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Abstract: Transferring facial pose and expression features from one face to another is a challenging
problem and an interesting topic in pattern recognition, but is one of great importance with many
applications. However, existing models usually learn to transfer pose and expression features with
classification labels, which cannot hold all the differences in shape and size between conditional faces
and source faces. To solve this problem, we propose a generative adversarial network model based
on classification features for facial pose and facial expression transfer. We constructed a two-stage
classifier to capture the high-dimensional classification features for each face first. Then, the proposed
generation model attempts to transfer pose and expression features with classification features. In
addition, we successfully combined two cost functions with different convergence speeds to learn
pose and expression features. Compared to state-of-the-art models, the proposed model achieved
leading scores for facial pose and expression transfer on two datasets.

Keywords: facial pose and expression transfer; generation model; classification features;
generative adversarial networks

1. Introduction

Transferring facial pose and expression features from one conditional face to another
source face is an interesting but challenging task in pattern recognition. It is widely used for
the entertainment audience and video production industry [1]. Through this technology, it
has become a reality that the face of a virtual digital human can be rotated to any angle and
can make any facial expression [1]. However, the task has the following challenges: (1) it is
difficult to learn from some conditional face mappings with low-dimensional classification
labels; (2) it is difficult to control the transfer order for facial pose and expression transfer.

Recently, CR-GAN [1] built a two-path generative adversarial network to learn com-
plete pose representations for most poses rather than incomplete pose representations
for some poses. For facial expression transfer, previous solutions [2,3] were trained to
learn some expression representations with data-driven generation. For facial pose and
expression transfer, models such as [4] and Few-ShotFace [5] have been trained to learn
most pose and expression representations through few-shot learning.

While existing models have achieved impressive results, there are two challenges that
need to be addressed urgently. For the CR-GAN model and the Few-ShotFace model, they
select classification labels as a condition for their generator networks to transfer pose and
expression features. The first challenge is that low-dimensional classification labels cannot
hold the differences in shape and size between conditional and source faces. First, it cannot
hold the shape and size differences between conditional faces and source faces that are
in the classification boundary. Second, it cannot hold the differences in shape and size
between conditional and source faces, which account for the majority of the classification.
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For example, if the conditional face is small and the source face is large, existing models
will produce unreasonable outputs. The second challenge is that it is difficult to control
the transfer order for facial pose and expression transfer. As we know, facial pose features
are generally much harder to learn than facial expression features. If the order of transfer
learning is not well controlled, it will affect the transfer effect and inevitably increase the
convergence time of the model.

Zhang et al. [6] proposed a novel deep transfer neural network method based on
multi-label learning (MNet) for facial attribute classification. Sankaran et al. [7] introduced
a domain adaptive representation (DAR) learning method for facial action unit recognition.
Bozorgtabar et al. [8] proposed a novel adversarial domain adaptation (ADA) for facial
expression analysis. Tweaked Convolutional Neural Networks (TCNN) have shown that
features extracted from deeper layers capture rough landmark locations. For the first
challenge, inspired by TCNN, MNet, DAR, and ADA, we propose using high-dimensional
classification features rather than classification labels as a condition for the proposed gener-
ator network. A novel two-stage classifier is presented here to capture normal classification
features from deeper layers. Compared to classification labels, classification features have a
higher dimension and contain more normal facial features. With this improvement, virtual
digital humans in the entertainment audience and video production industry can appear
smoother and produce more realistic visualizations of humans and their faces. Subse-
quently, the average features class conditional face, the average classification features of the
source face, and the average classification characteristics of the source face are used to esti-
mate the classification characteristics of the target face for the proposed generator network
to generate the target face. Through this technology, after virtual digital humans change
conditions, the results generated by the model can still be regarded as the same visually
reasonable digital human (shown in Figure 1b). Such research has not yet been widely
carried out, so this has inspired our research, which is described in the next paragraph.

Figure 1. The proposed network architecture for facial pose and expression transfer. (a) The proposed
classifier network C. (b) The proposed global network architecture.

