on comparing the performance of different SVM classi-

fiers and empirically study the effect of MKL-based SVM classifiers on facial expres-

sion recognition. Our results using eight designed classifiers are compared from five

aspects as follows.

a) Canonical SVM with single kernel vs. MKL-based SVM (C1, C2 vs. C3,

C4, C5): Comparing the results shown in Figure 4.1, we can see that both the

SimpleMKL-based multiclass-SVM (C3) and our proposed lp-norm based multiclass-
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Figure 4.1: Overall recognition rate of designed classifiers

Table 4.2: Confusion matrix of classifier C5 using lp-norm MKL-based multiclass-
SVM with multiple kernels and features on CK+ (p > 1, overall recognition rate:
93.6%)

% Ag Sp Dg Fr Jy Sd Nt
Anger 97.8 0 1.5 0 0 0.7 0
Surprise 2.0 91.2 1.6 1.2 0.8 2.8 0.4
Disgust 1.7 0 96.0 0.6 0 0.6 1.1
Fear 0 0 2.7 93.3 0 1.3 2.7
Joy 0.5 1.0 1.9 1.4 92.3 0.5 2.4

Sadness 0 0 1.2 1.2 0 96.4 1.2
Neutral 0.3 1.3 0.6 1.0 2.3 1.9 92.6
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SVM (C4, C5) can generally boost the accuracy of facial expression recognition by

fusing different features with multiple kernels. Specifically, in Figure 4.2, the recog-

nition rate of Anger has been increased from 82.2% (C1) and 71.9% (C2) to 88.2%

(C3), 91.1% (C4) and 97.8% (C5), respectively. Moreover, both C3 and C4 increased

the recognition rates of Surprise, Fear, and Sadness expressions from C1 and C2,

and their recognition rates of Disgust, Joy, and neutral faces are comparable to the

first two classifiers. Compared to C1 and C2, classifier C5 achieved higher recognition

results of all classes except the classes of Surprise and Joy, which are kept comparable.

b) SimpleMKL vs. lp-norm MKL (p = 1) in multiclass-SVM (C3 vs. C4): The

similarity of these two MKL methods lies in the fact that they share the same objective

function and force the optimized kernel combination vectors to be sparse with l1-

norm. The only difference between them is that for multiclass classification tasks

the SimpleMKL-based multiclass-SVM keeps the kernel weight vectors for all binary

classifiers to be the same while our proposed multiclassi-SVM structure learns one

kernel weight vector for each binary classifier. The advantage of our method is that

it gives the system more flexibility in selecting optimal kernel weights for each binary

classifier. Comparing the experimental results of these two methods shown in Figures

4.1 and 4.2, we can see that the overall recognition rate was increased from 89.4% (C3)

to 91.3% (C4) using our proposed MKL-based multiclass-SVM framework. Especially,

the recognition results of all classes are boosted by 1.5% ∼ 3.9% expect the Fear and

Sadness expressions, which are kept comparable.

c) Sparse case vs. Non-sparse case in lp-norm MKL (C4 vs. C5): This compar-

ison is between the p = 1 case and the p > 1 case within our proposed framework.

In the case of p = 1, the MKL algorithm in our framework forces the kernel weight

vectors to be sparse for all binary classifiers. Thereafter, only the activated parame-

terized kernels (corresponding to non-zero kernel combination weights) and features
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Figure 4.2: The performance of designed classifiers on each of the 7 facial expressions

are used in the testing step. However, for the non-sparse case (p > 1), usually all

fused features and parameterized kernels are activated. Table 4.3 reports the aver-

age number of activated kernels associated with feature types and kernel functions

after training-validation steps in our experiments. As we can see that, in the sparse

case, for each type of feature, at most 3 out of 140 parameterized HtRBF kernels

are activated whereas in the non-sparse case, almost all are utilized. Reviewing the

experimental results in Figure 4.1 and Figure 4.2 show that the non-sparse classifier

C5 in our framework generally achieved higher recognition rates than the sparse one

C4 (increased by 2.5%). In addition, we also backtracked the values of the tuned

parameter p in each round of the 10-fold cross-validation for testing samples, and

found that p ∈ [1.05, 1.65]. Therefore, we conclude that the non-sparse MKL method

is more suitable for facial expression recognition application.

Table 4.3: Number of activated parameterized kernels associated with features and
kernel functions in lp-norm MKL

(a) Sparse case (C4)

# LBPH HOG
HtRBF 3/140 2/140
poly 1/3 1/3

(b) Nonsparse case (C5)

# LBPH HOG
HtRBF 133/140 137/140
poly 3/3 3/3
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d) Single kernel vs. Multiple kernels for fusing multiple features in MKL-based

SVM (C6 vs. C4, C5): In our experiments, classifiers C4 and C5 used multiple kernels

to fuse LBPH and HOG features, whereas C6 only applied single kernel function for

both features. The overall recognition result of C6 was improved from 88.2% to 91.3%

(C4) and to 93.6% (C5). Furthermore, C5 achieved higher recognition results than

C6 for all 7 classes.

e) lp-norm based kernel combination vs. Other kernel combination methods (C4,

C5 vs. C7, C8): In order to justify the benefit of using lp-norm MKL, we provided

two extra kernel combination strategies proposed in [85] as baseline methods. One

is the averaging kernels, a linear kernel combination method, which forces all kernel

combination weight to be equal with their summation to be 1. The other is the prod-

uct kernel, where kernel functions are non-linearly combined based on dot product.

Viewing the experimental results from Figure 4.1 and Figure 4.2, we conclude that the

lp-norm MKL based kernel combination generally outperform the kernel combination

methods with averaging kernels and product kernels for facial expression recognition.

We further recognized the six basic facial expressions excluding neutral faces (i.e.,

6-class recognition) using our proposed MKL framework. The detailed results are

shown in Table 4.4.

Table 4.4: Confusion matrix using lp-norm MKL-based multiclass-SVM for six basic
expressions on CK+ (overall recognition rate: 95.5%)

% Ag Sp Dg Fr Jy Sd
Anger 95.6 1.5 0.7 0.7 0 1.5
Surprise 1.2 94.4 0.4 2.0 0.4 1.6
Disgust 1.1 0.6 95.5 1.7 0 1.1
Fear 1.3 4.0 0 92.0 0 2.7
Joy 0 1.4 0.5 0 97.6 0.5

Sadness 1.2 0 1.2 1.2 0 96.4
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Compared with several state-of-the-art facial expression recognition methods listed

in Table 4.5, we can see that our method achieves the best recognition rate for seven

expressions and the second best accuracy for six basic expressions. On a personal

computer with Intel i5 CPU (2.66 GHz) and 8 GB memory, the average computation

time of our proposed lp-norm MKL multiclass-SVM with Matlab implementation is

13.5 minutes for classifier training and parameter tuning in each round of the 10-fold

cross-validation scheme. It takes about 0.03 seconds in the recognition step given

extracted LBPH and HOG features of each test sample.

Table 4.5: Recognition rate (%) of state-of-the-art methods on CK/CK+

References Database
# of
classes

%

[86] CK+ 7 92.7

[87]
CK+ 7 85.8
CK+ 6 95.8

[88] CK+ 7 89.3

[18]
CK 7 91.4
CK 6 95.1

[89] CK 7 91.5
Our lp-norm MKL

framework
CK+ 7 93.6
CK+ 6 95.5

4.4.3 Experimental results on MMI

Similar to the works on CK+, 10-fold cross-validation was applied for pruning

C and p on MMI’s 30 subjects. Tables 4.6 and 4.7 show the confusion matrices for

6-class and 7-class recognition by lp-norm MKL-based multiclass-SVM.

It can be observed from Table 4.6 and Table 4.7 that besides the CK+ database,

our proposed method can achieve promising recognition accuracies for each facial

expression on the MMI database (i.e., all above or close to 90%), which implies its

effectiveness. We also backtracked the value of p tuned in each round of the cross-
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Table 4.6: Confusion matrix using lp-norm MKL based multiclass-SVM with multiple
kernels and features for 6 expressions on the MMI database (overall recognition rate:
93.6%)

% Ag Sp Dg Fr Jy Sd
Anger 94.9 0 2.0 0 0 3.0
Surprise 1.6 95.1 0 0.8 2.4 0
Disgust 0 2.1 90.6 2.1 0 5.2
Fear 0 4.6 1.1 92.0 2.3 0
Joy 0.8 0.8 2.4 0.8 94.4 0

Sadness 4.2 0 0 2.1 0 93.8

Table 4.7: Confusion matrix using lp-norm MKL-based multiclass-SVM with multiple
kernels and features for 7 expressions on the MMI database (overall recognition rate:
92.8%)

% Ag Sp Dg Fr Jy Sd Nt
Anger 93.0 2.0 1.0 1.0 1.0 2.0 0
Surprise 1.6 92.6 2.4 0.8 0.8 0.8 0.8
Disgust 0 3.1 91.7 0 1.0 2.1 2.1
Fear 0 2.3 0 95.4 0 2.3 0
Joy 0.8 0.8 3.1 0.8 89.7 2.4 2.4

Sadness 2.1 2.1 0 3.1 0 90.6 2.1
Neutral 0.5 0 1.4 1.9 0 1.0 95.2
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validation process, and the tuned best p for test samples are within the range [1.2, 1.8].

Therefore, similar to the results on the CK+ database, the non-sparse kernel weight

vectors in our framework outperformed the sparse ones.

Table 4.8 compares our proposed lp-norm MKL framework with several state-

of-the-art methods on the MMI database. As listed below, our method achieved

favorable experimental results. Especially we obtained a significant improvement in

the recognition of seven facial expression compared to [18]. The results of six basic

expressions are quite comparable with the best one among state-of-the-art methods.

