
Facial Point Detection using Boosted Regression and Graph Models

Michel Valstar
Department of Computing
Imperial College London

michel.valstar@imperial.ac.uk

Brais Martinez
ICT Department

Universitat Pompeu Fabra
brais.martinez@upf.edu

Xavier Binefa
ICT Department

Universitat Pompeu Fabra
xavier.binefa@upf.edu

Maja Pantic
Imperial College London, Department of Computing

Twente University, EEMCS
m.pantic@imperial.ac.uk

Abstract

Finding fiducial facial points in any frame of a video
showing rich naturalistic facial behaviour is an unsolved
problem. Yet this is a crucial step for geometric-feature-
based facial expression analysis, and methods that use
appearance-based features extracted at fiducial facial point
locations. In this paper we present a method based on
a combination of Support Vector Regression and Markov
Random Fields to drastically reduce the time needed to
search for a point’s location and increase the accuracy and
robustness of the algorithm. Using Markov Random Fields
allows us to constrain the search space by exploiting the
constellations that facial points can form. The regressors
on the other hand learn a mapping between the appear-
ance of the area surrounding a point and the positions of
these points, which makes detection of the points very fast
and can make the algorithm robust to variations of appear-
ance due to facial expression and moderate changes in head
pose. The proposed point detection algorithm was tested on
1855 images, the results of which showed we outperform
current state of the art point detectors.

1. Introduction

Facial point detection is an important step in tasks such
as face recognition, gaze detection, and facial expression
analysis. The performance of these tasks is usually to a
large degree dependent on the accuracy of the facial point
detector, yet the perfect facial point detector is yet to be
developed. In this paper, we propose a novel method that
brings us a step closer to this goal.

Many existing works consider the objects to detect to be
entire facial features, such as an eye, the nose, or the mouth

Figure 1. Point model of 22 fiducial points. The right image shows
the relationship between a patch drawn at location L and the target
location T .

[16]. We will denote those detectors as facial component
detectors. However, the cues for tasks like facial expres-
sion recognition or gaze detection lie in the more detailed
positions of points within these facial components. For ex-
ample, a smile can be detected by analysing the positions of
the mouth corners, not by the position of the mouth itself.

In this paper we present a novel point detector which we
apply to detect 22 fiducial facial points in order to obtain an
experimental performance comparison of the method. The
points we aim to detect are shown in figure 1. They include
20 fiducial locations which provide useful information for
automatic expression recognition, such as the upper eyelid,
the eye corners, the mouth corners and the nostrils. We will
denote such locations as facial points. Besides the facial
points we also detect the pupils, so that in addition to facial
expression analysis the gaze direction can be estimated.

Previous methods for facial feature point detection can
be classified into two categories: texture-based and shape-
based methods. Texture-based methods model the local tex-
ture around a given feature point, for example the pixel val-
ues in a small region around a mouth corner. Shape-based
methods regard all facial feature points as a shape, which
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is learned from a set of labelled faces, and try to find the
proper shape for any unknown face.

Typical shape-based methods include detectors based on
active shape or active appearance models [10, 2]. These
methods detect shapes of facial features instead of separate
facial points. A number of approaches that combine tex-
ture and shape-based methods have been proposed as well,
for example [3], which use PCA on the grey level images
combined with Active Shape Models (ASM), and [14] that
extends the ASM with Constrained Local Model. Chen et
al. proposed a method that applies a boosting algorithm to
determine facial feature point candidates for each pixel in
an input image and then uses a shape model as a filter to se-
lect the most probable position of five feature points [1]. Of
the works described above, [3, 14] have been evaluated on
the same publicly available database: the BioID database
[11]. This allows us to compare our work with the shape
based approaches mentioned above.

Typical texture-based methods include a grey-value, eye-
configuration and Artificial Neural-Network-based method
that detects 8 facial points around the eyes [19], a log-Gabor
filter based facial point detection [9] method to detect 7 fa-
cial points, and a two-stage method for detecting 8 facial
points that uses a hierarchy of Gabor filter networks [7].
Vukadinovic and Pantic [23] presented a work that aims to
detect 20 facial points. It uses Gabor filters to extract fea-
tures from heuristically determined regions of interest. A
GentleBoost classifier is learned on these features. During
testing, a sliding window is applied to every location in this
region, and the point with the highest response to the clas-
sifier is selected as the detected point. An implementation
of [23] is publicly available from Dr. Pantic’s website. This
allows us to compare it with the method proposed in this
work.

