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Figure 1: To enable immersive face-to-face communication in virtual worlds, the facial expressions of a user have to be captured while
wearing a virtual reality head-mounted display. Because the face is largely occluded by typical wearable displays, we have designed an HMD
that combines ultra-thin strain sensors with a head-mounted RGB-D camera for real-time facial performance capture and animation.

Abstract

There are currently no solutions for enabling direct face-to-face
interaction between virtual reality (VR) users wearing head-mounted
displays (HMDs). The main challenge is that the headset obstructs a
significant portion of a user’s face, preventing effective facial capture
with traditional techniques. To advance virtual reality as a next-
generation communication platform, we develop a novel HMD that
enables 3D facial performance-driven animation in real-time. Our
wearable system uses ultra-thin flexible electronic materials that are
mounted on the foam liner of the headset to measure surface strain
signals corresponding to upper face expressions. These strain signals
are combined with a head-mounted RGB-D camera to enhance
the tracking in the mouth region and to account for inaccurate
HMD placement. To map the input signals to a 3D face model,
we perform a single-instance offline training session for each person.
For reusable and accurate online operation, we propose a short
calibration step to readjust the Gaussian mixture distribution of the
mapping before each use. The resulting animations are visually
on par with cutting-edge depth sensor-driven facial performance
capture systems and hence, are suitable for social interactions in
virtual worlds.
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1 Introduction

Recent progress towards mass-market head-mounted displays
(HMDs) by Oculus [Oculus VR 2014] and others, has led to a
revival in virtual reality (VR). VR is drawing wide interest from
consumers for gaming and online virtual worlds applications. With
the help of existing motion capture and hand tracking technologies,
users can navigate and perform actions in fully immersive virtual
environments. However, users lack a technological solution for face-
to-face communication that conveys compelling facial expressions
and emotions in virtual environments. Because a user’s face is
significantly occluded by the HMD, established methods for facial
performance tracking, such as optical sensing technologies, will fail
to capture nearly the entire upper face.

To address this need, we develop a prototype HMD around an
existing device. We augment the system with eight ultra-thin strain
gauges (flexible metal foil sensors) placed on the foam liner for
surface strain measurements and an RGB-D camera mounted on
the HMD cover to capture the geometry of the visible face region.
Aside from a slight increase in weight, our design unobtrusively
integrates the sensors without further constraining user performance
as compared to any standard virtual reality HMD.

Complex anatomical characteristics, such as individual facial tissue
and muscle articulations, challenge the low dimensionality of our
surface measurements across subjects. To map the input signals to
a tracked 3D model in real-time, we first train a regression model
by detaching the cover from the HMD to maximize visibility while
the strain gauges are recording. This procedure is only performed
once for each individual, and each subsequent use does not require
unmounting the cover. Because of slight misplacements as well
as the additional weight of the cover and the RGB-D camera,
the sensitivity and measured surface locations can differ greatly
between the training session and online operation (when the display
is attached). For subsequent wearings by the same person, we
propose a short calibration step that readjusts the Gaussian mixture
distributions of the mapping [Gales 1998].

Like many real-time facial animation systems, our method uses
linear blendshape models to produce output animations based on
FACS expressions [Ekman and Friesen 1978]. The semantics of each
blendshape mesh can be conveniently used for facial performance



retargeting to arbitrary digital characters. Although the upper face
region is largely covered by the HMD and only a few statically
integrated strain gauges are used, our system can produce 3D
facial animations comparable to state of the art monocular real-time
tracking systems based on RGB cameras [Cao et al. 2014; Cao et al.
2013] or depth sensors [Weise et al. 2011; Li et al. 2013; Bouaziz
et al. 2013; Chen et al. 2013].

