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Abstract

Facial feature tracking is an active area in computer vi-

sion due to its relevance to many applications. It is a non-

trivial task, since faces may have varying facial expressions,

poses or occlusions. In this paper, we address this problem

by proposing a face shape prior model that is constructed

based on the Restricted Boltzmann Machines (RBM) and

their variants. Specifically, we first construct a model based

on Deep Belief Networks to capture the face shape vari-

ations due to varying facial expressions for near-frontal

view. To handle pose variations, the frontal face shape

prior model is incorporated into a 3-way RBM model that

could capture the relationship between frontal face shapes

and non-frontal face shapes. Finally, we introduce meth-

ods to systematically combine the face shape prior models

with image measurements of facial feature points. Experi-

ments on benchmark databases show that with the proposed

method, facial feature points can be tracked robustly and

accurately even if faces have significant facial expressions

and poses.

1. Introduction

Due to its relevance to many applications like human

head pose estimation and facial expression recognition, fa-

cial feature tracking is an active area in computer vision.

However, tracking facial feature points is challenging, since

the face is non-rigid, and it can change its appearance and

shape in unexpected ways. When faces have varying facial

expressions and face poses, it is difficult to construct a prior

model that could capture the large range of shape variations

for facial feature tracking.

Restricted Boltzmann Machines (RBM) and their vari-

ants, such as Deep Belief Networks (DBNs) and 3-way

RBM have proven to be versatile tools that could effectively

solve some challenging computer vision tasks [5] [13] [17].

 

(a) 26 facial feature points that we track

(b) one example sequence
Figure 1. Facial feature point tracking under expression variation

and occlusion.

In recent years, these models have been used explicitly to

handle the shape variations [17][5]. The nonlinearity em-

bedded in RBM and its variants makes them more effective

and efficient to represent the nonrigid deformations of ob-

jects compared to the linear methods. Their large number of

hidden nodes and deep architectures also can impose suffi-

cient constraints as well as enough degrees of freedoms into

the representations of the target objects.

In this paper, we present a work that can effectively

track facial feature points using face shape prior models that

are constructed based on RBM. The facial feature tracker

can track 26 facial feature points (Fig. 1 (a)) even if faces

have different facial expressions, varying poses, or occlu-

sion (Fig. 1 (b)). Unlike the previous works that track facial

feature points independently or build a shape model to cap-

ture the variations of face shape or appearance regardless of

the facial expressions and face poses, the proposed model

could capture the distinctions as well as the variations of

face shapes due to facial expression and pose change in a

unified framework. Specifically, we first construct a model
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to capture the face shapes with different facial expressions

for near frontal face based on Deep Belief Networks. Fur-

thermore, to handle pose variations, we propose a model

to capture the transition between the frontal face and non-

frontal face with 3-way Restricted Boltzmann Machines.

Finally, effective ways are proposed to combine the prior

model with the image measurements of the facial feature

points.

The paper is organized as follows: In section 2, we re-

view the related research works. In section 3, we describe

the face shape prior model that deals with expression vari-

ations based on DBNs (FrontalRBM). In section 4, we

describe the face shape prior model that deals with both

expression variations and pose variations based on 3-way

RBM (PoseRBM). In section 5, we discuss how to combine

the face shape prior model and measurements to generate fi-

nal facial feature tracking results. In section 6, we show the

experimental results. We conclude this paper in section 7.

2. Related work

2.1. Facial feature localization

Generally, facial feature localization algorithms in the

literature can be classified into two categories: methods

without face shape prior model and methods with face shape

prior model. Methods without shape prior model track

each facial feature point independently and ignore the prior

knowledge about the face. As a result, they usually are sus-

ceptible to facial expression change, face poses change, oc-

clusion etc. On the other hand, methods with shape prior

model capture the dependence between facial feature points

by explicitly modeling the general properties as well as the

variations of facial shape or appearance. During testing, the

shape can only deform within a certain range constrained by

the model. Due to the limited space, we focus on the related

methods with face shape prior model.

Typical methods with shape constraints are the Active

Shape Model (ASM) [2] and Active Appearance Model

(AAM) [12]. They build linear generative models to cap-

ture either shape variations or both shape and appearance

variations of faces based on the Principle Component Anal-

ysis. More recently, in [20], facial feature points are de-

tected independently based on the response of the support

vector regressor. Then, the detection results are further con-

strained by a shape distribution embedded in a pre-trained

Markov Random Field. Both [7] and [4] emphasize the fa-

cial components in their models. In [7], the shape variation

of each facial component is modeled with a single Gaus-

sian. In addition, the nonlinear relationship among facial

components is represented as a pre-trained Gaussian Pro-

cess Latent Variable model. In [4], Ding and Martinez pro-

pose a method to detect the facial feature points for each

facial component with the use of subclass division and con-

text information around features.