To summarize, this paper presents a generative adversarial network model based on
classification features (short for CF-GAN) for facial pose and facial expression transfer.
Our research fills a gap in the development of more accurate virtual digital human face
synthesis. The main contributions of the proposed method are as follows. First, we present
a novel two-stage classifier to capture classification features for each face. In addition, it is
the first time that classification features can hold the differences in shape and size between
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conditional and source faces. Finally, we successfully combined two cost functions with
different convergence speeds to learn pose and expression features.

2. Related Work

In recent years, facial pose and expression transfer tasks have been extensively studied.
This paper focuses on generative adversarial networks (GANs) [9]-related research. Accord-
ing to the transfer difficulty level, we divided the existing models into two classifications,
facial pose transfer, facial pose, and expression transfer.

2.1. Facial Pose Transfer

For facial pose transfer, it aims to transfer a source face from one viewpoint to another
that is equal to the angle of one given conditional face. As we know, StarGAN [10] is the first
model for one-to-many transfers. StarGAN introduces an auxiliary classifier for a single
discriminator network (short for D) to control one-to-many transfers. BiGAN [11] presents
a generator network (short for G) with an encoder (short for E) for post-transfer. Then other
models such as [12–14] introduce a single-path model for pose transfer: an encoder network
and a generator network are followed by a discriminator network. DR-GAN [12] proposes
an identity-preserved representation for pose transfer. TP-GAN [15] presents a novel two-
path model to capture global features and local details for post-transmission. For the above
models that have achieved unreasonable results for some poses with incomplete represen-
tations, CR-GAN [1] introduces a two-path architecture to learn complete representations
for all poses from the dataset. For the CR-GAN model, if the angle of the source face is
different from most faces in the existing dataset, it will generate an unreasonable output.
Ramamoorthi et al. [16] presented a method to analytically construct th principal compo-
nents for images of a Lambertian object from a single viewpoint. Lee et al. [17] showed that
configurations of single light source directions exist that are effective for face recognition.
Kent et al. [18] used principal component analysis to find the most representative spatial
daylight distribution patterns. Savelonas et al. [19] provided an overview of computational
methods aiding geoscientists in the analysis of 2D or 3D imaging data. Inspired by these
models, we introduced a classifier to classify similar facial pose features as a classification.
We aimed to learn limited and effective mapping rather than endless mapping.

2.2. Facial Pose and Expression Transfer

For facial pose and expression transfer, it aims to transfer facial pose and some ex-
pressions such as ‘happy’, and ‘angry’ from one conditional face to another. In previous
pioneer works, Wang et al. [20] extended a GANs framework to interactive visual manip-
ulation with two additional features. Hosoi et al. [21] proposed a status score to transfer
both head posture and facial expression. Pumarola et al. [22] introduced a novel GAN
conditioning scheme based on Action Units (AU) annotations. Zhu et al. [23] presented
a GANs model to translate an image from a source domain to a target domain in the
absence of paired examples. Chang et al. [2] introduced a generative adversarial network
for automatic cycle-consistent photo editing. Chen et al. [3] proposed a model for digital
face manipulation based on an end-to-end convolutional neural network. Wu et al. [24]
presented a novel learning-based framework with a latent boundary space for face reen-
actment. Wang et al. [25]’s model separated the constraints for intrinsic subject-specific
characteristics and age-specific facial changes with respect to elapsed time. These models
are trained to learn expression representations for expression transfer and typically intro-
duce an encoder network to obtain expression representations and a generator network to
generate expression transfer results. For facial pose and expression transfer, X2face [26]
introduces a self-supervised network architecture that allows the pose and expression
of a given face to be controlled by another face. Following that, other models such as
OneShotFace [4], and Funit [27] were trained with meta-learning architecture. The most
representative model is Few-ShotFace [5]. This model uses an embedded network to obtain
pose and expression representations and a generator network to generate transfer results
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from facial landmarks. In [28], they present a novel framework, Generative Priorguided
UNsupervised Image-to-image Translation (GPUNIT), to improve overall quality and
applicability. Similarly, MSPC [29] proposes a universal regularization technique called
maximum spatial perturbation consistency, which enforces a spatial perturbation function.
Despite the impressive results of these models, there are still some challenges [30]. For the
Few-ShotFace model, if the source face and conditional face have larger differences in shape
and size, they will produce unreasonable output.