While non-optical sensing technologies (e.g., acoustic, electroen-
cephalogram, electromyogram, piezoelectric) have been extensively
explored in psychology, affective computing, and facial animation
synthesis, our system is the first to demonstrate high-fidelity
facial performance capture while wearing a VR headset. Our
wearable device is also unique in that strain gauges are used
to measure occluded face regions. Compared to other sensors,
direct measurements of surface strain have low latency, do not
suffer from complex muscular crosstalk, are suitable for non-
verbal communication, and can accurately reproduce the linearity
of human facial expressions. Like RGB-D cameras, strain gauges
are affordable and can be integrated into existing HMDs without
altering the system’s ergonomics and user experience.

Contributions. We propose the first system that jointly uses
optical and non-optical signals to produce compelling 3D facial
performance capture while wearing an HMD. We present the first
usage of strain gauges for facial performance capture, while wearing
VR head mounted display. The use of signals obtained from
flexible electronic materials combined with an RGB-D camera
presents a unique innovative and ergonomic solution for real-time
facial performance sensing on wearable devices. Our system also
introduces a practical framework for facial expression mapping that
decouples a single-instance offline training process from a repeatable
and fast online calibration step.

2 Previous Work

Performance-driven facial animation has been dominated by optical
capture systems that use cameras or depth sensors. Hundreds of
works on facial representations, tracking, mapping, and animation
have been developed, greatly impacting film and game produc-
tion [Parke and Waters 1996; Pighin and Lewis 2006]. Because we
focus on lightweight wearable systems with real-time capabilities,
we highlight the latest optical systems for real-time facial animation
that are designed for non-studio settings. We also provide an
overview of non-optical sensors to motivate our choice to use strain
gauges for occlusion-free sensing.

Optical Systems. In the entertainment industry, facial perfor-
mance capture is an established approach to improve the efficiency
of animation production by reducing manual key-framing tasks
and minimizing complex physical simulations of facial biomechan-
ics [Terzopoulos and Waters 1990; Sifakis et al. 2005]. To achieve
the highest possible facial tracking fidelity, marker-based solutions,
hand-assisted tracking, and multi-camera settings are still commonly
employed [Bhat et al. 2013; Bickel et al. 2007; Pighin and Lewis
2006], while often requiring intensive computation.

Deployable and real-time techniques that require only a monocular
RGB camera have been popularized by data-driven algorithms,
such as active appearance models (AAM) [Cootes et al. 2001]
and constrained local models (CLM) [Cristinacce and Cootes
2008], where pre-labeled sequences of specific subjects are used
to track sparse 2D facial features. Lately, several extensions have
demonstrated fully automatic and highly accurate methods that do
not require any user-specific training, such as the 2D landmark
prediction approach [Saragih et al. 2011] or the supervised descent

method [Xiong and De la Torre 2013]. These 2D landmarks can be
used as low dimensional signals to drive the control parameters of a
more complex face rig [Chai et al. 2003].

Recently, 3D face priors, dense flow, and shape from shading
methods have been introduced to achieve higher fidelity 3D tracking
from unconstrained monocular videos [Garrido et al. 2013; Shi et al.
2014]. Using dimension-reduced linear models and sufficient prior
facial data, a single camera can be used to generate compelling facial
animation in real-time without any calibration [Cao et al. 2014].

Lightweight RGB-D cameras (e.g., Microsoft Kinect, Intel Re-
alSense, etc.) can improve modeling and tracking accuracy, as
well as robustness because the depth information is acquired at the
pixel level. Weise et al. [2011] use a large database of hand-animated
blendshape curves to stabilize the low-resolution and noisy input
data from the Kinect sensor. An example-based rigging approach [Li
et al. 2010] is introduced to further reduce a tedious user-specific
calibration process. Recently, calibration-free methods where the
the shape of the expressions are learned during the tracking process
have been presented [Li et al. 2013; Bouaziz et al. 2013]. The
combination of sparse 2D facial features in the RGB channels and
dense depth maps also improves the tracking quality [Li et al. 2013;
Chen et al. 2013].