In real world situations, faces usually vary in facial ex-

pressions and poses. These natural movements make facial

feature tracking even more difficult. To solve this problem,

Tian and Cohn [9] propose a multi-state facial component

model, where the state is selected by tracking a few control

points. As a result, the accuracy of their method critically

relies on how accurately and reliably the control points are

tracked. Tong et al. [19] propose a model to capture the

different states of facial components like mouth open and

mouth closed. In addition, they project the frontal face to

face with poses to handle the varying poses problem. How-

ever, during tracking, they need to dynamically and explic-

itly estimate the state of local components and switch be-

tween different models. In [3], Dantone and Van Gool take

into account the pose variations and build sets of conditional

regression forests on different poses. In [1], instead of using

the parametric model, Belhumeur present methods to repre-

sent the face shape variations with non-parametric training

data.

2.2. Restricted Boltzmann Machines based shape
prior model

Recent works have shown the effectiveness of Restricted

Boltzmann Machines and their variants in terms of repre-

senting objects’ shapes. Due to the nonlinear nature em-

bedded in these models, they are more suitable for cap-

turing the variations of objects’ shape, compared with the

linear models like AAM [12] and ASM [2]. Recent re-

search also shows that RBM and its variants can gener-

alize well for unseen testing data. In [5], Eslami et al.

propose a strong model of object shape based on Boltz-

mann Machines. Specifically, they build a Deep Belief

Networks(DBNs)-like model but with only locally shared

weights in the first hidden layer to represent the shape of

horse and motorbikes. The sampling results from the model

look realistic and have a good generalization. In [11], Luo

et al. train DBNs for detecting the facial components like

the mouth, eyes, nose and eyebrows. In their model, the

input are the image patches; they pre-train DBNs using

layer-wise RBM and then use the labels to fine-tune the

model for classification with logistic regression. RBM also

has been applied to model finger motion patterns and hu-

man body pose, and used as the prior to learn features

[23] and decoders [22]. In [17], Taylor et al. propose to

use a new prior model called implicit mixture of Condi-

tional Restricted Boltzmann Machines to capture the human

poses and motions (imRBM). The mixture nature of im-

RBM makes it possible to learn a single model to represent

the human poses and motions under different activities such

as walking, running, etc. In [8], Susskind et al. build a gen-

erative model to capture the joint probability of the facial

action units, identities, and binary image patch data using
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the DBNs. Then, based on this model, they can generate re-

alistic binary face patches displaying specific identities and

facial actions.

3. Prior model for face shapes with different

facial expressions (FrontalRBM)

Although the appearance of the human face varies from

individual to individual, the spatial relationship among fa-

cial feature points is similar for a given facial expression.

As can be seen from Fig. 2, there exist patterns for human

face shapes, but these patterns depend on the facial expres-

sions. To capture these patterns, we propose a face shape

prior model based on Deep Belief Networks which we call

ForntalRBM in this paper. It’s structure is shown as part I

in Fig. 3.

(a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise
Figure 2. Facial feature locations of 10 subjects with different fa-

cial expressions

Deep belief networks (DBNs) are well known as an ap-

proach to automatically extract effective multi-level fea-

tures from data. Moreover, because of its ability to model

the distribution of observations, recently DBNs are ex-

ploited to be used as the shape prior models [5] [17].

The building block of DBNs is Restricted Boltzmann

Machines (RBM), which represent the probabilistic density

function of the observed variable x as:

pη(x) =
1

Z

∑

h

e
−Eη(x,h)

, (1)

where Z is the normalizing constant, and h ∈ {0, 1}H are

binary hidden variables. The pdf is defined in terms of the

joint energy function over x and h, as:

− Eη(x,h) =
∑

i

bixi +
∑

i,j

wijxihj +
∑

j

cjhj , (2)

where wij is the interaction strength between the hidden

node hj and the visible node xi. b and c are the biases for

the visible layer and hidden layer. The parameters in this

model, (w, c,b), are collectively represented as η.