These confirm the effectiveness of our method. Nevertheless, as the techniques used

for image registration, facial feature representation and experimental setup such as

image sequence selection across these methods are not exactly the same, it is hard to

hold a completely fair comparison with the CK+ and the MMI databases. Thus, this

comparison could only be regarded as a reference to demonstrate that fusing feature

with non-sparse MKL will help enhance the classification performance.

Table 4.8: Recognition rate (%) of state-of-the-art methods on the MMI database

References # of sequences # of classes %
[18] 99 7 86.9
[88] 238 6 95.8
[90] 175 6 94.1
[91] 96 6 82.7

Our lp-norm MKL
framework

209 7 92.8
209 6 93.6

We further performed cross-database evaluation of our proposed method. To be

specific, we trained our lp-normMKL-based multiclass-SVM on one database and then

tested the classifier on the other one. During the classifier training phase, samples

from each facial expression were randomly selected across subjects, and the number of

training samples for each class (expression) was kept the same to conduct uniformly

weighted classifiers. Table 4.9 shows detailed information of classifier settings and
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the recognition results. The values of C and p for training classifiers were set based

on their best tuned values obtained in the within-database experiments.

Table 4.9: Cross-database evaluation performance of our proposed lp-norm MKL-
based multiclass-SVM

Experiment Settings C p Overall [18]
Train: CK+; Test: MMI 500 1.35 66.9% 51.1%
Train: MMI; Test: CK+ 800 1.65 61.2% –

Compared to the result reported in [18] (51.1%), our method achieved better

recognition performance (66.9%) when we trained on the CK+ database and tested

on the MMI database. We further observed that the overall recognition results of

cross-database experiments was much lower than those of within-database experi-

ments. As the image registration, feature extraction and dimension reduction on

two databases were conducted in the same way, one reason of such disparity may

be due to different controlled environments during database collection. The paper

[92] suggested that in order to obtain good cross-database evaluation environments,

large training databases should be collected to cover variations of image and subject

conditions. This statement can be reinforced by our experimental results. That is,

when training classifiers on CK+ with more subjects and testing on MMI with less

subjects, we achieved better results than training on MMI and testing on CK+.

4.4.4 Experimental results on GEMEP-FERA

The objective of the emotion recognition challenge in GEMEP-FERA is to classify

each of the entire video session into one of the five emotion classes including anger,

fear, joy, sadness, and relief. We apply our proposed lp-norm MKL multiclass-SVM

framework to the GEMEP-FERA emotion database. 7-fold cross-validation (one fold

per subject in the training set) was adopted in the training phase for finding the best
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values of parameters C and p in our framework. Each of the seven subjects in the

training set was associated with one fold. In our test phase, every frame in each test

session was classified, and similar to [43] the emotion that was labeled in the largest

number of the frames in one session was assigned to the class of that session.

The confusion matrices of our experimental results are shown in Tables 4.10, 4.11

and 4.12 with person-independent, person-specific and overall partitions respectively.

Unlike CK+ and MMI databases that lack common protocols for experimental set-

tings, the splitting of the training and test sets provided in this GEMEP-FERA

database gives a benchmark setup for users to hold a fair comparison with others’

works in the literature. In Table 4.13, we compare our results with several state-

of-the-art methods. Especially, the UCRiverside, UIUC and KIT are the best three

groups among all the participants in the competition of emotion recognition challenge

as reported in [70]. We can notice that our method obtained the best result on the

person-independent experiment (1.1% better than UCRiverside) and the second best

result on the entire test set (0.2% lower than UCRiverside); the performance of the

person-specific partition is kept comparable with the state-of-the-art methods. These

confirm the effectiveness of our proposed framework.

Table 4.10: Confusion matrix for person-independent emotion recognition on
GEMEP-FERA (overall recognition rate: 76.3%)

% Anger Fear Joy Relief Sadness
Anger 85.7 0 0 0 14.3
Fear 13.3 66.7 6.7 13.3 0
Joy 0 5.0 85.0 10.0 0
Relief 12.5 6.3 0 75.0 6.3
Sadness 6.7 6.7 0 20.0 66.7

GEMEP-FERA is a very challenging database. Different from the CK+ and the

MMI databases, its video sessions are neither initialized from neutral faces nor ended

with an apex emotive state, and the subjects’ expressions are less posed and carica-
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Table 4.11: Confusion matrix for person-specific emotion recognition on GEMEP-
FERA (overall recognition rate: 94.4%)

% Anger Fear Joy Relief Sadness
Anger 92.3 0 0 0 7.7
Fear 0 90.0 10.0 0 0
Joy 0 0 100.0 0 0
Relief 0 0 0 100.0 0
Sadness 0 0 0 10.0 90.0

Table 4.12: Confusion matrix for all test sessions on GEMEP-FERA (overall recog-
nition rate: 83.6%)

% Anger Fear Joy Relief Sadness
Anger 88.9 0 0 0 11.1
Fear 8.0 76.0 8.0 8.0 0
Joy 0 3.2 90.3 6.5 0
Relief 7.7 3.9 0 84.6 3.9
Sadness 4.0 4.0 0 16.0 76.0

Table 4.13: Emotion recognition results (%) of the state-of-the-art methods on
GEMEP-FERA

References
Person

Independent
Person
Specific

Entire
Test Set

KIT 65.8 94.4 77.3
UIUC [93] 65.5 100.0 79.8

[43] 73.9 98.0 83.5
UCRiverside [94] 75.2 96.2 83.8

Our work 76.3 94.4 83.6
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tured. Moreover, this database also includes speech activities, which usually cause

strong variability in the appearances of lower face expressions and some significant

non-frontal head poses of subjects. All these challenges can be viewed as the com-

plexity of facial expression recognition in dynamic schemes. In this case, dynamic

relations among sequential frames are worth considering since the task is to label an

entire video session.

In our future work, we will exploit our framework to fuse the facial features with

rich dynamic information. The LGBP-TOP [95] and the LBP-TOP [96] features pro-

posed in [95] can be good examples in this case, which designed temporal extensions

of classical LBPH feature across consecutive video frames. This feature can represent

the dynamic appearance information between consecutive video frames. In addition,

proper image registration can also help improve the performance. This idea can be

strengthened by the work of the Riverside group [94], which achieved the best re-

sult on the entire test set of the GEMEP-FERA database. The authors proposed a

facial image registration framework to perform a global alignment of the faces and

meanwhile preserve the facial dynamic motions across each expression event. Similar

work can be found in [90], where the authors modeled facial feature changes during

expression events by a diffeomorphic image registration framework. Moreover, post-

processing techniques can also be applied to infer the final emotive labels of videos

based on the output of our lp-norm MKL multiclass-SVM. For instance, in [43] an

average filter was used on the SVM outputs to exploit the temporal component of fa-

cial image sequences, and the authors achieved 1.7–3.5 % improvement of their facial

expression recognition performance.
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Chapter 5

Group-sensitive MTL for facial

action unit detection

In this chapter, we focus on formulating our proposed group-sensitive MTL al-

gorithms for AU detection including lp-norm MTMKL and TD-MTMKL. In these

two methods, AUs are packaged into several groups via our pre-knowledge of their

co-occurrence relations, from which “group-sensitive” are named. Then such occur-

rence relations are modeled at both feature level and labeling level via different task

structures. At the labeling level, we encode the AU relations via discriminative hyper-

planes. MKL was incorporated in our methods for fusing multiple facial features and

conduct the AU relation modeling at feature level. In our experiments, AUs in the

same group are jointly detected by exploiting their co-existent relations. We compare

the proposed group-sensitive MTL methods with several state-of-the-art methods on

CK+ with posed AUs and DISFA with spontaneous AUs. The experimental results

confirm the superiority of our MTL-based methods.
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5.1 MTL for AU inter-relation modeling

In this section, we demonstrate the general idea of our designed MTL-based frame-

works and analyze their feasibility for AU detection. In our work, the detection of

each AU is viewed as a task, and we propose to simultaneously detect a set of AUs

by exploiting their co-occurrence relations.

Our view is upon the fact that there exist commonalities among the classification

tasks for multiple AUs. One instance of these commonalities as shown in Figure 5.1

can be that the same set of training data is usually shared and commonly used to

learn the SVM hyperplanes for detecting different AUs. Another instance can be that

there exists a main task among multiple AU detection tasks, which is to distinguish

between the neutral faces and the occurrences of AUs.

Following these perspectives, we extend the Regularized MTL algorithm [59] to

the lp-norm MKL framework introduced in Section 4.2, and refer to it as lp-norm

MTMKL. The lp-norm MTMKL learns the same shared kernel combinations from a

given set of base kernels among all the tasks. In this case, the shared kernel weight

vector can also be viewed as one of the commonalities across the tasks.

Actually, in humans’ social interactions, similar emotions can be exhibited differ-

ently by subjects either via a single AU or a combination of AUs. Even an individual

may show various combination of AUs for demonstrating the same emotions, such as

the difference between Duchenne and polite smile. These imply that the AU relations

defined in FACS are not always fixed, or at least the degree of the relations among

AUs are not uniform. Thus, when detecting a set of AUs that are usually co-occurred

in specific emotions, it is essential for the system to not only determine the common-

alities across multiple AU detection tasks but also adapt to the task differences, or

say, diversities.
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Figure 5.1: SVM classifier training in common AU detection systems
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We present the TD-MTMKL method that learns an optimal kernel combination

from a given set of basis kernels for each involved task and obtain a finer depiction of

task relations through kernel combination weights. In this method, samples within

a specific task share the same kernel weights while samples from different tasks may

employ distinct sets of kernels. This “task-dependent” characteristic seeks to capture

the AU commonalities through MTL meanwhile adapt to AU variations via kernel

learning. By doing this, our proposed method can incorporate the benefits of both

MTL and MKL, and identify local distributions in the training data from all AU

detection tasks. Compared to lp-norm MTMKL, TD-MTMKL captures both the

commonalities and the variations among tasks at feature level via MKL, as the former

enforces the same kernel combination weight vector across all tasks.