Many of the methods described above apply a sliding-
windows-based search in a region of interest (ROI) of the
face. A classic example of this is [23]. In this approach,
a binary classifier or some other function of goodness that
determines how well a location represents the target facial
point is applied to every location in the ROI. However, this
is a slow process, as the search time increases linearly with
the search area. Depending on the type of classifier used,
this approach may also lead to either multiple points clas-
sified as the target point, or to an incorrect maximum. Pro-
posals to use gradient descent techniques to speed up this
process have reportedly failed [13], as the learned functions
tend to have local extremes, which can result in incorrect
detections. Recently, a method was proposed to tune the
classifiers in such a way that the output is a smoother func-
tion, without local extremes [15]. However, the authors
reported that their method was not entirely successful in
eliminating all local extremes. Another method to speed
up the search was proposed by Lampert et al. [12]. In their

work they proposed a branch-and-bound scheme that finds
a global optimal solution over all possible sub-images.

Recently, there have been a number of approaches that
use local image information and regression based tech-
niques to locate facial points. Classifiers can only predict
whether the tested location is the target location or not. Re-
gressors on the other hand can provide much more detailed
information.

By using regression we can eliminate the need for an ex-
haustive sliding window based search, as every patch close
enough to the target point can provide an estimate of the
target’s location relative to that patch. Zhang et al.[24]
use regression to address deformable shape segmentation.
They applied an image-based regression algorithm that uses
boosting methods to find a number of contours in the face.
Based on these contours, they could also compute the lo-
cations of 20 facial points. Cristinacce and Cootes [4]
use GentleBoost regression within the Active Shape Model
(ASM) search framework to detect 20 facial points. Seise
et al. [20] use the ASM framework together with a Rel-
evance Vector Machine regressor to track the contours of
lips. However, their approach was tested on only a single
image sequence. Also, Relevance Vector Machines are no-
toriously slow and hard to train.

In summary, although some of these detectors have been
reported to perform quite well when localising a small num-
ber of facial feature points such as the corners of the eyes
and the mouth, there are three major issues with all existing
previous work. First of all, none but [23] is able to detect
all 20 facial feature points necessary for automatic expres-
sion recognition (see Fig. 1). To wit, none are able to detect
the upper and lower eyelids. This is despite the fact that the
upper and lower eyelid are instrumental in detecting four
frequently occurring facial expressions: eye blinks, winks,
widening of the eye aperture (e.g. in an expression of sur-
prise) and narrowing of the eye aperture (e.g. in sleepy or
angry expressions). Also, no previous work has reported to
be able to robustly handle large occlusions such as glasses,
beards, and hair that covers part of the eyebrows and eyes.
Lastly, non have reported to detect facial points robustly in
the presence of facial expressions. We will show that the
approach proposed in this paper overcomes all three short-
comings, while retaining high accuracy and low computa-
tional complexity.

We propose a novel method based on Boosted Regres-
sion coupled with Markov Networks, which we coin BoR-
MaN. BoRMaN iteratively uses Support Vector Regression
and local appearance based features to provide an initial
prediction of 22 points, and then applies the Markov Net-
work to ensure we sample new locations to apply the re-
gressor to from correct point constellations. Our method
thus exploits the property that objects which have a regular
structural composition are made up of a combination of dis-
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Figure 2. Some typical results on the FERET and BioID databases.

tinct parts whose relative positions can be described mathe-
matically. The face, with the eyes, mouth, eyebrows etc. as
parts, is a good example of this type of object.

Our approach is cast in a probabilistic framework. To
determine the location of a point, we use three independent
sources of information: the first is an a priori probability of
a point’s location based on the location of the detected face.
Secondly we use the regression predictors, and thirdly we
use Markov Random Fields (MRFs) to model the points’
relative positions. Our method has lower computational
complexity than existing point detectors, and is robust to
facial expressions and a certain degree of head pose varia-
tions. The BoRMaN point detector will be made publicly
available for download from the authors’ websites.