In the application of facial feature points tracking, our

goal is to use two-layer DBNs to explicitly capture the face

shape patterns under different facial expressions. In this

case, the observation nodes are the coordinates of facial

feature locations, normalized according to the locations of

Part I: Frontal face shape prior Part II: Transfer to

with different expressions different poses
Figure 3. Face shape prior model based on the combination of the

DBNs and 3-way RBM

eyes, denoted as x = [p1,x, p1,y, p2,x, p2,y...p26,x, p26,y]t.
Since the observations are continuous, we use the Gaussian-

Bernoulli Restricted Boltzmann Machine (GB-RBM) [14]

in the bottom layer. Similar to standard RBM, the energy

function of GB-RBM is defined as:

Eη(x,h) =
∑

i

(xi − bi)
2

2
−

∑

i,j

wijxihj −
∑

j

cjhj . (3)

Direct maximum likelihood parameter estimation of

RBM/GB-RBM is intractable for high dimensional models

due to the normalizing factor Z, so we use Contrastive Di-

vergence algorithm (CD). The multi-layer DBNs are trained

in a layer-wise manner so that training is relatively efficient.

Please refer to [14] and [6] for more detailed discussion

about GB-RBM and CD algorithm.

4. Prior model for face shapes with varying fa-

cial expressions and poses (PoseRBM)

It is nature to think of extending the DBNs described

in the last section to capture shape variations with both fa-

cial expression and pose changes. However, this raises a

problem when the number of possible poses increases, and

we cannot expect the DBNs to learn all possible face shape

patterns with all poses well unless a large number of hid-

den nodes are used, which would significantly increase the

number of required training data. To alleviate this prob-

lem, we propose a novel face shape prior model as shown

in Fig. 3, where x represents the locations of facial feature

points for frontal face when subjects show different facial

expressions, and y represents the corresponding locations

of facial feature points for non-frontal face under the same

facial expression. H1 and H2 are two sets of hidden nodes.

In Fig. 3, the face shape prior model is factorized into two

parts. In part I, the two layer DBNs model captures the

shape patterns of the frontal face under varying facial ex-

pressions as discussed in the previous section. In part II,

the 3-way RBM model captures the transition between the

facial feature locations for frontal face and corresponding

non-frontal face. The two parts of the model in Fig. 3 can

be trained separately.
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Part II is realized by the 3-way RBM, which have been

shown to capture the corresponding relationship between

two images [13]. To reduce model parameters, we use fac-

torized 3-way RBM, whose energy function can be written

as:

−E(x,h,y) =
∑

f

(
∑

i

xiw
x
if )(

∑

j

yjw
y
jf )(

∑

k

hkw
h
kf )

−
∑

i

1

2
(xi − w

x
i )2 −

∑

j

1

2
(xj − w

y
j )2 +

∑

k

w
h
khk,

(4)

where h is corresponding to H2 in Fig. 3. The parame-

ters wx
if , w

y
jf and wh

kf describe the interaction among vari-

ables, and wx
i , w

y
j and wh

k are the bias for x, y and h.

In the previous work [13], the factorized 3-way RBM is

learned by maximizing the conditional likelihood p(y|x).
In this work, to facilitate the combination of measurements

and prior model, the parameters are optimized by maximiz-

ing the joint likelihood p(x, y). The derivative [13] of log-

likelihood L(x, y|w) can be written as

∂L

∂w
= 〈

∂E

∂w
〉p(x,h,y|w) − 〈

∂E

∂w
〉p(h|x,y,w), (5)

where 〈.〉p represents expectation over p. It is difficult to

directly calculate equation 5. We approximate it with con-

trastive divergency [6], which can be realized with Gibbs

sampling. Since given any two variables in x, h and y, the

elements in the remaining variable are independent, we can

readily implement the Gibbs sampling. Given x and y, the

hidden variable h can be sampled from:

p(hk = 1|x,y) = σ(
∑

f

w
h
kf (

∑

i

xiw
x
if )(

∑

j

yjw
y
jf ) + w

h
k),

(6)

where σ represents the sigmoid function σ(x) = 1/(1 +
e−x). The element of x or y given the remaining variables

follows a Gaussian distribution with unit variance and mean

µxi
=

∑

f

wx
if (

∑

k

hkw
h
kf )(

∑

j

yjw
y
jf ) + wx

i , (7)

µyj
=

∑

f

w
y
jf (

∑

i

xiw
x
if )(

∑

k

hkw
h
kf ) + w

y
j . (8)

With the derivative of ∂L
∂w

, the parameters w are optimized

with stochastic gradient.