3. Proposed Method

In this section, we first introduced the proposed classifier. Following that, we intro-
duced the proposed generator. In addition, we introduced network architecture. Then,
the CF-GAN model objective was provided. Finally, we introduce the proposed algorithm
in the form of pseudocode.

3.1. Proposed Formula for Classifier

Given a source face x, previous researchers typically built a classifier C to output the
classification labels co by: C(x) −→ co. However, this is just an ideal state. If the classifier
C is introduced into the CR-GAN model, the correct transfer result will not be obtained
because the low-dimensional classification labels cannot hold the shape and size differences
between conditional and source faces.

The problem of classification labels can be analyzed from two aspects. For example,
a face with an angle of 30◦, which is the boundary angle of two classifications, may be
classified into either of the two classifications. Following that, the wrong classification
labels will lead to the wrong viewpoint guide face and the expression guide face as shown
in Figure 1b. Finally, existing models will produce the wrong facial pose and expression
transfer result. If most faces with strange shapes in the classification have larger or smaller
sizes, even if the correct classification labels are obtained, they only learned the wrong
mapping between them rather than the correct mapping between faces with normal shapes
and sizes.

For the classification label problem, this paper trained a two-stage C classifier with
K classifications (K = 18 in our experiments). In the first stage, we selected J (J = 10 in
our experiments) positive faces that have normal shapes and sizes and are at the center
of each classification to train the model. Since the selected faces do not have the above
problems, the model at this stage is easy to train, but it is not suitable for the facial pose
and expression transfer with all the angles. Given a source face x f , the classifier C f of the
first stage will output the classification features f f and the classification labels c f .

f f , c f = C f (x f ) (1)

where c f is a 6-dimensional vector and f f is a 64-dimensional vector. For classification
features fk1 , . . . , fkn from the classification k, the average classification features f fk

can be
expressed as:

f fk
=

n
∑

i=1
fki

n
(2)

Using the average of K classifiers, we can obtain the general features of all faces
in the classification. Note that we saved all the average classification features for each
classification. Then, we denoted CE(·, ·) as the cross-entropy loss. In the first stage,
the cross-entropy loss was used to calculate the difference between the output classification
labels c f and the real classification labels c:

L f = CE
(

c f , c
)

(3)
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In the second stage, we aimed to model from all angles. Given a source face x, the clas-
sifier C of the second stage will output the classification features f , and the classification
labels co.

f , co = C(x) (4)

The cross-entropy loss was employed to calculate the difference between the output
classification labels co and the real classification labels c firstly. Here, we denote CS(·, ·)
as the cosine similarity loss. Following that, CS(·, ·) was used to calculate the difference
between the output classification features f and the average classification features f fk

.
The overall cost of the second stage is as follows:

Ls = CE(co, c) + CS
(

f , f fk

)
(5)

In order to eliminate the wrong mapping caused by faces with strange shapes or
normal sizes, we control their classification characteristics to train the second-stage classifier.
In detail, for faces whose similarity between the classification features and the average
classification features in any classification is less than 0.7, we replaced their classification
features with the average classification features from the first stage. This process can be
expressed as follows:

fki
=

 f , CS
(

f , f fk

)
>= 0.7

f fk
, CS

(
f , f fk

)
< 0.7

(6)

Following that, the average classification features for the K classification of the second
stage can be expressed as:

fk =

n
∑

i=1
fki

n
(7)

where n represents the number of faces in each classification.
In this way, the second stage classifier can avoid the problems caused by classification

labels to build the right mapping for facial pose and expression transfer. The average
classification features of the first stage can be used as a powerful condition to improve the
classification ability of the second-stage model. For boundary faces, even if the classifi-
cation labels are wrong, the correct classification features can be obtained with the help
of Equation (6). For faces with larger or smaller shapes and sizes, Equation (6) can provide
normal classification features. Accordingly, the proposed classification features can hold
the differences in shape and size between conditional and source faces in most conditions.
Here, we save all the average classification features for each classification. Note that when
training the global CF-GAN model, only the second stage classifier model is used to obtain
classification features and classification labels.