The main contribution of the work presented here is the
combination of SVRs for local search with MRFs for global
shape constraints. We believe that this is a novel approach
to face point localisation. In addition, to the best of our
knowledge, this is the first time that feature selection by
Boosting is applied to Support Vector Regression. Regard-
ing the MRFs, we note three methodological novelties:

Firstly, a node is defined to be a spatial relation between
two facial points rather than being a facial point itself. This
allows a representation that is invariant to in-plane rotations,
scale changes and translations (see below). It also produces
a more compact set of training examples, since now only the
anthropomorphic differences between subjects are encoded.

Secondly, our method proposes a novel way of defin-
ing the relations between nodes. For example, modelling
the vector of two angles is difficult, since both values can
be affected by in-plane rotations. By modelling the dif-
ference between two angles, and the ratio of two vector
lengths, we achieve the desired invariance to in-plane ro-
tations, isotropic scaling and translations.

Thirdly, using Gaussian Mixture Models (GMMs) to
model the relations produces a bias in the final estimate to-
wards the mean values. Yet, most of the state of the art
methods use GMMs for setting spatial relations. Instead,
we define a new metric which only penalises improbable
configurations.

The remainder of this paper is structured as follows: In

section 2 we explain the BoRMaN method we use to de-
tect facial points. In section 3 we present an evaluation
study performed on three different databases, 1500 images
of frontal faces in total. Finally, in section 4 we present our
closing remarks.

2. BoRMaN point detection

2.1. A priori probability

To make sure we start testing our regressors close to the
target location, we need some prior information about the
locations of the points. This is particularly important be-
cause we cannot test the regressor on just any image po-
sition, and still expect a reasonable result. The better the
prior is, the more likely it is to obtain a good regressor es-
timate. In our approach we base our a priori probability on
the bounding box returned by a face detector (the face box).

Because of its proven success, we apply a modified Vi-
ola & Jones face detection method [6] to grey-scale versions
of the input images. Some postprocessing is afterwards ap-
plied to the detected face: it is enlarged by 40 % at the bot-
tom so that every chin of our training set was included, it
is resized to a 200 x 280 pixels face box, and a global il-
lumination normalisation is applied so the worst effects of
varying illumination conditions are removed. We will de-
note the normalised grey-scale image as F .

We divide our points into two groups: stable fiducial
points and unstable fiducial points. The difference between
these points is that stable points do not change their posi-
tion due to facial expression or speech. In our case the set
of stable points is Ss = {pA, pA1, pB , pB1, pH , pH1, pN}
(see fig. 1). These points are detected first, as they are aux-
iliary for the detection of the unstable points.

After the face box has been found, we can model the
prior probability of the x- and y-position of each facial point
relative to the coordinate system of the detected face. Us-
ing the correct target locations T for all points in each im-
age (obtained from manual annotation), we can map their
positions to this new coordinate system based on the face
box. This results in a set of points Tfb, for which we
calculate the mean and standard deviation of their x- and
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y-coordinates. We thus have a bivariate Gaussian prior
probability P s

i of the location of a facial point i, where
i ∈ {pA, pA1, pB , pB1, pH , pH1, pN}, relative to the coor-
dinate system of a detected face box. This model automati-
cally takes into account the error made by the face detector.

After detection of the stable points it is possible to use
them to perform a face registration by applying a non-
reflective similarity image transformation on the image F ,
resulting in an image that is registered to remove in-plane
head rotation and, to a large effect, individual face shape
differences. We denote the resulting registered face by Fr.
The a priori probabilities of the locations of the unstable
points are modelled in the same way as the stable point lo-
cations, but relative to the registered face coordinate system.
We thus also have a bivariate Gaussian prior probability Pu

j

of the location of each unstable facial point j, where j ∈
{peyeR, peyeL, pD, pD1, pE , pE1, pF , pF1, pG, pG1, pI ,
pJ , pK , pL, pM}.