5. Facial feature tracking based on face shape

prior model

Facial feature tracking accuracy and robustness can be

improved by incorporating the face shape prior model. As-

sume the true facial feature locations we want to infer are

denoted as X∗ and their measurements are represented as

Xm, facial feature tracking can be regarded as an optimiza-

tion problem:

X
∗ = arg max

X

P (X|Xm)

= arg max
X

P (Xm|X)P (X)
(9)

Normally, P (Xm|X) is modeled by the multivariate Gaus-

sian distribution :

P (Xm|X) =
1

(2π)
k
2 |Σl|

− 1

2

e
− 1

2
(X−Xm)tΣ−1

l
(X−Xm)

, (10)

where Σl is the covariance matrix that can be estimated

from the training data.

It is difficult to analytically formulate the prior proba-

bility P (X) from the learned models described in previous

two sections, we hence propose to estimate the prior proba-

bility numerically via sampling. Since facial feature points

vector is of high dimensions (52 in this case), to globally

produce enough samples to cover such a large parameter

space is computationally infeasible. We propose to perform

local sampling instead. During tracking, we only need to

estimate the local prior probability around Xm.

If the face shape only varies due to facial expression

change, we use FrontalRBM discussed in section 3 as shape

prior. In this case, with the measurement as the initialization

of nodes x, MCMC sampling method can generate samples

that fit the model. If the face shape varies due to both facial

expression and pose change, we use PoseRBM described in

section 4 as prior. In this case, we first use MCMC sam-

pling to sample a few times through part II of the model to

generate x with the measurement as the initialization of y
in Fig. 3. Second, we sample x a few times through part I

of the model. With the sampling results of x from part I and

the hidden nodes H2 that generated in the first step, we can

sample y that fits the PoseRBM prior model.

To combine the sampling results with the measurement,

we propose two approaches shown in the following.

Gaussian assumption: With the strong assumption that

the local prior probability is multivariate Gaussian distribu-

tion, we could estimate the prior probability by calculating

the mean vector µp and covariance matrix Σp from the sam-

ples. Since the likelihood probability is also multivariate

Gaussian (Eq. 10), X∗ can be calculated analytically:

X
∗ = (Σ−1

l + Σ−1
p )−1(Σ−1

p µp + Σ−1
l Xm) (11)

Kernel Density Function: Given the samples, a typi-

cal non-parametric way to estimate the probability is using

Kernel Density Estimation method. When using multivari-

ate Gaussian as the kernel function, the prior probability

becomes:

p(X) =
∑

d

1

(2π)
k
2 |Σk|

− 1

2

e
− 1

2
(X−Xd)tΣ−1

k
(X−Xd)

, (12)

where Xd indicates one sample with d as the index, and

parameter Σk is estimated from the samples. Based on

Eq. 9,10,12, we can use typical optimization method to es-

timate the optimal value X∗, given Xm, Xd, Σk and Σl.
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6. Experimental results

6.1. Facial feature tracking under different facial
expressions

In this section, we test the FrontalRBM model described

in section 3 that could track facial feature points for near-

frontal face with different facial expressions . We show

the experiments using synthetic data, sequences from the

extended Cohn-Kanade database (CK+) [10], the MMI fa-

cial expression database [15], the American Sign Lan-

guage (ASL) database [24] and the ISL Facial Expression

database [18].

Experiments on synthetic data: Fig. 4 (a) and (c) are

faces with outlier (left eyebrow tip) and corrupted points

on the left half face. Fig. 4 (b) and (d) are the results after

correction. FrontalRBM shows strong power as a face shape

prior model.

(a) (b) (c) (d)
Figure 4. Performance of FrontalRBM based on synthetic data. (a)

face with outlier (left eyebrow tip); (b) Correction of (a); (c) face

with corrupted points on left half face; (d) correction of (c).

Experiments on CK+ database: The CK+ database

contains facial behavior videos of 123 subjects showing 7

basic facial expressions including anger, disgust, fear, hap-

piness, sadness, surprise, and contempt. Since the number

of sequences for contempt is much smaller than the other

facial expressions, we exclude the sequences with contempt

facial expression. In total, there are 282 sequences. We

manually label the first , middle (onset), and last (apex)

frames for each sequence as ground truth and use the track-

ing results generated using AAM [12] which are provided

by the database as measurements. The FrontalRBM model

is trained by the manually labeled data. It is important to

notice that data with neutral facial expression is included as

the first frame of each sequences.