So far, compelling facial animations can be generated in real-time
with minimal hardware, however, the captured faces must be fully
visible, which is not possible with any existing virtual reality HMDs.
Nevertheless, a solution for eye gaze tracking under an HMD has
been recently introduced by a commercial solution [SMI 2014] using
additional infrared cameras integrated into the headset. Hsieh et
al. [2015] has presented a technique for real-time facial performance
tracking in the presence of occlusions. Occluding objects are
explicitly segmented as outliers from both the RGB and depth input.
Their method focuses on tracking by using the segmented face
regions (i.e., inliers), but does not provide a solution to generate the
animation of the full face.

Non-Optical Sensors. Audio signals have been used to drive
control parameters of facial models as a faster alternative to
traditional motion capture. Although particularly effective for lip-
syncing and producing co-articulation phenomena, audio signals
are less effective in capturing the upper portion of the face and, in
general, non-verbal expressions [Bregler et al. 1997; Brand 1999].

Unlike audio signals and optical systems, contact-based systems
are not affected by occlusions and can be potential candidates
for sensing behind the HMD. Similar to using exoskeletons for
body tracking, rigid mechanical systems have been suggested for
positional measurements for the face, but are rather uncomfortable
and difficult to integrate into HMDs.

Other advancements in non-optical sensors include bioelectric
signals and piezoelectric sensors. Bioelectric signals measure change
in electric potential across tissues and organs via sensors placed
on the skin. For example, electroenceophalograms (EEG) [Mc-
Farland and Wolpaw 2011] record brain activities and have been
used to detect basic facial expressions and emotional responses.
Unfortunately, EEGs require extensive training and concentration
from the user. Non-invasive electromyograms (EMG) are widely
used by psychologists to measure muscle contractions achieved
by poses based on FACS [Ekman and Friesen 1978]. Lucero
and Munhall [1999] have demonstrated a system that uses EMG
signals to directly control a physics-based facial rig [Terzopoulos and
Waters 1990], but requires anatomically compatible placements of
electrodes across individuals. Gruebler and Suzuki [2014] proposed
a more ergonomic solution of an EMG-based wearable device, but
could only reliably detect a few expressions. EMG signals are
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Figure 2: Our system combines signals from eight strain gauge sensors and an RGB-D camera.

generally very sensitive of their sensor locations, depend highly on

the subject’s fat tissue, and suffer from muscular crosstalk problems.

Piezoelectric sensors are tactile devices that measure strain rate
and have been explored for smart glasses [Scheirer et al. 1999]
in affective computing to recognize facial expressions. However,
because static states such as a holding up eye brows for an extended
period cannot be measured, they are not suitable for controlling
facial models. Ultra-thin strain gauges [Sekitani et al. 2014], on
the other hand, are tiny flexible electronic materials that directly
measure strain on a surface as its electrical resistance changes when
bent. In the context of motion capture, they have only been used
so far in datagloves for hand tracking [Kramer and Leifer 1988].
We show in this work that strain gauges are particularly reliable for
facial performance measurements when placed on the foam liner of
the HMD because they can conform to any surface shape.

3 System Prototype

3.1 Hardware Components

As shown in Figures 1 and 2, our framework consists of a standard
HMD (the Oculus Rift DK2 [Oculus VR 2014]) and additional
sensing hardware, which are seamlessly integrated together. We
attach an Intel RealSense 3D Camera (Bell Cliffs) [Intel 2014] to the
HMD cover with a 3D printed mount. The RGB-D camera is directly
connected to the main computer. In addition, we place eight strain
gauges on the foam liner of the headset (Figure 1). The strain signals
first go to a Wheatstone bridge that sits on a strain gauge reader. A
Wheatstone bridge, depicted in Figure 3, is a resistor configuration
optimized for measuring small changes in resistance as a deviation
from zero volts at the output. These voltages are then recorded by the
main unit via Ethernet. To recover the global rigid head pose, we use
an off-the-shelf near-IR 60Hz CMOS sensor and integrated 1kHz
nine-degree-of-freedom IMU of the Oculus Rift. Our hardware
design maximizes optical acquisition of visible face regions and
ensures reliable performance capture of facial deformations behind
the headset without sacrificing ergonomic constraints.