2.2. Regression Prediction

We formulate our localisation problem as finding the
vector v that relates a patch location L, selected accord-
ing to some probability distribution function, to the target
point T (see Fig. 1). We decompose this problem into two
separate regression problems. Regressor Rα is tasked with
finding the angle α of v and the regressor Rρ is to predict
the length ρ of the vector, i.e. the distance of L to T . We
will denote the estimate of v provided by the regressors Rα

and Rρ by v̂L. This gives us the predicted target location
T̂ = L + v̂L.

As regressor we have chosen Support Vector Regressors
(SVRs). The reason for this is the capability of dealing
with nonlinear problems, and a reportedly high generalisa-
tion capability. An early pilot study ruled out using multi
ridge regression for this problem. The SVRs use a Gaussian
RBF kernel. We thus need to optimise for the regression
sensitivity ε, the kernel parameter γ and the slack variable
C. Parameter optimisation is performed in a separate cross-
validation loop during training, i.e. independently from the
test data.

Fig. 3 shows the output of Rα and Rρ for detection of a
pupil. The regressor in this example is applied on patches
located at every second pixel in every second row in an area
three times the standard deviation of the prior location of
the pupil. As we can see, the regressors give a good yet not
a perfect indication of where the target point is. Note that
although the location of the pupil is a global minimum, the
predicted distance at that location is not zero.

The error of the estimates provided by the regressor can
be grouped into two types. Most of the estimates contain
errors that result from imprecisions in the regressor output.
Such errors can be removed by using an iterative procedure,
where the point is detected in several iterations. The final

Figure 3. The output of the SVRs to detect an pupil: the estimated
direction of the target (left panel) and the estimated distance to the
target (right panel). The distance to the target is shown in pixels.

prediction is derived from a combination of the estimates
made (see section 2.4). On the other hand, some estimates
have greater errors which are not merely imprecisions. To
prevent these errors from influencing the iterative process
we apply spatial restrictions on the location of each facial
point depending on the other facial points. This process
prevents unfeasible facial point configurations. It is realised
by modelling a Markov Random Field (MRF), as outlined
in section 2.3. An outline of the whole algorithm is given in
section 2.4.

2.3. Spatial Relations

The introduction of spatial relations between facial point
positions refers to the consideration of anthropomorphical
restrictions when performing facial point detection. The
objective for introducing spatial restrictions is the improve-
ment of the target position estimates by preventing unfea-
sible facial point combinations. The importance of such
information is grounded in the richness of the problem of
facial point detection: the face contains both stable and un-
stable fiducial points, where the latter have greatly varying
positions relative to the former. Also, some points are more
distinctive than others, e.g. the inference of the position
of the eye corner given local image intensities is more re-
liable than the same task for the case of the chin position.
It is therefore natural to consider the influence between fa-
cial points and derive intelligent relations, where the most
reliable and stable points aid the detection of the more com-
plicated ones.

When it comes to modelling the spatial relations, some
works opt to directly model the positions of each facial point
with respect to the positions of other points (e.g. [21]),
using for example a coordinate system based on the head
position. Instead, we propose a method were the relations
between relative positions of pairs of points are modelled.
More precisely, each relative position of a pair of points
{i, j} is a vector ri,j pointing from one facial point to an-
other. The relation between two of these vectors is de-
scribed by two parameters: the relation between their angles
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Rα and the relation between their lengths Rρ. Thus, if we
note ri,j = (αi,j , ρi,j), the objective is to model the possi-
ble relations between variables αi,j and αk,l, and between
variables ρi,j and ρk,l. Furthermore, the obtained model
should be able to deal with in-plane face rotations and im-
precisions of the face detector, which affects the scale of
the face box. Thus we model Rα = αi,j − αk,l, and
Rρ = ρi,j/ρk,l, which obtains such an independence.

