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Introduction
● Question: what are the mechanisms and

representations underlying memory for faces?

● Here’s a broad classification of memory models:
– Exemplar-based (e.g. the Generalized Context

Model)

– Superpositional (e.g. CHARM)

– Manifold-based (e.g. autoencoders, PCA)

● We compare a PCA (eigenface) model and a novel
exemplar-based model that exploits human
similarity judgments for pairs of face stimuli .

● The exemplar model outperforms PCA; the
similarity representation outperforms eigenface-
based representations.
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The Experiment (Busey & Tunnicliff)
● 179 subjects studied 68 images of bald males.

● Then tested (old or new) on the original 68
images, 16 morphs between pairs of studied
images, and 20 new distractors.

● Morphs between studied faces potentially
activate representations of both “parents,”
causing recognition errors.
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Morph Distractor Stimuli
● Morphs: 8 between similar parents; 8 between

dissimilar parents.

● Similar-parent morph:

● Dissimilar-parent morph:
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Experiment 3 Results

● Least likely to say
“old” to non-morph
distractors.

● Similar parents and
morphs: a familiarity
inversion effect (only
marginally significant).

● No inversion effect for
dissimilar-parent
morphs.

Familiarity Ratings
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Models and Representations

● Principal component analysis (PCA):
– Assumes that subjects construct a (noisy) manifold

containing the stimuli they’ve studied, and new/old
judgment is based on distance to the manifold.

– The manifold is defined by projecting test stimuli onto
the study set eigenvectors (eigenfaces).

● Exemplar-based Gaussian mixture model:
– Assumes that subjects construct a probability density

function by storing the studied exemplars explicitl y
(kernel density estimation).

– Assumes the new/old judgment is based on the density
at a test stimulus’ location.

– Representation is Valentine’s “multidimensional face
space” (MDS of human similarity judgments).
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PCA Results
● Reconstruction error model roughly captures

the relationships (RMSE: 0.169; r2: 0.315).

● For some morphs, P(old) is greater than for
parents.  But the pattern is backwards!

23 PC Model Fit
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The exemplar model, basic version
(essentially Nosofsky’s GCM)

● Busey had subjects rate similarity of the face
images used in the experiment.

● Multidimensional scaling (MDS) resulted in 6-
dimensional representations for each face.

● Treat positions in the 6-dimensional space as
exemplars (mean vectors of the Gaussians)

● Example in one dimension:

Dissimilar parents: no overlap Similar parents: large overlap 

parent 1 parent 2 parent 1 parent 2
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But a twist: explicit coding of
distinctiveness

● The model as described is a form of
Nosofsky’s Generalized Context Model.

● GCM does not fit this data set.

● Idea for improvement: distinctive faces
have larger “attractor fields”
– given 50% morph, humans pick the more

distinctive parent as more similar (Tanaka).

● Modulated height and width of each
exemplar’s Gaussian by its distinctiveness.
– Used average 5-neighbor distance in MDS

space as a measure of distinctiveness.
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The Distinctive Blob Model (DBM)

● Given a test probe y and set of studied
exemplars X (in MDS space)
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● where h is the average height, σ is  the
average width, d(k) is the z-scored 5-
neighbor distance for exemplar k, and ch

and cσ are constants.

● Four free parameters, fit to the human
responses.

Free
Parms
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Exemplar Model Results
● Four-parameter fit: RMSE = 0.1601; r2 = 0.4150.

● Adding 6 “attentional” weight parameters: RMSE =
0.1528; r2 = 0.4639.

● Predicted category relationships are correct:

DBM Model Category Fit
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Conclusions
● Explicit exemplar-based memory models seem

to fit this data the best.
– Suggests that human memory in new/old tasks may

be a form of noisy density estimation.

● Exemplars in a psychological space seem to
outperform simpler image-based exemplars.
– Suggests that the representations used for

recognition are closely related to those used for
similarity judgments.

● Current work: how to compute?
– I.e. how to derive an MDS-like code from a retinal

image?  Preliminary work: Gabor jet distances
correlate with MDS distances (r = 0.547).