Strain Gauges. While strain gauges are typically used as planar
stretch sensors, we use them to detect relative changes in the radius
of curvature over the length of the gauge. We use eight Omega 6mm
KFH-series 35082 strain gauges for capturing the change in shape
of the foam liner of the HMD [Omega 2014; NI 2014]. The gauges
are metal foil-based strain gauges on polyimide with a nominal
resistance of 35042 and a gauge factor (GF) of two (the ratio of
change in resistance to mechanical strain). The gauge factor of the
gauges varies less than 0.05% from —10° to 45°C, and the fatigue

Figure 3: Three-wire Wheatstone bridge configuration

life of the gauges is expected to exceed 107 cycles for the small
strains expected within our system [Omega 2014]. The gauges are
bent over the edge and securely attached with a thin stretchable
adhesive tape as depicted in Figure 5. This configuration allows the
strain gauges (total thickness 0.05mm) to flex with the underlying
foam without significantly impacting the feel or function of the foam
liner.

Strain Gauge Data Acquisition and Synchronization. The
strain gauges are measured using a three-wire Wheatstone bridge
configuration depicted in Figure 3. This arrangement allows the lead
wire resistance (Ry) to be neglected for maximum sensitivity. In
this configuration the measured voltage (V) will be related to the
resistance in the strain gauge (R¢ ), reference resistors (R), and the
3.3V excitation voltage (Vex):
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The data is acquired by a National Instruments 9075 CompactRIO
(cRIO) real-time computer via a NI 9236 quarter-bridge module.
The NI 9236 module comprises a set of eight Wheatstone bridges
with 24-bit ADCs allowing for high precision strain simultaneous
measurement. The cRIO polls the strain gauges at 100Hz and
outputs the voltages over UDP to the main unit, also at 100Hz.

Head-Mounted RGB-D Camera. We attach an Intel RealSense
3D Camera on the cover of the HMD using a customized 3D printed
camera mount as shown in Figure 1. We choose this RGB-D sensor
due to its remarkable close range sensing capabilities (15cm) of the
lower face region. This sensor consists of an IR and color camera, as
well as an IR coded light projection and has a maximum depth map
resolution of 640 x 480 pixels, where only 320 x 240 are used (both
RGB and depth channels) for increased performance. To ensure
synchronization between the RGB and the depth channels we use a
capture rate of 30fps.
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Figure 4: Facial performance capture pipeline. Our pipeline
consists of a training phase, where the linear mapping between
mouth blend shapes and strain gauges is learned. This mapping is
then applied during online operation to generate a complete facial
blend shape.

3.2 Performance Capture Pipeline

As illustrated in Figure 4, our facial performance capture pipeline
consists of an offline training stage and an online operation stage.

Offline Training. To build a personalized tracking model and to
train a regression model, we ask the user to detach the RGB-D
camera from the 3D printed mount and remove the OLED display
from the HMD to ensure the full face is visible. Only the foam liner
of the HMD containing the strain gauges is worn during this stage.
By externally mounting the RGB-D camera aimed at the face, we
build a personalized blendshape model as described in Section 4.2
and go through a complete sequence of 20 FACS-based expressions.
We simultaneously track the face using the blendshape model and,
for each frame, obtain the corresponding strain signals as input to
our training algorithm (see Section 5.1). The offline training session
is only performed once per user.

Online Operation. After building the regression model, we
reattach the RGB-D camera and the display to the HMD for the
online operation: the system can now be reused by the same user
without the full training. Because of misplacements of the wearable
device as well as the additional weight of the camera and the display,
the recorded signals may vary slightly with each use. Accordingly,
we run a short calibration procedure to normalize and adapt the
strain signals before each use, as described in Section 5.2. After
calibration, we capture facial performance using the adjusted strain
signals in the occluded regions and the RGB-D acquisition of the
lower part of the face. We adopt a reduced set of blendshapes
from the personalized model that only consists of expressions of
the mouth region to capture extra signals in the form of blendshape
coefficients. Both strain and RGB-D measurements are directly
mapped to the personalized blendshape model of the entire face via
the regression model.
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Figure 5: One strain gauge adhered to the foam interface of the
HMD. From left to right: (a) undeflected foam, (b) deflected foam;
(c) the measured voltage before and after the deflection.