Another important difference with respect to other meth-
ods is that we model these variables with a Sigmoid func-
tion. If a variable takes its values in [m−,m+], then S(x) =
Psigm(min(v−m−,−v+m+)). With this model the prob-
ability drops very fast when the value is out of the segment
of possible values. Note that the value in the extremes is
S(m−) = S(m+) = 0.5, which is the Sigmoid point of
inflexion. An advantage of using a Sigmoid instead of a
Gaussian for modelling the possible values is that a Gaus-
sian penalises all the values but its mean, biasing the results.
In contrast, modelling with a Sigmoid only penalise highly
improbable constellations.

For example, in practice this model of spatial relations
encodes that the line connecting points pA and pB is ap-
proximately orthogonal to the line connecting points pF and
pG, or that the distance between points pA and pB and the
distance between points pA1 and pB1 have a certain proba-
ble pre-specified length relation (See Fig 4 ). So although
the positions of points pF and pG are flexible, the vector
connecting them is constrained to be roughly perpendicular
to the vector connecting pA and pB . As long as there are no
out-of-plane head rotations, the lengths of vectors pA − pG

and pG − pB are the same. We have thus obtained invari-
ant relations from variable point positions. It is also impor-
tant to note that the effectiveness and accuracy of directly
modelling the point positions, P s

i and Pu
i , depends on the

accuracy of the face detector, while modelling the relative
positions is independent of the face detection.

Once the pairwise relations are defined, we model the
joint probability of a configuration using a Markov Ran-
dom Field. In our model, the nodes correspond to each
of the relative positions ri,j and their states are binary,
coding whether the estimates are erroneous or correct.
In each relation, the relative positions of points i and j,
ri,j = (αi,j , ρi,j), and the relative positions of points k
and l rk,l = (αk,l, ρk,l) are modelled as Sang(αi,j , αk,l) ·
Sdist(ρi,j , ρk,l). An example of what a node is and how the
relation between two nodes is modelled is shown in fig. 4.
Considering all possible relations (a fully connected net) is
unfeasible for the general case due to the exponential num-
ber of relations. Some works, as [8], propose automatic
ways of selecting the most informative relations and reduce
the number of edges. In our case, we construct the MRF
relations following a hierarchy: first the stable points are
detected using a fully connected network. Afterwards, a

Figure 4. Vectors v1 and v2 are nodes rpA,pB1 and rpA,pH . The
MRF models the relation between these two nodes: the difference
between the angles of the two vectors, α, and the ratio between the
lengths of the two vectors

”synthetic” facial point is created for the right eye, left eye
and nose, using the mean of the stable points belonging to
each of this facial component. Those points are then con-
sidered as fixed. The net generated for the left eyebrow is
created using the 3 synthetic points and the two unstable
points of the eyebrows. Equivalently, this process is per-
formed to detect the unstable points for the right eyebrow,
both eyes, the mouth and the chin.

Different algorithms can be used for minimising the
Markov Network. We use a Belief Propagation algorithm,
obtaining a probability of each point being a correct esti-
mate.

2.4. Point detection algorithm

The BoRMaN algorithm iteratively improves its detec-
tion results. It is outlined in algorithm 2.1. The algorithm
starts of with the locations of maximum prior probability as
the predicted targets, as this is our best guess of the point
locations, given the face detection results. We use the lo-
cations of maximum prior probability as the first locations
to generate the Haar-like features from (see section 2.5),
which are then used by the regressors to make the first pre-
diction about the target locations.

We start with an empty set of predicted target locations.
After each round, the predicted target locations provided
by the regressors are added to a set of predictions for each
point. We update the target locations as the median of this
set of predictions. This updated target is then analysed by
the Markov Network, which generates the patch locations
to test the regressors on in the next round. To avoid repeti-
tive results, we add a small amount of zero-mean Gaussian
noise to the patch locations suggested by the Markov Nets.
We repeat this for a fixed number of rounds nr, and return
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the last updated target as the final prediction of the target
locations. Keeping nr fixed allows us to guarantee a result
within a fixed period of time.