5.2 lp-norm MTMKL

Let’s introduce the following notations for MTL and keep the symbols related

with MKL the same as in Chapter 4: {(xi, yit)}N, T
i=1,t=1 denotes N training samples

for simultaneously detecting T AUs, where xi ∈ R
D is the feature vector of the ith

sample shared across all the tasks, and yit ∈ {−1,+1} is its corresponding class label

for the tth task (i.e., the detection of the tth AU, and “+1” denotes presence while

“−1” is for absence).

We write the direction of hyperplanes for every task t ∈ {1, · · · , T} in each Hm

as

w
(m)
t = w

(m)
0 + v

(m)
t (5.2.1)

where w
(m)
0 indicates the direction of the main task among all tasks in Hm, and the

vector v
(m)
t represents the variation of each task to the main task. Equation 5.2.1 is

defined based on the fact that 1) distinguishing between the absence and presence
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of AUs can be viewed as the main task; 2) by utilizing the same set of kernels and

training samples, the discriminative hyperplanes of all tasks are in the same kernel

space. That is, given m ∈ {1, 2, ...,M}, ∀t ∈ {1, 2, ..., T}, w(m)
t ∈ Hm.

The optimization problem of our proposed lp-norm MTMKL is formulated as

min
w

(m)
t ,ξit

C

N∑

i=1

T∑

t=1

ξit +
1

2





M∑

m=1

(

λm∥w(m)
0 ∥22 +

T∑

t=1

∥v(m)
t ∥22

) p

2





2
p

s.t. yit

(
M∑

m=1

w
(m)
t φm(x)

)

≥ 1− ξit, ξit ≥ 0

p ≥ 1

(5.2.2)

where λm is a positive hyperparameter for controlling the difference among all tasks.

To be specific, for any given m, a large value of λm, e.g., λm > 100, will make the

solution of the mean function w
(m)
0 close to 0. In this case, all of the tasks tend to be

unrelated as the commonality they share is tiny. Whereas, a small value of λm, e.g.,

λm < 0.01, will force all the tasks to be the same as the main task, as the solution of

v
(m)
t is much insignificant compared to w

(m)
0 .

In essence, based on this definition the commonalities among AU detection tasks

are encoded via the hyperplanes of their shared main task {w(m)
0 }Mm=1 and the com-

monly utilized kernel set {φm}Mm=1. Moreover, {λm}Mm=1 are defined to capture the

task relations and should be tuned in experiments for an accurate estimation of the

task relatedness. The optimization problem defined in Equation 5.2.2 can be refor-

mulated as

min
Wm,ξit

C
N∑

i=1

T∑

t=1

ξit +
1

2

(
M∑

m=1

∥Wm∥p2

) 2
p

, p ≥ 1

s.t. yit

(
M∑

m=1

Wm · Φm(xi, t)

)

≥ 1− ξit, ξit ≥ 0

(5.2.3)
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where we define Wm and Φm(·, ·) as

Wm = (
√

λmw
(m)
0 , v

(m)
1 , · · · , v(m)

T )

Φ(x, t) = (
φm(x)√

λm

,0, · · · ,0
︸ ︷︷ ︸

t−1

, φm(x),0, · · · ,0
︸ ︷︷ ︸

T−t

)
(5.2.4)

Based on the above definition, our lp-norm MTMKL formulation is transformed

to be a single-task problem, and can be solved via the canonical lp-norm MKL solver

introduced in Algorithm 1 of Section 4.2. In our implementation, the optimality

conditions are set based on number of total iterations and the variations of updated

θ between consecutive iterations. In addition, the values of p, {λm}Mm=1 and C are

tuned based on cross-validation during experiments.

The learned discriminant hyperplanes of multiple tasks (t = 1, ..., T ) in our pro-

posed lp-norm MTMKL is formulated as

ft(x) =
M∑

m=1

θ⋆m (
N∑

i=1

T∑

s=1

α⋆
isyisk

(m)
st (xis,x))

︸ ︷︷ ︸

hyperplane in each Hm

(5.2.5)

where α⋆
is and θ⋆m are learned optimum from Algorithm 1, and k

(m)
st (xis,xjt) = ( 1

λm
+

δst)km(xi, xj). Here, δst is 1 if s = t and 0 otherwise.

5.3 TD-MTMKL

The lp-norm MTMKL method forces all the tasks share the same kernel weight

vector, which may be too restrict, as kernels utilized in different tasks may employ

distinct sets of kernels. In our work, we seeks a trade-off between capturing com-

monalities and adapting to variations in modeling AU relations, and learn one kernel

weight vector for each task. The primal optimization problem of our TD-MTMKL

50



can be formulated as:

min
w

(m)
0 ,v

(m)
t

C
N∑

i=1

T∑

t=1

ξit +
1

2

M∑

m=1

(
T∑

t=1

∥v(m)
t ∥22 + λm∥w(m)

0 ∥22

)

s.t. yit

(
M∑

m=1

θtm⟨w(m)
t , φm(xi)⟩

)

≥ 1− ξit, θtm, ξit ≥ 0

(5.3.1)

Here, we refer to θt = (θt1, ..., θ
t
m, ..., θ

t
M) as the task-dependent kernel combination

vector corresponding to the tth task. Besides {λm}Mm=1, another measurement of task

relatedness is defined based on the angles (radians) between learned kernel combina-

tion vectors for different tasks as

ηst = arccos(
|⟨θs, θt⟩|

∥θs∥2 · ∥θt∥2
), (s ̸= t) (5.3.2)

Therefore, ηst ∈ [0, π
2
]. Based on these measurements, we investigate the performance

of our method for the adaption to the AU detection task diversities.

The optimization problem in Equation 5.3.1 is solved based on its dual form,

which is a min-max problem:

min
θt

max
α

J :=
N∑

i=1

T∑

t=1

αit −
1

2

N∑

i=1

N∑

j=1

T∑

s=1

T∑

t=1

αisαjtyisyjtK
st
θ (xi, xj)

s.t.
N∑

i=1

T∑

t=1

αityit = 0, 0 ≤ αit ≤ C

(5.3.3)

where Kst
θ (xi, xj) =

∑M
m=1(

1
λm

+δst)θ
s
mθ

t
mkm(xi, xj) and α = {αit}N, T

i=1,t=1 are Lagrange

multipliers corresponding to the inequality constraints in the primal form of TD-

MTMKL. In addition, we refer to {θt}Tt=1 as θ. Then, an alternating optimization

approach is adopted:

Step 1: Fix θ, and optimize Equation 5.3.3 with respect to α;

51



Step 2: Fix α, and optimize Equation 5.3.3 with respect to θ;

Step 3: Iterate until convergence.

Notice that step 1 is equivalent to solving a standard SVM problem with T ×N

training data. In the following part, we focus on the second step, in which the

optimization problem is defined as:

min
θ

J(θ) :=
N∑

i=1

T∑

t=1

αit −
T∑

s=1

T∑

t=1

M∑

m=1

(
1

λm

+ δst)θ
s
mθ

t
mG

st
m(α) (5.3.4)

where Gst
m(α) = 1

2

∑N
i=1

∑N
j=1 αisαjtyisyjtkm(xi, xj). Note that the product between

θsm and θtm makes the optimization problem in Equation 5.3.4 non-convex. Inspired

by [97], instead of solving θ directly, we use a softmax gating function to guarantee

the non-negativity of θ and approximately approach the optimal solution. In our

implementation, this function is defined as:

θtm =
exp(ptmA

t
m + qtm)

∑M
m′=1 exp(p

t
m′At

m′ + qtm′)
(5.3.5)

where ptm and qtm are the parameters of the gating function, and At
m corresponds to

a specific statistical property of training samples for the tth task over the mth kernel.

In our work, At
m is defined as:

At
m =

∑

i∈Ωt

∑

j∈Ωt
km(xi, xj)/n

2
Ωt

∑

i′∈Γt

∑

j′∈Γt
km(xi′ , xj′)/n2

Γt

(5.3.6)

Here, the set Ωt = {a|∃l ̸= t, yal ̸= yat} while Γt = {b|∀l ̸= t, ybl = ybt}, and

nΩt
, nΓt

denote the number of elements in the corresponding sets. In this definition,

At
m characterizes the non-uniform task relations over the labels of training samples.

Especially for our application of AU detection, it captures the relative relationships
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between the task diversities (inconsistence with other AUs co-occurrences) and the

uniform co-occurrence of AUs across the training samples. In this case, by minimizing

J over θ we learn a finer depiction of AU task relation model through kernel combi-

nations, which aims to capture the task commonalities and meanwhile adapt to task

variations.

We take the derivatives of J(θ) with respect to ptm and qtm, and then is employ

gradient-descent method to learn the gating model in Equation 5.3.5 by searching in

the opposite direction of the derivatives. Note that J(θ) is differentiable due to the

fact that all kernel matrices are strictly positive definite:

∂J(θ)

∂ptm
= −2

M∑

m0=1

(δmm0 − θtm0
)θtmA

t
m△t

m0
(α)

∂J(θ)

∂qtm
= −2

M∑

m0=1

(δmm0 − θtm0
)θtm△t

m0
(α)

(5.3.7)

where △t
m0

(α) =
∑T

t0=1(θ
t0
m0

Gt0t
m0

(α)). After updating the gating model, we obtain a

new θ and send it to step 1 for the next iteration.