4 Signal Processing

In order to create a facial animation, the information from the
strain gauges and the RGB-D camera needs to be meaningfully
combined. In our system, the eight strain signals and the blendshape
coefficients of the jaw region are used as input for training and
mapping (discussed in Section 5).

4.1 Strain Sensing

As described in Section 3.1, changes in the resistance of a strain
gauge as a result of physical deformation are measured as voltages
across a Wheatstone bridge. Figure 5 depicts a single strain gauge
adhered to the foam interface of the HMD. In Figure 5a, the strain
gauge follows the relatively sharp curve of the edge of the foam.
In Figure 5b, the edge of the foam is flattened slightly by applying
pressure with tweezers and as a result the attached gauge is also
flattened.

In the depicted configuration, the strain in the system can be
estimated by modeling the strain gauge as an Euler-Bernoulli beam
in simple bending, because the foam substrate and bending stiffness
are several orders of magnitude less than the tensile stiffness of
the polyimide gauge substrate. In simple bending, the strain (¢) at
the surface of the beam is given as the ratio of the distance from
the neutral bending axis (z) and the radius of curvature (p) of the
beam—for strain at the surface of thin beams, z can be approximated
as half of the total beam thickness (¢) [Hibbeler 2005]:

e= 2o U2 @)
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The bending strain and thus the radius of curvature in the strain
gauge can be related to the Wheatstone bridge voltage and the gauge
factor by combining Equations 1 and 2:

V, _ GF-e 1 _ GF-t 1
Vex 4 14+GF-¢/2) 8p \1—-GF-t/4p

Examining the response in Figure 5c, the voltage read from the
Wheatstone bridge converges towards zero as the strain gauge is
flattened under load (p increasing). This basic operating principle
can be used to infer a range of coupled mechanical deformations of
the foam under load from the HMD, face, and facial expressions.

4.2 RGB-D Sensing

We use the RGB-D camera to capture the motion of the mouth
region, which is not occluded by the HMD. The output consists



of blendshape curves that correspond to blendshape expressions of
the lower part of the face using a simplified version of the tracking
pipeline presented in [Li et al. 2013]. For tracking, we use both
the sparse 2D lip features that describe the lip contours obtained
from [Xiong and De la Torre 2013] and the input depth map to
solve for blendshape coefficients x of a linear blendshape model
with vertices v(x) = bo + Bx, where by is the neutral shape,
the columns of B the expression meshes, and x € [0,1]" the
blendshape coefficients (N = 20). Our linear blendshape model
only needs to be constructed once for each user and can be reused
over again.

Blendshape Personalization. To build the personalized blend-
shape model (b, B), we capture the depth data of the person in
neutral face pose without the HMD. We then use the iterative closest
point (ICP) algorithm [Rusinkiewicz and Levoy 2001] to estimate
the initial pose between a statistical mean face model and the input
depth data. Next, we warp this model to fit the captured face
geometry using a linear PCA model of faces [Blanz and Vetter
1999] to determine the neutral pose by [Li et al. 2013]. The
personalized blendshape expressions B are obtained by transferring
the deformations from a database of generic lower face region
expressions to bg via deformation transfer [Sumner and Popovié
2004].

Rigid Motion Estimation. Every time a person puts on the
headset, we perform five iterations of ICP at the beginning to adjust
the rigid motion between the personalized blendshape model and
the HMD. Since the wearable device is tightly attached to the face,
we lock the local head pose of the user. The global head motion is
obtained from the system’s IMU and the external headset tracker
from the Oculus Rift.