Algorithm 2.1: BORMAN(priors)

targets← priors
patches← priors
predictions← ∅
for rnd← 1 to max rnds

do

⎧⎪⎪⎨
⎪⎪⎩

reg = regressor(patches)
predictions← predictions ∪max(priors ∗ reg)
targets← median(predictions)
patches←MarkovNet(targets) + N(0, σ)

2.5. Local appearance based features and AdaBoost
feature selection

For this work, we have chosen to adopt Haar-like filters
as the descriptors of local appearance. The reason for this is
a twofold: on the one hand, we want to show that the suc-
cess of our approach is due to the idea of turning the point
detection problem from a classification procedure into a re-
gression procedure, and not due to some highly descriptive
appearance feature.

On the other hand, one of our main aims of the proposed
approach is to greatly improve the time required to detect all
points. By computing the integral image of our input face
image first, computation of each Haar-like filter is reduced
to as little as four addition/subtraction operations.

The optimal patch size has empirically been determined
to be 32 pixels high and wide during a pilot study. For every
location in the face image F from where we want to get a
prediction of the direction and distance to the target point,
we compute the responses to 9 different Haar-like filters, at
four different scales: the full 32 pixels, 16, 8, and 4 pixels
big. All filters are square, and for the 16, 8 and 4 pixels
filters, the centres of the filters were placed to overlap half
of the width of the adjacent filters of the same scale. This
results in 2556 dimensional feature vectors.

Although SVR regressors are able to learn a function
even with very little training data, regression performance
decreases when the dimensionality of the training set is too
large. To be more precise, if we have a training set D with
nf features and ns instances, then if nf > ns, it is possible
to uniquely describe every example in the training set by a
specific set of feature values. Our training set consists of
some 400 examples (images). Considering the fact that the
dimensionality of our feature set is 2556, we are indeed in
danger of over-fitting to the training set. One way to over-
come this problem is to reduce the number of features used
to train the SVR using feature selection algorithms.

Boosting algorithms such as GentleBoost or AdaBoost
are not only fast classifiers, they are also excellent feature
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Figure 5. Comparison of the cumulative error distribution of point
to point error measured on the BioID test set.

selection techniques, as reported in [22]. As an added bene-
fit of employing feature selection, we will have to compute
fewer features at each patch location, thus speeding up our
algorithm. This is in contrast with feature reduction tech-
niques such as PCA, which are not strictly feature selection
techniques and still require all features to be computed first.

We implemented Drucker’s approach to AdaBoost re-
gression [5], using multi-ridge regression as the weak re-
gressors. To find the optimal number of features to select,
a stop condition is usually defined based on the strong re-
gressor output. For example, selection of features could ter-
minate if the strong regressor output stops increasing for a
predefined number of rounds. However, preliminary tests
have shown that this does not produce the optimal number
of selected features. Therefore, we do not use this stop cri-
terium and instead let the AdaBoost process order all fea-
tures based on their relative importance. We then optimise
the number of features to use in a separate cross-validation
process using SVRs.

3. Experiments

We have evaluated our method in two ways: a cross-
validation test on 400 images taken from the FERET and
MMI-Facial Expression databases [18, 17], and a database
independent test on the BioID database [11]. The first
test determines how well the database copes with varying
expressions and occlusions. The second test performs a
benchmark comparison of our proposed method with the
existing state of the art. Typical results are shown in Fig 2.

The images selected from the FERET and MMI-Facial
Expression databases contain varying facial expressions,
many occlusions of the mouth area by beards and mous-
taches, of the eyebrow area by hair, and of the eye areas
by glasses. There often were significant reflections on the
glasses, which made the detection of the eyes a particu-
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Table 1. BoRMaN point detection results for the cross-validation test on 400 images. The classification rate C is defined as the number of
times e < 0.1, and the mean and standard deviation of the error (eμ ,eσ ) are measured in percentages of dIOD .