The optimization algorithm of TD-MTMKL with the designed gating function is

summarized and shown in Algorithm 3.

The convergence criteria are set based on the consistency of α and θ as well as the

maximum number of iterations. µ(n) and γ(n) control the step sizes of each iteration

(the nth iteration) and can be assigned as constants or determined with a 1D search

method.

Once the final α⋆ and θ
⋆ are determined, given a test sample x ∈ R

D, the learned

discriminant function of each task is:

ft(x) =
M∑

m=1

θt⋆m

N∑

i=1

T∑

s=1

(
1

λm

+ δst)α
⋆
isyiskm(xi, x) (5.3.8)
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Algorithm 3 The TD-MTMKL Optimization Algorithm

Require: λm,m ∈ {1, 2, ...,M}
1: for all m ∈ {1, 2, · · · ,M}, t ∈ {1, 2, ..., T} do

2: initialize ptm, q
t
m to small random numbers

3: end for

4: while convergence criteria are not satisfied do

5: compute θ based on Equation 5.3.5
6: compute Kst

θ (xi, xj)
7: solve the canonical SVM with respect to α

8: update: ptm ⇐ ptm − µ(n) ∂J(θ)
∂ptm

9: update: qtm ⇐ qtm − γ(n) ∂J(θ)
∂qtm

10: end while

Ensure: α
⋆ and θ

⋆

5.4 Facial action unit detection experiments

This section shows and discusses the experimental results of our proposed group-

sensitive MTL-based AU detection frameworks on the CK+ and the DISFA databases.

The comparison with several state-of-the-art methods are also given.

5.4.1 Classifier settings

In order to empirically study the advantage of our proposed lp-norm MTMKL

and TD-MTMKL for AU detection, we implement several benchmark classifier for

comparison including canonical SVM, RMTL, lp-norm MKL, l1-norm MTMKL and

Multiple Kernel Learning with Multiple Labels (MLMKL) [66]. Here, SVM and lp-

norm MKL are single task learning problem, which detect AUs separately. Whereas,

the rest classifiers are MTL-based methods. Different from RMTL which utilizes sin-

gle kernel, lp-norm MTMKL, l1-norm MTMKL, MLMKL and TD-MTMKL can fuse

multiple types of facial features with different kernel functions. Furthermore, lp-norm

MTMKL and l1-norm MTMKL employ uniform kernel weights across all the tasks

while MLMKL and TD-MTMKL are designed to capture the non-uniform task rela-
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tions. Compared to TD-MTMKL, MLMKL models the task relations only through

kernel combinations without considering the relations among SVM hyperplanes.

For MKL-based classifiers, radial basis function (RBF) and polynomial function

(poly) as defined in Equation 5.4.1 with LBPH and HOG features were utilized.

Whereas for single kernel based classifiers, features and kernels that corresponded to

the best recognition results on the validation data were applied to the test samples.

We set different values for parameterizing kernel functions with the criterion that

the parameters fill a proper range in their defined domain. For RBF, we set ρ ∈

{0.01, 0.1, 0.5, 1, 10, 50, 100}; for poly, we set r ∈ {1, 2, 3}.

kRBF (x, y) = e−ρ∥x−y∥22 , ρ > 0

kpoly(x, y) = ⟨x, y⟩r, r ∈ N

(5.4.1)

In our experiments, 10-fold cross-validation scheme was used for tuning the pa-

rameters of designed classifiers. The detailed information is listed in Table 5.1, where

C ∈ {0.01, 0.1, 10, 100, 1000}, λ ∈ {0.05, 0.1, 0.5, 1, 25, 50}, β ∈ {0, T
10
, T
8
, T
6
, T
4
, T
2
} and

p ∈ {1, 1.05, 1.2, 1.35, 1.5, 1.65, 1.8, 1.95, 2.1, 4, 8, 16}. For lp-norm MTMKL, l1-norm

MTMKL and TD-MTMKL, we set the hyperparameters {λm}Mm=1 as λm = λ, ∀m ∈

{1, 2, ...,M}. Hence, the SVM hyperplane in each Hm was equally weighted so that

no one would dominate the others. In MLMKL, the hyperparameter β ∈ [0, T
2
]

controls the degree of the kernel weight differences among multiple tasks. To be

specific, β = 0 enforces uniform kernel weights across all tasks while β = T
2
im-

plies that 0% kernels are commonly shared among the tasks. We report the value

βMLMKL = (1− 2β
T
)× 100% to show the percentage of shared kernels over the entire

set of basis kernels in MLMKL. This value measures the overall similarities among

packaged AUs. The higher the percentage, the closer relations the tasks have.
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Table 5.1: Information of our designed seven classifiers

Classifiers Feature Kernel Parameter
SVM LBPH or HOG RBF or poly C, ρ, r
RMTL LBPH or HOG RBF or poly C, λ, ρ, r

lp-norm MKL LBPH and HOG RBF and poly C, p
MLMKL LBPH and HOG RBF and poly C, β

l1-norm MTMKL LBPH and HOG RBF and poly C, λ
lp-norm MTMKL LBPH and HOG RBF and poly C, λ, p
TD-MTMKL LBPH and HOG RBF and poly C, λ

5.4.2 AU packaging for MTL-based SVM

We apply MTL-based classifiers for simultaneous detection of multiple related

AUs. Four AU groups including 10 AUs are designed for RMTL, lp-norm MTMKL,

l1-norm MTMKL, MLMKL and TD-MTMKL as listed in Table 5.2. Our criterion

for AU packaging is based on AUs that are usually co-occurred in facial emotions

regardless of their locations on the face. AU1, AU2 and AU4 in G1 are upper face

AUs that usually behave simultaneously to show negative expressions (e.g. fear and

sadness). G2 contains both upper face AUs (AU6, AU12) and lower face AU (AU25),

which are usually co-occurred in the joy expression with some variations between

Duchenne smile and non-Duchenne smile. Moreover, AU15, AU17 and AU20 in G3

are lower face AUs that are often associated with negative expressions. Further, in

order to obtain non-uniform degree of relatedness among packaged AUs and study its

effect to our proposed methods, we add AU26 to G2 and refer the generated package

as G4. Note that the criteria for packaging G4 are consistent to G2.

Table 5.2: The designed AU packages for MTL-based classifiers

G1 G2 G3 G4
AU1,2,4 AU6,12,25 AU15,17,20 AU6,12,25,26

56



5.4.3 Reliability measurement

The performance of our designed classifiers was evaluated using F1 score defined

as

F1 = 2 · Recall · Precision

Recall + Precision
(5.4.2)

This reliability measurement considers and balances the recall and the precision

rates. It is a better measurement than commonly used recognition rate in our case,

due to the fact that it reflects the effect of the proportion of positive to negative

samples among imbalanced test data [98].

5.4.4 Experimental results and discussions

In this section, the discussions of our experimental results are divided into two

parts. The first part focuses on the comparison among the group-sensitive MTL-based

classifiers and the single task classifiers. The experimental results of the involved

classifiers are shown in Table 5.3 on the CK+ database and in Table 5.4 on the DISFA

database. For single task classifiers (i.e. SVM and lp-norm MKL), the detection

results of AU6, AU12, and AU25 in G4 are reported based on those in G2. Table 5.5

reports the average value of best tuned hyperparameters during cross-validation for

MTL-based classifiers. Figure 5.4 shows the learned AU similarities in G4 on both

databases. The experimental results are discussed as follows.

a) General performance of MTL-based classifiers: From Table 5.3, Table 5.4 and

Figure 5.2, we can see that compared to the canonical SVM, MTL-based classifiers

can boost the average F1 of AUs in the first three packages on both databases. This

confirms that exploiting AU co-occurrence relationships through MTL can gener-

ally increase the AU detection performance. Moreover, comparing MKL-based MTL

methods (i.e. MLMKL, l1-norm MTMKL, lp-norm MTMKL and TD-MTMKL) with
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Figure 5.2: Average F1 score of the first three packages

RMTL, we conclude that the fusion of multiple features with different kernels can

enhance the performance of classifiers. This can also be observed based on the com-

parison between the results of canonical SVM and lp-norm MKL.