Blendshape Tracking. To solve for the coefficients x € [0, l]N,
we fit the blendshape v(x) to the input depth map and the detected
sparse 2D lip features by minimizing the following energy term:

mxin Z & (x)+w Z e (x), 3)
i J

where ¢ (x) is the depth map term, ¢} (x) the 2D lip feature term,

and w = 5 - 1077 its weight. The depth map term describes a
point-to-plane energy:

e (x) = (n;r (vi(x) — ‘72')>2 ) )

where v; is the i-th vertex of the mesh, v; is the projection of v;
to the depth map and n; the surface normals of v;. The lip feature
term describes a point-to-point energy:

cf (x) = |Im(v;) — wlf3 )

where u; is the position of a tracked 2D facial feature and 7(v;) its
corresponding mesh vertices projected into camera space. We solve
this bounded linear optimization using the fast iterative projection
method of Sugimoto et al. [1995].

5 Facial Expression Control

5.1 Training

To model the mapping between the input data and facial expressions,
we train a linear regression model in an offline training step. During
this training session, the user wears the foam interface with the

display removed. This enables sufficient visibility for tracking facial
expressions in the regions that would be normally occluded by the
HMD. Full facial tracking is achieved using the method presented in
Lietal. [2013].

We formulate the mapping between the input data and the blendshape
coefficients x € R?® of the full face as follows:

Y 6
= (b)+c ©)

where s is the vector of the eight observed strain signals, b € R?® the
blendshape coefficients of the lower face part, 7" the linear mapping,
and c a constant. The matrix 7 € R?®*?® and the constant ¢ €
R?® are optimized using the least squares method by minimizing
the mean squared error between the observed coefficients and the
prediction.

5.2 Calibration

In practice, the strain signals captured during the training session
may be inconsistent with signals captured during the online operation
when the full framework is in use. This inconsistency is due to
two factors: (1) variations in HMD fit between wearings, and (2)
the extra weight from the display and mounted depth camera. As
a result, directly using the mapping obtained during the training
session (Section 5.1) will not result in accurate facial expressions.
To resolve this issue, we introduce an extra calibration step at the
beginning of each online operation that maps the strain gauge signals
captured during the online operation back to the distribution space
of signals captured during the offline training session.

Specifically, at the end of the training session, we ask the user
to perform a short sequence of specific expressions. During
the calibration session, the user performs the same sequence of
expressions. We assume that there is a correlation between the
distribution of strain gauge signals captured at the end of the training
session and the distribution for the calibration session.

We first learn a Gaussian mixture model (GMM) M, =
{wp, ™, 2™, 1 to describe the distribution S of the
signals captured at the end of the training session:

M
S~ > waN (™, 5 %)

m=1

where wy, is the weight of each component, and ,u(m) € R® and
£ ¢ R8*® i the mean and covariance of its m-th component,
respectively. We use M = 8 for all of our examples.

Next we model the correlation as an affine transformation (H, h),
where H € R®*® and h € R®. For the sequence of strain gauge
signals s captured during the online calibration, we compute the
transformed signal § as follows, which is used in Equation 6 to get
the blendshape coefficients of the full face:

§=Hs+h (8)

We obtain the optimal transformation (H, h) by maximizing the log-
likelihood that the signals captured during the calibration session
follow the distribution S in Equation 7 under this transformation. We
solve this optimization problem using an EM algorithm by iteratively
alternating between an E-step and an M-step [Gales 1998].

Discussion. The sequence used for calibration does not have to
be the full sequence of FACS-based expressions used for training.
A short sequence of facial expressions (e.g., smiling, surprise, and
sadness) is sufficient, because we only map the distribution of the
signals between two sequences in the calibration session.



Figure 7: Remote face-to-face communications between two users.

6 Results

As shown in Figure 6, our system can accurately capture a
wide range of facial expressions of different users when they are
wearing the HMD. This capability enables multi-party face-to-face
communication, with each user having their own 3D avatar and
wearing a prototype of our system, as shown in Figure 7 and the
accompanying video. The communication is achieved by exchanging
the blendshape coefficients computed during online operation.