Point C eμ eσ Point Cl.Rate eμ eσ

pA 92.25% 4.44% 4.46% pG1 96% 3.40% 4.14%
pA1 90.5% 5.25% 5.86% pH 93.5% 3.71% 3.46%
pB 84.5% 5.43% 5.67% pH1 93.25% 4.00% 3.48%
pB1 92.25% 4.27% 4.24% pI 93.5% 4.40% 4.06%
pD 90.25% 5.20% 4.73 pJ 92.5% 4.87% 5.65%
pD1 91.25% 4.97% 5.02% pK 95% 3.94% 4.08%
pE 89% 5.40% 4.77% pL 89.5% 5.23% 5.26%
pE1 81% 7.10% 7.81% pM 19.25% 20.5% 12.0%
pF 94.5% 3.34% 3.96% pN 96.25% 3.63% 3.15%
pF1 94.25% 3.62% 5.15% right pupil 94.75% 3.16% 4.06%
pG 95% 3.41% 3.90% left pupil 94.75% 3.21% 4.81%

larly challenging problem. On this set we applied a 10-fold
cross-validation evaluation. The results of this study are
shown in table 1. The table shows the mean error per point
in percentages of dIOD (column 2), the standard deviation
of the error per point in percentages of dIOD (column 3),
and the classification rate per point (column 1). The detec-
tion error of a point i is defined as the Euclidian point to
point distance between Ti and T̂i:

ei =
||Ti − T̂i||

dIOD
(1)

where dIOD is defined as the Inter-Ocular Distance, i.e.
the distance between the pupils. The classification rate Ci

is defined as:

Ci =

∑n
j=1 ej

i < 0.1
n

(2)

where j is an image number and n the total number of
images in the dataset. As we can see, all points but point pM

are detected with extremely high accuracy, even though the
database includes many occlusions and expression. Point
pM has a low detection results for two reasons: Firstly, the
point’s appearance is not well defined. The chin is locally
smooth, and we can only identify it easily if a subject has a
sharp jawline. Even then, we’re dependent on good lighting
to make the jawline visible. Secondly, human annotators
find it very difficult to consistently annotate the location of
the chin. This causes a big variance in the appearance of the
chin in the training data, which, in turn, causes detection of
the chin to be more difficult.

The goal of our second test was to compare our facial
point detector with those of others. Namely, we want to
compare our point with the current state of the art: two
Active Shape Model methods ([3, 14], which we denote
as CLM and Stacked Model, respectively), and a Gabor-
feature/GentleBoost based method that employs sliding
window based search [23] (which we will call Gabor-ffpd).
To make such a comparison, we are forced to use the BioID

database, as neither the CLM or the Stacked Model imple-
mentations are publicly available, yet they both tested their
methods on the BioID dataset. There is a publicly avail-
able implementation of the Gabor-ffpd. Thus, if we ap-
ply both the BoRMaN method and the Gabor-ffpd method
on the BioID dataset, we can compare the performance of
the various methods on a common dataset. The BoRMaN
method was trained using the FERET and MMI-database
training data of the first fold of the previously outlined
cross-validation study.

The results of this are shown in Fig 5. The figure shows
the cumulative error distribution of the me17 error measure.
The measure me17 is defined in [3] as the mean error over
all internal points, that is, all points that lie on facial fea-
tures instead of the edge of the face. For our method, that
would mean all points except for pM . However, neither the
CLM nor the Stacked Model approaches are able to detect
the eyelids. So, to allow a fair comparison, we have ex-
cluded the points {pF , pF1, pG, pG1} as well when calculat-
ing me17. Fig 5 shows clearly how we outperform all three
other approaches. The difference between the error levels
for which 50% of the images are correctly detected is twice
as big when comparing BoRMaN with Stacked models than
when comparing Stacked Models with CLMs. The figure
also shows that a significant proportion BoRMaN predic-
tions have an extremely low error: 26% of the images have
an average point error of less than 2% of dIOD, which trans-
lates to roughly 2 pixels per point. Because the BoRMaN
method was trained using only images from completely dif-
ferent databases, we have also shown that our system gen-
eralises to unseen images from other databases.

4. Conclusions and future work

We have proposed a novel method for finding 20 fidu-
cial points and the pupils in an input image of a frontal
face, based on boosted Support Vector Regression, Markov
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Random Fields and dense local appearance based features.
The proposed method, which we coined BoRMaN, is robust
to varying lighting conditions, facial expression, moderate
variations in head pose, and occlusions of the face caused
by glasses or facial hair. Our method is also more accu-
rate than the current state of the art in facial point detection
[3, 14, 23]. It is approximately twice as fast as [23].
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