3.2. Proposed Formula for Generator

The StarGAN model introduces the classification label c for facial expression trans-
fer: G(x, c) −→ y. Next, the CR-GAN model introduces an encoder E to optimize the
source faces: G(E(x), c) −→ y. Although it shows some progress in facial pose transfer,
the training process of the two-path model is very time-consuming. Since there is no clear
relationship between E and c, the CR-GAN model is difficult to converge.

In contrast to the CR-GAN model, we propose usimg the classification features f for
facial expression and facial pose transfer: G(E(x), f ) −→ y. In this paper, we focus on
condition-based facial expression and facial pose transfer: G(E(xj), fk, y) −→ xk. For in-
stance, a source face xj1 , the classification features fk2 from the target face xk2 and the
condition face y are used to generate the target face xk2 . Note that xk2 should look like the
same person as xj1 and have the same pose and expression as y.
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When training, we produced the classification features fk2 from target face xk2 , but when
we tested the model fk2 and xk2 are unknown. Therefore, it is necessary to estimate the
classification features fk2 based on condition face y and source face xj1 .

Based on Equation (4), we can get the classification features f j1 and their classification
labels. Following that, we achieved the average classification features f j by its classification
labels from the saved average classification features. Similarly, the average classification
features fk for condition face y can be obtained. Depending on the condition face y to
reason about the target faces xk2 , it is clear that they come from the same classification and
have the same average classification features fk.

Based on Equation (5), the following conclusions can be drawn: the classification
features f j1 are close to the average classification features f j: f j1 ≈ f j and the classification
features fk2 are close to the average classification features fk: fk2 ≈ fk. For unknown
classification features fk2 , the nearest value is evaluated by the following formula:

fk2 ≈ f j1 − ( f j − fk) (8)

Obviously, the obtained classification features fk2 are only related to the classification
of the condition face y, but not related to its shape and size. In addition, the classification
features fk2 are based on source face xj1 , so it has the deep features of source face xj1 .
In this way, the results generated by the model and the source face xj1 have the same
characteristics of the same person. y is used to obtain approximate classification features fk.
At last, G(E(xj), fk, y) −→ xk can be rewritten as:

G(E(xj), fk2) −→ xk (9)

3.3. Proposed Network Architecture

As shown in Figure 1b, CF-GAN consists of four modules: the discriminator network
(D), the classifier network (C), the generator network (G), and the encoder network (E).

As shown in Figure 1a, the proposed classifier network comprises six convolutional
layers. Among them, the fifth convolutional layer outputs classification labels, and the
sixth convolutional layer outputs classification features.

The discriminator network (D) learns to make a distinction between the result of
the generator network and the real face first and outputs classification features for the
input faces. The discriminator network applies PatchGANs [31], which consists of six
convolutional layers for downsampling. In addition, the last two convolutional layers are
used to obtain the distinction (0 or 1) and classification features.

The encoder network (E) learns to capture the style feature of each face. When we
transfer xj to xk, it is should keep that they can be recognized as the same person. This
is achieved by: E(xj) ≈ E(xk). The encoder network consists of three convolutional
layers, followed by three residual blocks to downsample the source faces. In addition, all
convolutional layers are followed by Instance Normalization and ReLU units.