Table 5.3: Person-independent AU detection results (F1 score) on CK+

AUs SVM RMTL lp-MKL MLMKL l1-MTMKL lp-MTMKL TD-MTMKL

AU1 .63 .78 .83 .79 .83 .86 .88

AU2 .88 .80 .88 .87 .90 .90 .92

AU4 .64 .80 .86 .81 .86 .88 .89

Avg.G1 .72 .79 .86 .82 .86 .88 .90

AU6 .82 .84 .88 .89 .92 .93 .93

AU12 .72 .81 .86 .84 .90 .89 .90

AU25 .72 .76 .72 .75 .70 .73 .78

Avg.G2 .75 .80 .82 .83 .84 .85 .87

AU15 .43 .57 .47 .71 .66 .63 .75

AU17 .38 .61 .62 .73 .70 .74 .78

AU20 .56 .60 .67 .72 .69 .69 .76

Avg.G3 .46 .59 .59 .72 .68 .69 .76

AU6 .82 .75 .88 .84 .70 .72 .90

AU12 .72 .68 .86 .83 .62 .63 .89

AU25 .72 .66 .72 .77 .61 .65 .79

AU26 .32 .45 .43 .51 .48 .47 .55

Avg.G4 .65 .64 .72 .74 .60 .62 .78

b) Posed vs. Spontaneous AUs with MTL-based classifiers: From Table 5.5 we find

that for both CK+ and DISFA databases, the values of the best tuned λ in RMTL,

l1-norm MTMKL, lp-norm MTMKL and TD-MTMKL vary a lot among different AU
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Table 5.4: Person-independent AU detection results (F1 score) on DISFA

AUs SVM RMTL lp-MKL MLMKL l1-MTMKL lp-MTMKL TD-MTMKL

AU1 .60 .62 .69 .70 .67 .72 .76

AU2 .52 .54 .56 .65 .59 .63 .67

AU4 .61 .61 .65 .66 .66 .69 .69

Avg.G1 .58 .59 .63 .67 .64 .68 .71

AU6 .54 .57 .69 .72 .64 .71 .71

AU12 .60 .63 .69 .71 .68 .76 .77

AU25 .47 .53 .71 .73 .56 .74 .75

Avg.G2 .54 .58 .70 .72 .63 .74 .74

AU15 .61 .60 .70 .68 .61 .72 .74

AU17 .53 .57 .55 .65 .59 .63 .63

AU20 .48 .53 .58 .69 .54 .69 .70

Avg.G3 .54 .61 .61 .67 .58 .68 .69

AU6 .54 .50 .69 .70 .53 .56 .76

AU12 .60 .57 .71 .74 .50 .52 .74

AU25 .47 .48 .66 .73 .49 .48 .78

AU26 .49 .47 .55 .58 .46 .46 .61

Avg.G4 .53 .51 .65 .69 .50 .51 .72

SVM Lp−MKL RMTL L1−MTMKL Lp−MTMKL MLMKL TD−MTMKL
0.5

0.55

0.6

0.65

0.7

0.75

0.8

(a) CK+ database

SVM Lp−MKL RMTL L1−MTMKL Lp−MTMKL MLMKL TD−MTMKL
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

(b) DISFA database

Figure 5.3: Average F1 score of AUs in P4
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packages. These results confirm the functionality of λ, which is to measure the general

similarities between multiple tasks and their shared main task. Therefore, different

AU packages may have different value of λ. Furthermore, for each AU package, the

value of λ on the CK+ database is always less than that on the DISFA database.

Since smaller λ makes the tasks close to their shared main task, our experimental

results reinforced the fact that compared to posed AUs, spontaneous AUs contain

more variations. This phenomenon can also be implied from the hyperparameter β

in the MLMKL method, as for each AU package the value of βMLMKL on the DISFA

database is always less than that on the CK+ database.

c) Sparse vs. Non-sparse kernel combinations: As shown in Figures 5.2 and 5.3, on

both posed and spontaneous face databases, the lp-norm MTMKL outperformed the

l1-norm MTMKL in all four packages. This confirms the power of utilizing non-sparse

kernel combinations in MKL-based classifiers for facial expression analysis. However,

different from the first three packages, where we obtained good augmentation of

detection accuracies by using arbitrary norms, the lp-norm MTMKL just slightly

boost the average F1 score of G4 from l1-norm MTMKL on both databases, and

both of these two methods did not perform well compared to other MTMKL methods.

This phenomenon may be due to the non-uniform relatedness among AUs in G4.

d) Uniform vs. Non-uniform kernel combinations: As shown in Table 5.3 and

Table 5.4, the l1-norm MTMKL and the lp-norm MTMKL with uniform kernel com-

binations did not perform well for the AUs in G4 on both databases, although it

enhanced the detection results of the AUs in G2 from the canonical SVM. This prob-

lem may lie in the fact that by adding AU26 into G2, the task relations in G4 are

quite non-uniform, since less kernels were commonly shared among tasks in G4 than

in G2 (see βMLMKL in Table 5.5). Compared to Table 5.5, Figure 5.4 gives a more

visualized capture on the degree of relatedness between different AU detection tasks
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Figure 5.4: The calculated angles (radians) between kernel combination vectors for
AUs in G4

(i.e. ηst in Equation 5.3.2) in G4. It is indicated that large variations were existed

between the detection task of AU26 and the other three AUs in G4 on both CK+

and DISFA databases, as the angles between the kernel combination vector of AU26

and the other AUs are larger than the other pairwise vectors. Therefore, we can

conclude that MTL-based method with uniform kernel combinations will not achieve

good results when jointly detecting AUs with high relation diversities. Nevertheless,

in this case MLMKL and TD-MTMKL can perform well, since they can adapt to

task variations by learning different kernel combinations across tasks.

e) TD-MTMKL vs. MLMKL: As shown in Figure 5.5, our proposed TD-MTMKL

method outperformed the MLMKL approach for all AU packages on both posed and

spontaneous databases. Thus, we say that compared to MLMKL, the task structure

in TD-MTMKL is more suitable for modeling the relations among multiple AU de-

tection tasks, which are encoded based on both SVM hyperplanes and shared kernels.

Moreover, our proposed TD-MTMKL can capture the relatedness of every pairwise

AUs in each AU package via the angles between kernel combination vectors (i.e., ηst

in Equation 5.3.2). In contrast, the MLMKL approach can only control the general
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Figure 5.5: The comparison between TD-MTMKL and MLMKL

relatedness among all packaged AUs via the hyperparameter β. Therefore, we say

that compared to MLMKL our proposed TD-MTMKL can obtain a finer depiction

of AU relations.

Table 5.5: Average of best tuned hyperparameters in MTL-based SVM

Hyperparameters
G1 G2 G3 G4

CK+ DISFA CK+ DISFA CK+ DISFA CK+ DISFA

λRMTL 0.72 1.96 1.57 3.88 2.60 3.36 3.16 7.91

λl1−MTMKL 0.64 2.34 2.06 4.96 3.34 6.84 2.56 5.74

λlp−MTMKL 0.47 2.04 2.88 6.94 3.34 2.84 2.86 4.57

λTD−MTMKL 0.49 1.37 1.66 4.33 2.37 5.20 4.03 7.21

βMLMKL 75% 66% 88% 72% 81% 58% 64% 41%

Based on the above discussion, we conclude that AU co-occurrence relations within

the packaged set were properly modeled via discriminative hyperplanes in our pro-

posed lp-norm MTMKL and TD-MTMKL methods as we obtained higher AU de-

tection accuracy than other group-sensitive MTL methods and single task classifiers.

The MKL capability of lp-norm MTMKL which fuse multiple facial features with dif-

ferent kernel functions can increase classification performance when AUs are almost

uniformly related in the set. Whereas, it reduced the discriminative power for non-

uniformly related AUs as it forces unique kernel combination weights across all the

involved tasks. Typically, TD-MTMKL achieved a good trade-off between AU com-
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monalities and diversities via its “task-dependent” character as it learns one kernel

weight vectors for each task.

Table 5.6: Computational time of the classifiers’ training phase in seconds

Classifier Hyperparameter Feature CK+ DISFA
SVM C, ρ, r LBPH or HOG 45 67
RMTL C, λ, ρ, r LBPH or HOG 942 1627
lp-MKL C, p LBPH and HOG 26 34
MLMKL C, β LBPH and HOG 143 252

l1-MTMKL C, λ LBPH and HOG 483 697
lp-MTMKL C, λ, p LBPH and HOG 862 1314
TD-MTMKL C, λ LBPH and HOG 732 1026

The time complexity of training RMTL is O(T 3N3) compared to the canonical

SVM O(TN3). As MKL-based classifiers are solved based on alternative iterations,

given the convergence termination criteria, the number of iterations depends on the

training data and the searching step sizes. In our experiments it also takes time

to tune several hyperparameters of the designed classifiers as well as the best facial

features during cross-validation steps. Table 5.6 summarizes the average running

time of our designed classifiers in each round of the 10-fold cross-validation step on a

personal computer with Intel i5 CPU (2.66 GHz) and 8 GB memory.
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Chapter 6

Hierarchial multi-task structure

learning for facial action unit

detection

In lp-norm MTMKL and TD-MTMKL, in order to utilize the co-occurrence inter-

relations among AUs, we have to preset several packages based on the relations be-

tween AUs and basic facial expressions, and simultaneously detect AUs in the same

package. However, within these methods, we only employed the relations among AUs

within the same package without considering the relationship across different pack-

ages. It is possible that different packages share several number of AUs but having

non-identical AU relationships. Moreover, our AU packaging criterion is limited to the

co-occurrence relations among AUs in the same basic facial expression, which turns to

avoid of other possible AU inter-relations such as mutual exclusion and geometry lo-

cations. There might be other AU combinations that represent these relations among

AUs, which can also help us increase the AU detection performance via MTL. To

this end, we propose to design hierarchical task structures to introduce the relations
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across AU sets and learn the important AU combinations instead of pre-defining them

in our MTL-based AU detection framework.

6.1 HMTSL

This section focuses on formulating the optimization problem of our proposed

HMTSL. In our framework, the detection tasks of T AUs are jointly considered, and

the task relations are modeled based on a hierarchical structure.

As shown in Figure 6.1, each leaf (marked in dark gray) of the hierarchical model

denotes the detection task of a specific AU. The latent layer of the model is defined

based on the father nodes of the leaves (marked in light gray). Here, each node in

the latent layer corresponds to a subset of all tasks (leaves). In order to utilize the

pre-knowledge of AU inter-relations, we can package all the AUs into several subsets

based on some criteria, such as AUs’ co-occurrence in basic expression as we did for

group-sensitive MTL-based AU detection. We can even include all combinations of

involved AUs in the lower layer to account for all possible AU relation variations.