To evaluate the performance of the tracking algorithms,

we use the distance error metric for point i at frame j as

follows:

Errori,j =
‖Pi,j − P̂i,j‖2

DI(j)
, (13)

where DI(j) is the interocular distance measured at frame

j, P̂i,j is the tracked point i at frame j, and Pi,j is the man-

ually labeled ground truth.

The experimental results on CK+ database are illustrated

in Table 1, Fig. 5, and Fig 6. From Table 1, we could see

that by using the proposed model and leave-one-subject-

out cross validation, the overall tracking errors decrease by

16.88% and 12.24% when using gaussian assumption (pro-

posed method 1) and kernel density estimation (proposed

method 2) to combine the model and the measurement as

described in section 5. Fig. 5 compares the tracking error

for different facial expressions. We can see that the pro-

posed method can decrease the tracking error for all the fa-

cial expressions and the performances are similar. Fig. 6

shows the tracking results for one sequence. In the original

sequence (Fig. 6 (a)), the subject shows relatively neutral

facial expression at the beginning and then happy facial ex-

pression after the forth frame. Compared with the baseline

method, the proposed method could decrease the tracking

error for each frame.

Eyebrow Eye Nose Mouth Overall

baseline method [12] 8.7367 4.5367 7.7240 3.9704 5.8220

proposed method 1 7.4111 3.6214 5.2871 3.9046 4.8394

Proposed method 2 7.4472 3.8019 5.5654 4.4350 5.1092

Overall improvement Proposed method 1: 16.88%. Proposed method 2: 12.24%

Table 1. Experimental results on CK+ database. Baseline method:

AAM [12]. Proposed method 1: FrontalRBM, combined under

Gaussian assumption. Proposed method 2: FrontalRBM, com-

bined using KDE.
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Figure 5. Tracking errors for different facial expressions on CK+

database. Baseline method: AAM [12]. Proposed method:

FrontalRBM.

 

(a) Sequence
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(b) Facial feature tracking results.
Figure 6. Tracking error on one sample sequence from CK+

database. Baseline method: AAM [12]. Proposed method:

FrontalRBM.
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(a) ISL database, sequence 1, subject shows happy facial expression

(b) ISL database, sequence 2, subject shows surprise facial expression

(c) ASL database, sequence 1

(d) ASL database, sequence 2

Figure 7. Facial feature tracking results on ISL occlusion database and ASL database using proposed method (FrontalRBM).

Experiments on MMI database: In our experiments on

MMI database [15] , there are 196 sequences of 27 subjects

with 6 basic facial expressions. Some subjects may wear

glasses. We generate the tracking results using the switch

model [19] as the measurements. We manually label the

onset and apex frames for each sequence with facial expres-

sions and the first frame as neutral expression. With the

leave-one-subject-out strategy, the results are shown in Ta-

ble 2. By incorporating the frontalRBM as face shape prior

model, the overall errors decrease by 16.50% and 15.13%

when using Gassuain assumption and KDE to combine the

measurement and the model. Our result is comparable to

the state of art research [21], which reports an average de-

tection error of 5.3 on 400 images selected from not only

the MMI database but also the FERET database [16].

Eyebrow Eye Nose Mouth Overall

baseline method [19] 8.3677 4.3418 7.0194 7.3861 6.6195

proposed method 1 6.6433 3.3132 5.2956 7.0210 5.5275

Proposed method 2 6.7289 3.4146 5.5356 7.0288 5.6178

Overall improvement Proposed method 1: 16.50%. Proposed method 2: 15.13%

Table 2. Experimental results on MMI database. Baseline method:

Switch Model [19]. Proposed method 1: FrontalRBM, combined

under Gaussian assumption. Proposed method 2: FrontalRBM,

combined based on KDE.

Dealing with occulsion: In real world situations, the

facial features may be occluded by other objects. To test

the proposed method under occlusion, we perform tracking

on the ISL occlusion facial expression database [18] and

some sequence with occlusion from American Sign Lan-

guage (ASL) database [24]. Specifically, the ISL occlu-

sion database consists of 10 sequences of 2 subjects show-

ing happy and surprised facial expressions with near-frontal

pose. The face shape prior model is trained using the man-

ually labeled data on CK+ database. To perform tracking

using the proposed method, we use the simple Kalman Fil-

ter, local image intensity patch as feature and manually la-

bel the facial features on the first frame. For each frame,

the tracked points are constrained by the FrontalRBM and

use Gaussian assumption as the combination strategy. The

experimental results are shown in Fig. 1 (b) and Fig. 7. The

proposed tracker can correctly track the facial features un-

der occlusion.