The proposed generator network (G) learns to obtain facial expression and facial
pose transfer results. For G, we only enter E(xj) and fk. Following that, we used a
full convolutional layer to combine them. Next, we used three residual blocks and two
deconvolution layers to upsample the features. The last convolutional layer was used
to hold the obtained features that are the same size as the source faces. In addition, all
convolutional layers were followed by Instance Normalization and ReLU units.

3.4. Overall Objective

We trained the proposed CF-GAN model by solving a minimax optimization problem
for the generator network G and the discriminator network D:

min
G

max
D
LGAN(G, D) + λTLT(G) + λRLR(G) + λCLC(G) (10)
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where LGAN , LT , LR, and LCR are the GAN cost, the face transfer cost, the face recon-
struction cost, and the classification features cost. The GAN cost can be expressed as:

LGAN(G, D) =Exj∼pdata(xj)

[
log DXj(xj)

]
+Exk∼pdata(xk)

[
log(1−DXk (G)

]
(11)

The GAN cost ensures that the discriminator D is not fooled by the generated result
of the generator G. To control facial expression and facial pose transfer, transfer cost was
introduced. It will be easier to converge by shifting the face angle first and transferring the
facial expression later.

In general, it is more difficult to learn facial pose features than to learn facial expression
features. For example, when the angle of the conditional face is greater than 60◦ or less than
−60◦, the transfer result usually looks unnatural because the correct facial pose features
cannot be obtained. If the order of transfer learning is not well controlled, it will affect the
transfer effect.

In previous papers [32], it was proved that SSIM (the structural similarities) loss
converges faster than L1 (Mean Absolute Error) loss for face generation tasks. Inspired by
it, we introduced an improved version of SSIM loss (short for s) to control the learning of
the face angle and use the L1 loss to control the learning of facial expressions. Specifically,
if xj tries to learn xk’s facial expression and facial pose, we introduced xi to achieve it. What
needs to be guaranteed is that a pose difference will exist between xj and xi and a facial
expression difference between xj and xk.

In order to show that the improved version of SSIM loss converges faster than L1
loss, we devoted the mathematical difference between xj and xi as q. We first defined the
formula of L1 loss:

yL1 = q (12)

Then we can get the formula of improved SSIM loss:

ySSIM = 2q− q2 (13)

Obviously, it can be seen from the above formula that when the value of q changes
from 0 and 1, the value of SSIM loss under any condition is greater than the value of L1 loss.
This means that SSIM losses can discover more differences in the pose so that the model
can converge faster. On the change curve, it can also be seen that the improved SSIM loss
converges faster than the L1 loss shown in Figure 2.

Figure 2. Under the same mathematical difference condition, comparing the pose difference of L1
loss, SSIM loss.
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To control the order of transfer learning, the transfer loss can be expressed as:

LT(G) = f f Exj∼pdata(xj)
[||G− xi||ssim] + (1− f f )Exj∼pdata(xj)

[||G− xk||l1] (14)

where f f gradually changes from infinitely close to 1 to infinitely close to 0 during train-
ing. For transfer loss and GAN loss, our G uses the false classification features fk2 from
Equation (3) to generate the correct faces. In addition, we need to make sure that G can
use the true classification features f to generate the right faces. To achieve this, we used
face reconstruction:

LR(G) =Exk∼pdata(xk)
[‖G− xk‖1] (15)

Although we can already generate faces x̂k that are closer to the target faces xk, we
still need to ensure that the classification features of the generated faces are close to the
classification features of the target faces. Our classification features of the generated faces
implement from the discriminator D: f̂ = D(x̂k). Our classification features of the target
faces achieve from the classifier C: f = C(xk). Finally, the loss of classification features can
be expressed as:

LC(G) =Exj∼pdata(xj)

[∥∥∥ f − f̂
∥∥∥

1

]
(16)

3.5. Our Algorithm

In this section, we will introduce our algorithm in the form of pseudocode. The whole
process is shown in Algorithm 1.

Algorithm 1 Facial pose and happy expression transfer algorithm.