Figure 6.1: Our designed hierarchical structure
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Suppose given L subsets out of T AUs denoted as {Pl}Ll=1, we define a new kernel

Kst
Pl

on each subset of tasks as follows:

Kst
Pl
(xi, xj) =







k(xi, xj), if {s, t} ⊆ Pl

0, else

(6.1.1)

where k(·, ·) represents one of the standard kernels. The kernel representation across

all nodes in the latent layer of our hierarchical model is formulated as

Kst
L (xi, xj) =

L∑

l=1

θlK
st
Pl
(xi, xj) (6.1.2)

which is a weighted summation of kernels on all subsets of tasks. We define θ =

(θ1, θ2, ..., θL) as the combination weight vector of nodes in the latent layer.

Based on this task structure, the model of each AU detection task can be rep-

resented by a weighted combination of their corresponding father nodes in the la-

tent layer, and the common information (feature representations of training samples)

across leaves is also shared and utilized among their father nodes. The relatedness

between two AUs (t and t′) can be determined based on the number of subsets that

include both t and t′ as well as the importance of each of these subsets (nodes in the

latent layer) captured by their corresponding combination weights.

In order to jointly learn multiple AU detection classifiers with linearly combined

kernel representations across the nodes in the latent layer of our designed hierarchical

model, we follow the line of research in [63], and cast our framework into the following
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MTMKL problem:

min
θ

max
α

N∑

i=1

T∑

t=1

αit −
1

2

N∑

i,j=1

T∑

s,t=1

αisyisαjtyjtK
st
L (xi, xj)

s.t.
N∑

i=1

T∑

t=1

αityit = 0, 0 ≤ αit ≤ C

∥θ∥q ≤ 1, θl ≥ 0

(6.1.3)

where C is a positive constant preset to control the relative influence of non-separable

samples as in canonical C-SVM, and the lq-norm constrains the sparsity of θ. α

denotes the set {αit}N, T
i=1,t=1.

We set q = p
(2−p)

, p ∈ [1, 2), then the optimization problem defined in Equation

6.1.3 is equivalent to the one defined in Equation 4.2.2 in the case of p ∈ [1, 2), and

can be solved via standard lp-norm MKL solver introduced in Algorithm 1 of Section

4.2. In our implementation, the convergence criteria are set based on the consistency

of α and θ as well as the maximum number of iterations, and the values of q and C

are tuned via cross-validation during experiments. Once the optimal α⋆ and θ⋆ are

determined, the learned discriminant function of each task (t ∈ {1, 2, ..., T}) is:

ft(x) =
N∑

i=1

N∑

s=1

∑

{s,t}⊆Pl

α⋆
isyisθ

⋆
l K

st
Pl
(xi, x) (6.1.4)

where x ∈ R
D is a given test sample.

Since the learned combination weight θ⋆l reflects the importance of its correspond-

ing subset Pl over all AU subsets. The similarity between two tasks s and t (s ̸= t)

is defined as follows:

ηst = 2 ·
∑

Pl⊇{s,t} θ
⋆
l

∑

s′,t′ ηs′t′
, s ̸= t (6.1.5)
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Here, ηst = ηts. According to this definition, if two tasks are often jointly present

in several AU subsets with high combination weights, the calculated value of their

similarity is also high. Therefore, this AU similarity measurement provides insight

information of the task relations, as a high value of ηst reflects a close resemblance

between the tasks s and t. Based on this measurement, we are able to investigate the

performance of our method on the adaption to non-uniform AU relations.

6.2 Hierarchical model in HMTSL

In this work, we implement our HMTSL via two hierarchical model. One is

designed based on our pre-knowledge of AUs’ co-occurrence relations while the other

considers all possible AU combinations. We refer the former one as knowledge-based

HMTSL (KB-HMTSL) and the latter one as knowledge-free HMTSL (KF-HMTSL).

In KB-HMTSL, eight packages including 12 AUs are designed as shown in Figure

6.2. Of all the eight nodes in the latent layer, AU1, AU2 and AU4 corresponding to P1

are upper face AUs that usually behave simultaneously to show negative expressions

(e.g. “Fear” and “Sadness”). P2 contains both upper face AUs (AU1, AU2) and

lower face AU (AU26), which are usually co-occurred in the surprise expression. P3 is

with AU1, AU4 and AU5 which are often jointly behaved across the facial expressions

“Sadness”, “Fear” and “Anger”. P5 includes AU6, AU12 and AU25, which are usually

co-occurred in the joy expression with some variations between the Duchenne smile

(P4 with AU6 and AU12) and the non-Duchenne smile (P6 with AU12 and AU25).

Moreover, P7 with AU9 and AU15 defines the disgust expression. Finally, AU15,

AU17 and AU20 associated with P8 are lower face AUs that are often associated with

negative expressions.
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Latent 

Layer

Figure 6.2: Our designed hierarchical model with eight subsets out of 12 AUs

For KF-HMTSL, we divided the involved 12 AUs into all possible subsets, and

the number of subsets L is

L = C1
T + C2

T + · · ·+ CT
T = 2T − 1 (T = 12) (6.2.1)

In our experiments, we compared these two HMTSL implementations in order to

achieve a deep understanding of the commonalities and variations of AU inter-relations

in posed and spontaneous expressions and also find the learned and exploited impor-

tant AU combinations with high combination weights.

6.3 AU detection experiments and discussions

In this section, we compare KB-HMTSL and KF-HMTSL as well as TD-MTMKL,

which achieved the best AU detection results in the proposed group-sensitive MTL.

We follow the same experimental settings as in Section 5.4.1 including kernel functions

(RBF and poly) and the 10-fold cross-validation schema for pruning C of SVM, ρ, r

of kernels and q ∈ {1, 1.05, 1.2, 1.35, 1.5, 1.65, 1.8, 1.95, 2.1, 4, 8, 16} of MKL.

The comparison of experimental results on the CK+ database and the DISFA

database are shown in Figure 6.3 and Figure 6.4 as well as Figure 6.5. For TD-
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Figure 6.3: Comparison among TD-MTMKL (best), KB-HMTSL and KF-HMTSL
on CK+

AU1 AU2 AU4 AU15 AU17 AU20 AU6 AU12 AU25 AU26
.55

.60

.65

.70

.75

.80

.85

F
1
 S

c
o
re

TD−MTMKL

KB−HMTSL

KF−HMTSL

Figure 6.4: Comparison among TD-MTMKL (best), KB-HMTSL and KF-HMTSL
on DISFA

MTMKL (best), the best AU detection results in G2 and G4 are chosen. Figure 6.6

and Figure 6.8 illustrate the captured AU relatedness for both posed and spontaneous

AUs. Figure 6.7 and Figure 6.9 show the eight highly weighted AU subsets and

their corresponding weights in the latent layer of the hierarchical model in both KB-

HMTSL and KF-HMTSL. Table 6.2 list the corresponding AU subsets in Figure 6.9.

The experimental results are discussed as follows.

TD-MTMKL models the non-uniform relations among AUs in the same package,

and outperformed the other group-sensitive classifier – lp-norm MTMKL. Whereas,
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Figure 6.5: Average and standard deviation of F1 scores on CK+ and DISFA

HMTSL methods utilize AU relations within each group and across different groups

via hierarchical structure learning. Compared with TD-MTMKL and KB-HMTSL,

KF-HMTSL achieved the best average AU detection results on both databases, of

which 6 out of 10 F1 scores are the highest on CK+ and 5 out of 10 on DISFA. This

confirms the superiority of KF-HMTSL, which exploited various AU inter-relations

besides the co-occurrence one in the other methods. KB-HMTSL learns the hierar-

chical model with pre-defined AU groups in its latent layer, and obtained identical

performance on CK+ while 5.6% less on DISFA compared to TD-MTMKL. Neverthe-

less, as shown in Table 6.1 compared to KF-HMTSL and TD-MTMKL, KB-HMTSL

achieved comparable AU detection performance with much less computational time

(about 27% of TD-MTMKL and 40% of KF-HMTSL).

Table 6.1: Computational time of TD-MTMKL, KB-HMTSL and KF-HMTSL during
training phase in seconds

Classifier Hyperparameter Feature CK+ DISFA
TD-MTMKL C, λ LBPH and HOG 732 1026
KB-HMTSL C, q, ρ, r LBPH or HOG 193 286
KF-HMTSL C, q, ρ, r LBPH or HOG 452 764

There are several key outcomes in this comparison. Firstly, TD-MTMKL benefited

from the fusion of multiple features with different kernels while HMTSL methods

utilized only single feature and single kernel. Secondly, KB-HMTSL only exploited
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Figure 6.6: AU similarities in KB-HMTSL on CK+ and DISFA
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Figure 6.7: AU subset weights in KB-HMTSL on CK+ and DISFA

the AU relations from the pre-defined AU subsets based on our pre-knowledge of AU

co-occurrence relations whereas KF-HMTSL considered all possible AU combinations

and thus obtain more information from data. Actually, from Table 6.6, we can see

that the AU inter-relations are more diverse than what we defined in the latent layer

of KB-HMTSL.

Moreover, the KF-HMTSL classifier is essentially a data-driven method which

captures the importance of AU subsets via the learned combination weights from

training data. As shown in Table 6.2, the most salient AU combinations learned

in KF-HMTSL are different from what we defined in KB-HMTSL. This is mainly

due to the variations of human facial activities. Thus, KB-HMTSL capturing very
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Figure 6.8: AU similarities in KF-HMTSL on CK+ and DISFA

limited information of AU inter-relations did not achieve better performance than

TD-MTMKL and KF-HMTSL.