Figure 8 demonstrates the optical input for our system. Throughout
our paper draft, the curves of strain gauge signals are sampled at
100Hz, while the curves of blendshape coefficients are sampled
at 30Hz if not otherwise mentioned. Figure 9 shows the eight
input signals from the strain sensors overlaid with the sequence
of coefficients for the blendshape representing a raised left eyebrow,

Figure 8: Optical input of our system. From left to right: RGB input;
depth input; extracted 2D lip feature points; output mesh overlaid
with the RGB input.

which is computed based on the optical input. As can be seen from
Figure 9, although for a given blendshape coefficient, we cannot find
a strain signal that has a one-to-one mapping to it, we can easily find
a combination of the signals that are related to it. This motivated our
use of a linear regression model to learn the mapping.

Evaluation. The strain gauge signal is robust and the foam
shape deformation is repeatable over time, cycles, and temperature
variation. To illustrate the robustness and accuracy of the strain
gauge signal, in Figure 10 we show the voltage values from one
strain gauge at the beginning and end of a five minute trial. The
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Figure 9: The eight strain signals (blue) and the coefficient of the
blendshape representing a raised left eyebrow (green). The strain
signals are scaled and the blendshape coefficients are resampled at
100Hz for visualization.
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Figure 10: Strain gauge signal over extended use for two users
(five minute trial). Twelve seconds of repeated eyebrow raises at the
beginning of the trial (left) and end of the trial (right).
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Figure 11: The combination of strain gauge and RGB-D sensors
yield the best results.

users were instructed to repeat the same facial expression (eyebrow
raises) several times during the length of the trial. As expected, we
observed some variability in the baseline value (DC offset) of the
strain gauge when the HMD is removed and replaced. Due to this
variability, we incorporated the calibration step at the beginning of
each trial.

Figure 11 illustrates different performance capture results when only
the RGB-D camera is activated, only the strain signals, or both
together. Although the strain signals can capture some of the larger
mouth motions such as smile or mouth open, the best results are
obtained when both the RGB-D input and the strain gauge signals
are used.

To show the importance of per-user training, we first demonstrate
the effect of using a person-specific regression model compared

uncovered training B training A training B training A
HMD A no calibration  no calibration  calibration A calibration A
1 1
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Figure 12: Assessment of the effect of both user-specific training
and per-session calibration on the blendshape coefficient for the
right eyebrow. The green line represents the ground truth, obtained
by observing the user with the display removed. Each test was
performed by Subject A, while the training data of another user
(Subject B) was used for several tests. Thus, the tan and light blue
lines show the result of Subject A’s use of Subject B’s training data.
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Figure 13: Comparison between the error distributions of Gaussian
Processes and linear regression.

to one built from another subject. As illustrated in Figure 12,
geometric and anatomical differences between the subjects can
cause different strain measurements and thus make the single-
instance training session necessary for accurate tracking even with
the short calibration step from Section 5.2. Figure 12 shows how
the calibration step improves the facial expression mapping between
different sessions when the HMD is taken off and put on again.

Our use of linear regression for facial expression mapping is simple,
efficient, and robust. We compare this approach with a more
sophisticated but offline non-linear regression method based on
Gaussian processes (GP) [Rasmussen and Williams 2005]. While
the overall probability distribution of the prediction is more accurate
using GP, our method produces visually comparable results, as
shown in Figure 13. Furthermore, due to the sensitive variation
of strain signals when the HMD is worn again for the same user, the
non-linear components of the GP computed regression model tend



Figure 14: Comparison between our approach and state of the art
real-time facial performance capture method. From left to right:
input; [Li et al. 2013]; our result.

to become less robust.

Comparison. To validate the accuracy of our tracking when the
HMD is worn and occluding the entire upper face, we create an
experiment where the face is largely visible by removing the HMD
display (offline training mode), with only the strain sensors in contact
with the face. By keeping the head pose fixed, we then place the
depth sensor at a position equivalent to that when mounted to the
headset. We then track the face using the state of the art real-time
performance capture method of [Li et al. 2013] without occlusions as
ground truth while simultaneously capturing the facial performance
using our input signals. To simulate a worn headset, we synthetically
occlude the upper face region as input to our method similar to the
previous evaluations. Comparisons are shown in Figure 14.