Require:
The set of source faces and conditional faces y (128 × 128) for current batch, xj
(128 × 128);
The trained classifier network, C;
The fixed average classification features from different classifications, F;

Ensure:
1: We input conditional faces y for the classifier network C to get classification features fy

and classification labels cy;
2: We use the classification labels cy from conditional faces y to get the pose guide faces xi

and the expression guide faces xk for current batch;
3: We input source faces xj for the classifier network C to get classification features f j and

classification labels cx;
4: The classification labels cy and classification labels cx is used to get the average classifi-

cation features fa;
5: The classification features f j and the average classification features fa is used to get the

unknown classification features f̂k followed Equation (8);
6: The style feature E(xj) and unknown classification features f̂k are used to get fake faces

x̂k from the generator network G;
7: The discriminator network D is used to distinguish between real and fake faces and

classify the real faces to its corresponding classification;
8: Equation (11) is used to calculate the GAN loss for the generator network G and the

discriminator network D;
9: Equation (12) is used to calculate the transfer loss for for the generator network G;

10: Equation (13) is used to calculate the face reconstruction loss for the generator
network G;

11: Equation (14) is used to calculate the classification features loss for the generator
network G;

12: Update the gradient values of the discriminator network, the generator network,
and the encoder network.

13: Repeat 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 about 20,000 times;
14: return the trained generator network G;
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4. Experiments

To explore the generality of the CF-GAN model, we trained and tested the model
on a variety of tasks. Experimental comparisons with the most advanced models were
conducted to accomplish the same tasks.

4.1. Datasets and Preprocessing

We utilized two datasets for testing and comparison. For Multi-PIE [33] dataset, we
first divided it into nine classifications according to angles from −60◦ to 60◦, and then
according to whether the mouths of different angles are open or not, we expanded it into
18 classifications (The opening mouth is used to express angry expression). The face angle
between each of the first nine classifications and the last nine classifications is the same,
but their expressions are different. In order to test our model at more angles, we built
a Chinese female multi-angle dataset. We used Stylegan [34] to generate 5000 Chinese
female face faces. Following that, we used Stylegan [34] (https://github.com/a3128630
63/seeprettyface-face_editor (accessed on 10 March 2023)) to generate some missed faces
from −60◦ to 60◦ with happiness or not for 5000 female faces. We used the face detection
algorithm [35] to verify the reliability of the angle and expression of the generated face.
Similar to the above, we also divided the faces into 18 classifications. Before starting
the experiment, we resized the faces to 128 × 128. For CF-GAN, we used Adam with
β1 = 0.5 and β2 = 0.999. Our batch size was set to 6 and we used a learning rate of 0.0001.
The parameter values we used are λT = 10, λR = 10, λC = 20. The training takes two days
on a single GTX1080Ti GPU for about 100 epochs. We first trained the classifier network (C),
then trained the discriminator network (D) ten times before training the encoder network
(E) and the generator network (G) once.

4.2. Baselines

To compare the performance of CF-GAN model, we adopted the TP-GAN [15] model,
CR-GAN [1] model, X2face [26] model, and the Few-ShotFace [5] model as our baseline models.

• TP-GAN uses two pathways to capture global features and local features for pose
transfer. Since the TP-GAN model cannot generate faces based on the condition face y,
in order to compare fairly with it, we obtained classification labels when testing.

• CR-GAN introduces a two-path architecture to learn complete representations for all
poses. For the CR-GAN model, we also obtained classification labels when testing.

• X2face introduces a self-supervised network architecture that allows the pose and
expression of a given face to be controlled by another face.

• Few-ShotFace (short for FSface) introduces a meta-learning architecture, which in-
volves an embedded network and a generator network. For a fair comparison, we
only compared the results according to a single source face with the FSface model.

4.3. Evaluation Index

Using the same evaluation metrics, we compared our method against several baselines
qualitatively and quantitatively.