In addition to the comparison of classification performance, we can also obtain

some valuable findings about AU inter-relations from our experimental results. For

one thing, in both HMTSL methods, the values of best tuned q on the CK+ database

are lower than those on the DISFA database, which means that the optimized com-

bination weights of AU subsets for posed AUs are more sparse than spontaneous

AUs. Especially, the best q = 1.05 in KF-HMTSL on DISFA. This indicates that

the number of important AU combinations learned from posed AUs is relatively less

than that of spontaneous ones. This result reinforces our common understanding of

spontaneous expressions’ characteristics – various AU relationship.

For the other thing, as shown in Table 6.2 the AU inter-relations reflected from

the learned important AU subsets in HMTSL are not limited to the co-occurrence

relationship. The mutually exclusive relationship between AUs is also encoded in

some of the AU subsets. For examples, AU12 (Lip Corner Puller) and AU15 (Lip

Corner Depressor) in S1 and S5 on CK+ as well as AU5 (Upper Lid Raiser) and

AU6 (Cheek Raiser) in S4 on DISFA. Since salient AU subsets have strong influence
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Table 6.2: Eight highly weighted AU subsets on CK+ and DISFA

AU subset CK+ DISFA
S1 AU1,2,4,5,12,15,17 AU4,9,12,20,25,26
S2 AU1,20,25,26 AU1,2,9,15,17,26
S3 AU5,9,15,20,25 AU1,2,4,5,12,17,20,25
S4 AU1,2,4,5,26 AU1,2,5,6,9,15,17,25,26
S5 AU1,2,4,6,9,12,15,25 AU1,2,4,5,12,25,26
S6 AU1,4,5,15,20,25,26 AU1,2,6,9,12,17,26
S7 AU1,2,5,9,12 AU1,6,12,20,26
S8 AU4,5,17,20,26 AU2,4,15,20

S1 S2 S3 S4 S5 S6 S7 S8
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Figure 6.9: Eight highest weights in KF-HMTSL on CK+ and DISFA
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on the classification outputs, the AU inter-relations embedded in these sets can also

contribute to the AU labeling results of samples. Thus, we say that KF-HMTSL

outperformed other benchmark classifiers in Table 5.1 by exploiting various AU rela-

tionships including AU co-occurrence and mutually exclusive relations.

Table 6.3 and Table 6.4 compare the performance of HMTSL methods with sev-

eral state-of-the-art methods reported in the literatures. Papers [12] and [13] used

Gentleboost SVM and HMM as their classifiers, and different AUs were separately

detected. The classifiers of [47] and [48] are Adaboost SVM with DBN which consid-

ered the inner-relations among multiple AUs. In [99], the authors packaged the AU

sets based on their geometry locations on the face (i.e. eye, mouth and chin, cheek

and nose). In their work, MTFL [61] was applied for feature learning against AUs

in the same group. Afterwards, BN was applied to revise the AU labels from MTFL

via AU occurrence dependencies. As we can see, our KF-HMTSL method achieved

the best average F1 score on both databases, which confirms its effectiveness. Espe-

cially, on the CK+ database, 10 out of 12 AUs were detected with higher accuracy

by the proposed HMTSL methods than the state-of-the-art methods. On the DISFA

database, the standard deviation of our KF-HMTSL classifier is much lower than

the one with MTFL and BN. This comparison confirms the strong robustness and

reliability of our method across different AUs.

In this dissertation, the proposed MTL-based classifiers are all static machine

learning models as time relations of sample labels or classifier outputs are not for-

mulated in their optimization problems. This is mainly due to the fact that our

methods are MTMKL extensions of canonical SVM which is also a static classifier.

In Section 4.4.4, we discussed the necessity of capturing temporal information across

video frames in facial expression analysis, and proposed to fuse dynamic features in

our frameworks towards this challenge. Besides this feature-level proposal, we can
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Table 6.3: The comparison (F1 score) with the state-of-the-art methods on CK/CK+
(reported in literatures)

AU KB-HMTSL KF-HMTSL [12] [13] [47] [48]
AU1 .91 .93 .87 .83 .66 .78
AU2 .88 .90 .90 .83 .57 .80
AU4 .90 .90 .73 .63 .71 .77
AU5 .74 .81 .80 .60 – .64
AU6 .91 .96 .80 .80 .94 .77
AU9 .82 .78 .77 .57 – .79
AU12 .90 .94 .84 .84 .88 .89
AU15 .77 .74 .70 .36 .84 .70
AU17 .75 .84 .76 – .79 .81
AU20 .75 .70 .79 .52 – –
AU25 .76 .94 .96 .75 – .88
AU26 .58 .50 – .36 – –
Avg. .81 .83 .81 .64 .77 .78

Table 6.4: The comparison (F1 score) with the state-of-the-art method on DISFA
(reported in the literature)

AU KB-HMTSL KF-HMTSL [99]
AU1 .72 .72 .61
AU2 .63 .60 .79
AU4 .67 .71 .80
AU5 .55 .60 .39
AU6 .70 .72 .71
AU9 .63 .75 .65
AU12 .72 .83 .96
AU15 .69 .72 .77
AU17 .60 .68 .81
AU20 .68 .65 .35
AU25 .79 .80 .90
AU26 .63 .74 .78
Avg. .67 .71 .71
Std. .064 .068 .185
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also model the temporal relations of facial expressions and AUs at the labeling level.

This idea as reviewed in Section 2.3 was implemented based on the use of HMM and

DBN. Recently, kSeg-SVM [11] was proposed to cast the AU detection as a problem

of recognizing temporal events from video frames. In their work, each video sequence

was represented as a time series of facial feature segments, and then structured output

SVM [100] was applied to learn the temporal model between the segments. Inspired

by kSeg-SVM, we can incorporate structured SVM into MTMKL problems for facial

expression analysis in dynamic modes.
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Chapter 7

Conclusion and future work

In this dissertation, we present transfer learning algorithms, MKL and MTL,

for facial expression analysis including basic facial expression recognition and AU

detection. Our methods achieve the promising performance compared with the state-

of-the-art methods on four public face databases with posed and spontaneous facial

expressions. The key points and contributions of this dissertation are summarized

in this chapter. We also present the limitations of the proposed facial expression

analysis frameworks and give recommendations for future work.

7.1 MKL for basic expression recognition

For basic facial expression recognition, we employ the idea of feature domain

adaption in the transfer learning framework and fuse multiple types of facial features

(LBPH and HOG) with different kernel functions (HtRBF and polynomial function)

via MKL to increase the discriminative power of SVM over canonical SVM. MKL

learns the kernel combination weights within SVM classifiers and obtains the optimal

feature representation for classification. The learned kernel combination weights indi-
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cate their importance to the classification output. The lp norm is utilized to constrain

the kernel weight vector and obtain both sparse and non-sparse kernel combinations.

Moreover, the proposed lp-norm MKL multiclass-SVM learns one kernel weight

vector for each binary classifier in the multiclass-SVM. In contrast, the SimpleMKL-

based multiclass-SVM jointly learns the same kernel weight vector for all binary

classifiers. Thus, our method achieves more flexibility in utilizing different kernel

combinations for distinguishing between different expressions. We prove that our

method preserves the lower boundary of SimpleMKL’s objective function, which is to

be minimized during learning process.

In general, our method fuses different facial features at the kernel level of SVM,

which turns to bridge the gaps between the feature selection/learning and the clas-

sification steps in facial expression recognition frameworks. That is, instead of em-

pirically finding which feature or kernel worked the best for an expression, we jointly

utilize a set of features and kernels and learn the optimal combination of them within

the expression classifiers.

In our experiments, we compare our lp-norm MKL multiclass-SVM with several

state-of-the-art single-kernel-based classifiers and the SimpleMKL-based multiclass-

SVM with one kernel weight vector for all binary classifiers. Experimental results on

three face databases, CK+, MMI and GEMEP-FERA, confirm the superiority of our

method over the others. We also comprehensively study the effect of p on the recogni-

tion performance, and concluded that non-sparse kernel combinations outperformed

the sparse ones by utilizing more discriminative information from fused features and

kernels.
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7.2 MTL for AU detection

For facial action unit detection, we propose three MTL-based transfer learning

methods, lp-norm MTMKL, TD-MTMKL and HMTSL, for simultaneous detection

of multiple facial AUs by exploiting their inter-relations. In our approaches, the

detection of each AU is viewed as a task, and the relations among multiple tasks

are modeled based on their commonalities and variations. One instance of the task

commonalities is their shared main task to distinguish between neutral faces and pres-

ences of AUs. The other commonality is the commonly shared feature representations

among the tasks.

We propose the group-sensitive MTL including lp-normMTMKL and TD-MTMKL

to model the AU co-occurrence relations at both feature utilization level and AU la-

beling level. At labeling level, these methods represent the discriminative hyperplane

for each task via the main task and its variation to the main task. At feature level,

the lp-norm MTMKL extends the regularized MTL algorithm to an MKL problem

for fusing multiple facial features and enforces all tasks to share the same kernel

combinations in MKL. The task-dependent property of our TD-MTMKL method is

designed to adapt to the non-uniform degree of AU relatedness, and is conducted

via learning nonidentical kernel combination weights across the AU detection tasks.

The group-sensitive MTL are limited to packaging AUs based on our pre-knowledge

of their co-existent relations, and do not consider the AU relations from different

packages.

We propose HMTSL to exploit the relationship across different AU sets via hierar-

chical structures and utilize all possible AU inter-relations besides the co-occurrence

one. Variants of AU combinations were linearly combined in the latent layer of the

hierarchical model in HMTSL, and each encodes a specific AU inter-relation. The
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combination weights are learned during the optimization of HMTSL, which repre-

sent the importance of their corresponding AU combinations to the AU detection

results. In this structure, the relations between pairwise AUs are captured based on

the number of their shared subsets as well as the importance of these subsets.