Limitations. From a hardware design standpoint, even though the
full training session is only required once per user, our system
still requires a short per-trial calibration. We believe that an
ideal system should allow instantaneous tracking for any user and
deduce the mapping from the shapes of the tracking model and
strain measurements during online operation. Because pressure
distribution varies with HMD placement and head orientation, our
strain signal measurements can drift or slightly decrease in accuracy.
In practice, we observe that our mapping is sufficiently robust due
to the additional signals obtained from RGB-D.

We have tested our prototype by capturing seven subjects, including
five males and two females. Depending on a user’s facial features
and how well adjusted the HMD straps are, there are situations in
which the strain gauges are not in tight contact with the face. In
such cases, it is difficult to accurately recover the expressions around
eyebrows, while the rigid motion of the head and the expressions
of the mouth still can be faithfully captured. Furthermore, subtle
expressions such as eye blinks or squints are difficult to capture
using the sparsely placed strain gauges on the foam liner.

Performance. Real-time performance and low latency is essential
for virtual reality enabled face-to-face communication. Our system
reaches 30fps on a 3.7GHz quad-core Intel Core 17-4820K with
32GB RAM and a GeForce GTX 980 graphics card. Due to the very
low latency of the strain gauge measurements, the latency of our
system is only bounded by the Intel IVCAM depth sensor acquisition,
which has a latency of 60ms. While typical video conferencing
requires a one-way latency to not exceed 150ms, 20ms is deemed

acceptable for virtual reality applications [Abrash 2012]. During
online operation, we measure 3ms for facial feature detection, 5ms
for blendshape optimization and 3ms for the mapping.

7 Conclusion

We have developed a system that augments an HMD with ultra-
thin strain gauges and a head-mounted RGB-D camera for facial
performance capture in virtual reality. Our hardware components
are easily accessible and integrate seamlessly into the Oculus Rift
DK?2 headset [Oculus VR 2014], without drastically altering the
ergonomics of the HMD, except for a negligible increase in weight.
For manufacturers, strain gauges are attractive because they can be
fabricated using traditional high volume production techniques.

Even though the face is largely occluded by the HMD, our system
is able to produce accurate tracking results indistinguishable from
existing RGB-D based real-time facial animation methods where
the face is fully visible [Weise et al. 2011; Li et al. 2013]. Our
system 1is easily accessible to non-professional users as it only
requires a single training process per user, and the trained linear
regression model can be reused for the same person. Given that
the strain sensitivity can be slightly different between the offline
training process (without the display) and the online operation,
we also demonstrate the effectiveness of optimizing Gaussian
mixture distributions to improve the tracking accuracy though a
short calibration step between each use.

Future Work. While acceptable for a consumer audience, our
current framework still requires a complete facial expression
calibration process before each trial. In the future, we plan to
eliminate this step by training a large database of face shapes
and regression models. We believe that such a database can be
used to determine a correct regression model without the need for
calibration before each use. Similar to head mounted cameras used
in production for motion capture [Bhat et al. 2013], we attach an
RGB-D camera to record the mouth region of the subject, but still
intend to design a more ergonomic solution with either smaller and
closer range cameras, or even alternative sensors. To advance the
capture capabilities of our system, we hope to increase the number
of strain gauges and combine our system with other sensors such as
HMD integrated eye tracking systems [SMI 2014].

Broader Impact. The ability to capture facial performances while
wearing the HMD is the first step towards enabling compelling
multi-way face-to-face interaction in virtual reality. Additionally,
recording a user’s facial expressions could enhance immersive
gaming experiences by introducing mood sensitive intelligent agents.
In film and game production, actors can also be immersed in digital
film sets while their performances are being recorded.
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