• AMT. For these tasks, we ran “real vs fake” perceptual studies on Amazon Mechanical
Turk (AMT) to assess the realism of our outputs. We followed the same perceptual
study protocol from Isola et al. [31], and we gathered data from 50 participants per
algorithm we tested. Participants were shown a sequence of pairs of faces, one real
face and one fake (generated by our algorithm or a baseline), and were asked to click
on the real face to be considered.

• Classification (Cf for short). We trained Xception Version 3 [36]-based binary classi-
fiers for each face dataset. The baseline is classification accuracy in real faces. Higher
classification accuracy means that the transferred faces may be easier to distinguish.

• Consistency (Cs for short). We compared domain consistency between real faces and
transferred faces by calculating average distance in feature space. Cosine similarity
was used to evaluate the perceptual distance in the feature space of the VGG-16

https://github.com/a312863063/seeprettyface-face_editor
https://github.com/a312863063/seeprettyface-face_editor
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network [37] that pre-trained in faceNet [38]. We calculated the average difference of
the five convolution layers preceding the pool layers. The larger average value will
lead to a smaller cosine similarity value, meaning the few similarities between the
two faces. In the test stage, we randomly sampled the real face and the transferred
face from the same person to make up data pairs and compute the average cosine
similarity distance between each pair.

• Convergence time (TIME for short). For these tasks, we recorded the time required
to reach the final state of convergence under the same data set and GPU conditions for
different models for comparison. The recorded results can reflect the time-consuming
model training. The unit of TIME is an hour.

4.4. Experimental Results

The experimental results of the CF-GAN model on MultiPIE [33] dataset and the
Chinese female multi-angle dataset are shown in Figure 3. For facial pose and anger
expression transfer (the opening mouth is used to express angry expression), the experiment
results are shown in the first six columns. In Figure 3, it is observed that CF-GAN is able to
generate faces followed by conditional faces. For instance, generated faces match the pose
classification and the opening mouth classification of conditional faces. For facial pose and
happy expression transfer, the experiment results are shown in the last six columns. It is
also shown that the generated faces match the pose classification of conditional faces and
the happy classification of conditional faces.

Figure 3. Experimental results from two datasets under source face and conditional face have larger
differences in shape and size. (a) Source faces (128 × 128 pixels). (b) Conditional faces. (c) Transfer
results by CF-GAN.

4.5. Base Model Comparison

Here, we evaluated the performance of four different models. In Figure 4, it is shown
that the proposed model generates more reasonable faces than other models, and the
generated facial pose and happy expression are close to conditional faces. The TP-GAN
model and the X2face model can handle some face pose and expression transfer tasks when
the source faces are similar to conditional faces. The CR-GAN model and the FSface model
are able to handle most facial pose and expression transfer tasks when the source faces
have smaller differences in shape and size with conditional faces. The CF-GAN model
enables us to complete most facial pose and expression transfer tasks when the source faces
have a larger shape and size differences under conditional faces.

Experimental results also show that for facial pose and anger expression transfer tasks,
all models produce natural faces similar to the source face and have the same facial pose
and expression as conditional faces. However, for facial pose and happy expression transfer
tasks, the CF-GAN model produces more natural faces shown in the right of Figure 4.
After extensive analysis, we found that for any classification in Multi-PIE [33] dataset,
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the angles of most faces are fixed. For instance, the angles under a certain classification
only have 45◦ faces.

For facial pose and anger expression transfer, all models only learn K(K− 1) mappings
for K classifications (K = 18 in our experiments). It should be noted that for any classifi-
cation in the Chinese female multi-angle dataset, the angles of most faces are not fixed.
For instance, angles under a certain classification can fluctuate from 45 to 60◦. For facial
pose and happy expression transfer, although CF-GAN only learns K(K − 1) mappings,
other models need to learn J(J − 1)× K(K− 1) (J means angles and J ≥ 120) mappings.
These demonstrate that CF-GAN only learns a limited number of maps, while other models
learn more maps. If the differences in shape and size between conditional and source faces
are taken into account, there are endless maps that need to be established by them.