6.2. Facial feature tracking under different facial
expressions and varying face poses

In this section, we report the test of the model proposed

in section 4 (PoseRBM) that could track facial features

when faces have simultaneous expression and pose changes.

Experiments using synthetic data: Fig. 8 shows the

experimental results of PoseRBM based on synthetic data.

Face shapes here are all with 22.5 degrees to the left. Simi-

lar to the performance shown in Fig. 4, PoseRBM as a face

shape prior model can correct the outliers and even the cor-

rupted points on half of the face.

Experiments on ISL multi-view facial expression

database [18]: Overall, there are 40 sequences of 8 sub-

jects showing happy and surprised facial expressions under

varying face poses. Some face poses are very significant.

To train the model illustrated in Fig. 3, we can train part I

345534553457



(a) (b) (c) (d)

Figure 8. Performance of PoseRBM based on synthetic data. (a)

face with outlier (left eyebrow tip); (b) Correction of (a); (c) face

with corrupted points on left half face; (d) correction of (c).

and part II separately. Part I is trained using the manually

labeled data on CK+ database as described in the previous

subsection. In order to train part II, we need the correspond-

ing facial feature points for frontal face and non-frontal face

with the same expression. As far as our knowledge, there is

no such database with large number of real corresponding

images available to the public, so we project the frontal fa-

cial feature points in CK+ database to specific poses based

on general z coordinates of the feature points. Here, to train

the PoseRBM model, we use the frontal face and generated

non-frontal face with 22.5 degrees to the left and right. Al-

though it is trained with data from three poses, PoseRBM

can adapt to deal with the poses under moderate angles(less

than 50 degrees) where full view of all facial features is

available. Such model flexibility comes from three as-

pects. First, RBM can generalize across prior information

included in the training data, which is demonstrated by the

fact that RBM can generate samples closed to the training

data, but never appeared [5]. Second, PoseRBM factorizes

the modeling into two steps, i.e., modeling expressions for

frontal face and rotation to different poses. This automat-

ically adapts the expressions in frontal face to other poses,

removing the necessary of modeling expressions under each

pose. Third, the in-plane rotation is excluded by normaliz-

ing the face shape according to the locations of eyes.

Tracking is performed by incorporating the PoseRBM

model, simple Kalman Filter, local image patch as features,

and manually labeled facial features on the first frame. We

use the switch model [19] as the baseline method. In order

to generate quantitative results, we manually label every 5

frames and some frames with significant appearance change

for every sequence.

The experimental results are shown in Table 3, Fig. 9

and Fig. 10. Table 3 shows the overall tracking error. It can

be seen that the proposed method decreases the tracking er-

ror for both happy and surprised facial expressions. Fig. 9

compares the error distributions of facial feature tracking

for happy and surprise expressions, respectively. It can be

seen that higher percentages of frames have lower tracking

errors when using the proposed method than the baseline

method. Fig. 10 shows some tracking results when subjects

turn right and left with different facial expressions. The

tracking results are accurate if the pose angle is relatively

moderate. The tracking error may increase if the subject

shows simultaneous extreme face poses and facial expres-

sions(last frame in 10(e)(f)).

Happy Surprise

Baseline method 8.6370 8.6396

Proposed method 6.3539 7.2009

Table 3. Experimental results on ISL multi-view facial expression

database. Baseline method: switch model [19]. Proposed method:

PoseRBM.
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(a) Happy facial expressions (b) Surprised facial expressions

Figure 9. Error distributions of facial feature tracking. Baseline

method: switch model [19]. Proposed method: PoseRBM.

7. Conclusions and future work

In this paper, we introduce methods to construct a face

shape prior model based on Restricted Boltzmann Machines

and their variants to improve the accuracy and robustness of

facial feature tracking under simultaneous pose and expres-

sion variations. Specifically, we first introduce a face shape

prior model to capture the face shape patterns under varying

facial expressions for near-frontal face based on Deep Be-

lief Networks. We then extend the frontal face prior model

by a 3-way RBM to capture face shape patterns under si-

multaneous expression and pose variation. Finally, we in-

troduce methods to systematically combine the face prior

models with image measurements of facial feature points to

perform facial feature point tracking. Experimental com-

parisons with state of the art methods on benchmark data

sets show the improved performance of the proposed meth-

ods even when faces have varying facial expressions, poses,

and occlusion. In the future, we will perform further vali-

dation of our methods and capture the dynamic relationship

between frames.
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