We comprehensively study the effectiveness of our methods on both posed and

spontaneous AUs, and obtain deep understanding of AU relation commonalities and

variations via AU similarity measurements. Extensive experiments confirm the supe-

riority of our methods over several state-of-the-art single-task-based and MTL-based

classifiers for AU detection. Especially, our proposed HMTSL method with hierar-

chical task structures outperforms the proposed group-sensitive MTL methods and

other state-of-the-art MTL-based methods, which imply that exploiting various AU

relations instead of just co-occurrence ones helps increase the discriminative power of

MTL-based AU detector.

7.3 Future recommendations

At the current stage, facial features utilized in our work, LBPH and HOG, are

extracted only from static images and do not capture the dynamic facial information

across consecutive video frames. Moreover, our proposed classifiers, either for multi-

class classification in basic expression recognition or multi-task learning in simulta-

neous detection of multiple AUs, are all static machine learning problems without

modeling the temporal relations of the discriminative functions or labels of samples

from time series. Since facial expressions are dynamic facial activity events, it is

worth considering the challenges of facial expression analysis in a dynamic schema.

In the future, it is recommended that
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• at feature level: facial features with good dynamic information of consecutive

video frames, such as LGBP-TOP and LBP-TOP, are utilized in the proposed

expression analysis frameworks.

• at classification level: dynamic MKL, MTL and MTMKL classifiers are pro-

posed by extending the structured SVM instead of the canonical SVM in this

work, as structured SVM models the output of SVM via variants of dynamic

structures and can use the temporal information from consecutive samples.

Both of these approaches will build upon the contributions of this dissertation to

extend the current works, and further improve the state-of-the-art in facial expression

analysis.
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Appendix A

Proof of the superiority of

MKL-based SVM over canonical

binary SVM with single kernel and

single type of features

Without loss of generality, our proof is pursed in the case of 1 < p < 2. We

transform the object function of Equation 4.2.1 based on the Lemma 26 in [101] as:

min
θ,∥θ∥r≤1

min
w,w0,ξ

J(θ, w, w0, ξ) =
1

2

M∑

m=1

∥wm∥22
θm

+ C

N∑

i=1

ξi

where r = p/(2− p).

As described in Section 4.2, this convex optimization problem is solved by the

Two-Step method, where two nested iterations are equipped in each loop of the

method. In the outer iteration the kernel combination weights are updated by fixing

the parameters of SVM. Whereas, in the inner iteration the optimization problem
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of canonical SVM is solved by fixing the updated kernel combination weights. Let

Nf be the number of features extracted from each sample and Nk be the number of

kernel functions used in the lp-norm MKL-based SVM. We denote the updated kernel

combination vector in the tth loop of the Two-Step method as follows.

θ(t) = [θ
(t)
1 , · · · , θ(t)Nk
︸ ︷︷ ︸

the 1st feature

, · · · , θ(t)(i−1)Nk+1, · · · , θ
(t)
i·Nk

︸ ︷︷ ︸

the ith feature

, · · · , θ(t)(Nf−1)Nk+1, · · · , θ
(t)
NfNk

︸ ︷︷ ︸

the Nf
thfeature

]T

θ(t) ∈ R
⋆NfNK

+ , ∥θ(t)∥r = 1

In addition, the SVM discriminant hyperplane obtained in the outer iteration of the

tth loop is denoted based on w(t) and w
(t)
0 .

For the canonical binary SVM, we suppose that the ith feature with the jth kernel

function is utilized. Then the canonical SVM becomes a special case in the framework

of MKL-based SVM, and its corresponding kernel combination vector can be defined

as follows.

θ̂ = [0, 0, · · · , 0, · · · , 0
︸ ︷︷ ︸

θ1 ∼ θ(i−1)Nk+j−1

, 1, 0, 0, · · · , 0, · · · , 0
︸ ︷︷ ︸

θ(i−1)Nk+j+1 ∼ θNfNk

]T

Further, the learned discriminant hyperplane of canonical SVM is defined based on

ŵ⋆ and ŵ⋆
0.

By assuming that in the first loop of the Two-Step method θ(1) is initialized as

θ̂ in the outer iteration, we obtain that in the inner iteration of the first loop the

learned w(1) = ŵ⋆ and w
(1)
0 = ŵ⋆

0. Thereafter, our proof is formulated as follows,

Ĵ⋆ = J(θ̂, ŵ⋆, ŵ⋆
0) = J(θ(1), w(1), w

(1)
0 )

≥ J(θ(2), w(1), w
(1)
0 ) ≥ J(θ(2), w(2), w

(2)
0 )

≥ · · · ≥ J(θ⋆, w⋆, w⋆
0) = J⋆
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where J⋆ is the learned minimum of the objective function in lp-norm MKL-based

SVM with its corresponding optimum θ⋆, w⋆, w⋆
0, and Ĵ⋆ with ŵ⋆, ŵ⋆

0 is for canonical

binary SVM.

Based on the above justification, we can naturally extend the conclusion to a more

general case. That is:

Suppose ∃ a set of basis kernel functions S (S ̸= ∅) and a set of features F (F ̸= ∅).

Then ∀S ′ ⊆ S (S ′ ̸= ∅) and F ′ ⊆ F (F ′ ̸= ∅), we obtain that J⋆
S×F ≤ J⋆

S′×F ′ , since

d⋆S′×F ′ can be seen as a special case of θS×F . The subscripts S×F and S ′×F ′ denote

the kernels and features in use.

To be more specific, we conclude that MKL-based SVM with multiple kernels and

features perform better or at least equally than those with multiple kernels and single

feature or with single kernel and multiple features.
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Appendix B

Proof of the superiority of our

proposed MKL-based

multiclass-SVM over the

SimpleMKL-based multiclass-SVM

To be consistent with the SimpleMKL-based multiclass-SVM, we set p = 1 in our

framework. Then the only difference between the two methods are the ways of updat-

ing the kernel combination vectors for multi-class classification tasks as mentioned in

Equation 4.3.1 and Equation 4.3.2. The superiority of our proposed MKL framework

for multiclass-SVM lies in the fact that its minimized objective function preserves

the lower boundary of the one obtained using SimpleMKL-based multiclass-SVM.

That is, the derived hyperplanes from our method performs better or at least equally

among the training data.

Suppose that L̂⋆ is the optimal value of the objective function in Equation 4.3.2,

and θ⋆u is the learned optimum for each binary classifier in our framework. L⋆ and θ⋆
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are the corresponding notations for the SimpleMKL-based multiclass-SVM in Equa-

tion 4.3.1. Our proof is as follows,

L̂⋆ =
∑

u∈Φ

Lu(θ
⋆
u) ≤

∑

u∈Φ

Lu(θ
⋆) = L⋆

since Lu(θ
⋆
u) ≤ Lu(θ

⋆), ∀u ∈ Φ.
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[90] Y. Guo, G. Zhao, and M. Pietikäinen, “Dynamic facial expression recognition

using longitudinal facial expression atlases,” Computer Vision–ECCV 2012, pp.

631–644, 2012.

[91] A. Sánchez, J. V. Ruiz, A. B. Moreno, A. S. Montemayor, J. Hernández, and

J. J. Pantrigo, “Differential optical flow applied to automatic facial expression

recognition,” Neurocomputing, vol. 74, no. 8, pp. 1272–1282, 2011.

[92] G. Littlewort, M. S. Bartlett, I. Fasel, J. Susskind, and J. Movellan, “Dynamics

of facial expression extracted automatically from video,” Image and Vision

Computing, vol. 24, no. 6, pp. 615–625, 2006.

[93] U. Tariq, K.-H. Lin, Z. Li, X. Zhou, Z. Wang, V. Le, T. S. Huang, X. Lv,

and T. X. Han, “Emotion recognition from an ensemble of features,” in Au-

tomatic Face & Gesture Recognition and Workshops (FG 2011), 2011 IEEE

International Conference on, 2011, pp. 872–877.

[94] S. Yang and B. Bhanu, “Facial expression recognition using emotion avatar

image,” in Automatic Face & Gesture Recognition and Workshops (FG 2011),

2011 IEEE International Conference on, 2011, pp. 866–871.

[95] T. R. Almaev and M. F. Valstar, “Local gabor binary patterns from three or-

thogonal planes for automatic facial expression recognition,” in Affective Com-

puting and Intelligent Interaction (ACII), 2013 Humaine Association Confer-

ence on, 2013, pp. 356–361.

[96] G. Zhao and M. Pietikainen, “Dynamic texture recognition using local binary

patterns with an application to facial expressions,” Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, vol. 29, no. 6, pp. 915–928, 2007.

99



[97] M. Gönen and E. Alpaydin, “Localized multiple kernel learning,” in ICML,

2008, pp. 352–359.

[98] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy, f-score and

roc: a family of discriminant measures for performance evaluation,” in AI, 2006,

pp. 1015–1021.

[99] Y. Zhu, S. Wang, L. Yue, and Q. Ji, “Multiple-facial action unit recognition by

shared feature learning and semantic relation modeling,” in Pattern Recognition

(ICPR), 2014 22nd International Conference on. IEEE, 2014, pp. 1663–1668.

[100] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin

methods for structured and interdependent output variables,” in Journal of

Machine Learning Research, 2005, pp. 1453–1484.

[101] C. A. Micchelli and M. Pontil, “Learning the kernel function via regularization,”

The Journal of Machine Learning Research, vol. 6, pp. 1099–1125, 2005.

100


	Facial Expression Analysis via Transfer Learning
	Recommended Citation

	tmp.1443206165.pdf.P1Ny3