Figure 4. Experimental comparison results from two datasets under source face and conditional face
have larger differences in shape and size. (a) Source faces. (b) Conditional faces. (c) Transfer results
by TP-GAN. (d) Transfer results by CR-GAN. (e) Transfer results by X2face. (f) Transfer results by
FSface. (g) Transfer results by CF-GAN.

For facial pose and anger expression transfer tasks, although all models learn the
same mapping, the generated faces from CF-GAN exhibit the highest conformity to the
conditional faces. The face of the Chinese female multi-angle dataset contains any angle
from −90 to 90◦, which poses two challenges to existing models that use classification
labels as generation conditions. The first challenge is that it cannot hold the differences in
shape and size between conditional and source faces, which are within the classification
boundary. Boundary faces are easily misclassified. The second challenge is that it cannot
hold the differences in shape and size between conditional faces and source faces, which
are responsible for the majority of the classification. For these two challenges, the existing
model cannot generate a reasonable face according to the conditions facing any angle.
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Unlike these models, we used classification features rather than classification labels in
the generator network. In addition, the average classification features of the conditional
face, the average classification features of the source face, and the average classification
features of the source face were used to estimate the classification features of the target face
for the proposed generator network to generate the target face. The proposed two-stage
classifier only cares about the normal classification features of the conditional face and not
the difference from the source face. In this way, the mappings that we built can ignore the
shape and size differences between conditional faces and source faces.

4.6. Quantitative Evaluations

The comparison effect for two tasks on three evaluation indicators is shown in Table 1.

Table 1. Quantitative evaluations in terms of facial pose and anger expression transfer (A for short),
facial pose, and happy expression transfer (B for short) tasks from different models.

Tasks Baselines AMT Cf Cs TIME

A

TP-GAN 24% ± 1.0% 0.71 0.69 36

CR-GAN 26% ± 1.0% 0.79 0.75 36

X2face 24% ± 1.0% 0.71 0.69 48

FSface 26% ± 1.0% 0.80 0.76 48

CF-GAN 39% ± 1.0% 0.92 0.80 22

B

TP-GAN 23% ± 1.0% 0.71 0.67 48

CR-GAN 26% ± 1.0% 0.76 0.70 48

X2face 23% ± 1.0% 0.71 0.67 61

FSface 26% ± 1.0% 0.78 0.71 61

CF-GAN 28% ± 1.0% 0.82 0.77 28

As can be seen from Table 1, the proposed model achieved leading numerical results
compared to other models. This means that it not only generates more reasonable faces than
other models but also successfully captures the latent facial pose and expression features.

4.7. Limitation

The proposed CF-GAN model shows that designing a reasonable classification features
algorithm will obtain the generated facial pose and expression of experimental results
that are close to conditional faces. With this improvement, virtual digital humans in the
entertainment audience and video production industry can appear smoother and produce
more realistic visualizations of humans and their faces. There is a jitter phenomenon when
we synthesize these continuous face images into a video. For this limitation, stability
features need to be learned from real-life videos.

Although the CF-GAN model has achieved leading results for facial pose and expres-
sion transfer, we noted that about 3% of the test results were unreasonable. For example,
the unreasonable result and the input face do not appear to be the same person. Randomly
selected unreasonable results will raise readers’ doubts about the reliability of the exper-
iment. The best transfer algorithm should eliminate all unreasonable results. The main
reason for unreasonable results is classifier error. For this limitation, a better classifier is
very necessary for the future.

5. Conclusions

This paper proposes a novel Generative Adversarial Networks model for facial pose
and expression transfer. We used classification features rather than classification labels
for the generator network. The mappings we built can ignore the difference in shape and
size between conditional faces and source faces. In addition, we proposed combining two
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cost functions with different convergence speeds to learn pose and expression features.
Compared to state-of-the-art models, the proposed CF-GAN model achieved leading scores
for facial pose and expression transfer on two datasets. Our research provides an approach
for more accurate virtual digital human synthesis.
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