
 Open access Journal Article DOI:10.1007/S10957-012-0219-Y

Facial Reduction Algorithms for Conic Optimization Problems — Source link

Hayato Waki, Masakazu Muramatsu

Institutions: Kyushu University, University of Electro-Communications

Published on: 01 Jul 2013 - Journal of Optimization Theory and Applications (Springer US)

Topics: Conic optimization, Conic section, Duality gap, Semidefinite programming and Reduction (complexity)

Related papers:

 Strong Duality in Conic Linear Programming: Facial Reduction and Extended Duals

 Regularizing the Abstract Convex Program

 Facial reduction for a cone-convex programming problem

 Strong Duality for Semidefinite Programming

 An exact duality theory for semidefinite programming and its complexity implications

Share this paper:

View more about this paper here: https://typeset.io/papers/facial-reduction-algorithms-for-conic-optimization-problems-
26uftzmvm8

https://typeset.io/
https://www.doi.org/10.1007/S10957-012-0219-Y
https://typeset.io/papers/facial-reduction-algorithms-for-conic-optimization-problems-26uftzmvm8
https://typeset.io/authors/hayato-waki-77bmo1jc1x
https://typeset.io/authors/masakazu-muramatsu-51k6ultrmm
https://typeset.io/institutions/kyushu-university-lr1prr5h
https://typeset.io/institutions/university-of-electro-communications-uclwe1rj
https://typeset.io/journals/journal-of-optimization-theory-and-applications-2ntswq0f
https://typeset.io/topics/conic-optimization-2oi0vsxh
https://typeset.io/topics/conic-section-18fuyel0
https://typeset.io/topics/duality-gap-324gxt2g
https://typeset.io/topics/semidefinite-programming-1awnqtnm
https://typeset.io/topics/reduction-complexity-r8xl66rp
https://typeset.io/papers/strong-duality-in-conic-linear-programming-facial-reduction-49tasw4u69
https://typeset.io/papers/regularizing-the-abstract-convex-program-3q6ov2kxeb
https://typeset.io/papers/facial-reduction-for-a-cone-convex-programming-problem-38lsjcpems
https://typeset.io/papers/strong-duality-for-semidefinite-programming-1a8icsqwcg
https://typeset.io/papers/an-exact-duality-theory-for-semidefinite-programming-and-its-53130ej60h
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/facial-reduction-algorithms-for-conic-optimization-problems-26uftzmvm8
https://twitter.com/intent/tweet?text=Facial%20Reduction%20Algorithms%20for%20Conic%20Optimization%20Problems&url=https://typeset.io/papers/facial-reduction-algorithms-for-conic-optimization-problems-26uftzmvm8
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/facial-reduction-algorithms-for-conic-optimization-problems-26uftzmvm8
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/facial-reduction-algorithms-for-conic-optimization-problems-26uftzmvm8
https://typeset.io/papers/facial-reduction-algorithms-for-conic-optimization-problems-26uftzmvm8

CS-09-01

Facial reduction algorithms

for conic optimization problems

Hayato Waki⋆ and Masakazu Muramatsu†

⋆Department of Computer Science, The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585 JAPAN.

hayato.waki@jsb.cs.uec.ac.jp

† Department of Computer Science, The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585 JAPAN.

muramatu@cs.uec.ac.jp

July, 2009, revised August, 2009.

Abstract

To obtain a primal-dual pair of conic programming problems hav-
ing zero duality gap, two methods have been proposed: the facial
reduction algorithm due to Borwein and Wolkowicz [1, 2] and the
conic expansion method due to Luo, Sturm, and Zhang [5]. We
establish a clear relationship between them. Our results show
that although the two methods can be regarded as dual to each
other, the facial reduction algorithm can produce a finer sequence
of faces including the feasible region. We illustrate the facial re-
duction algorithm in LP, SOCP and an example of SDP. A simple
proof of the convergence of the facial reduction algorithm for conic
programming is also presented.

Key words: Facial Reduction, Conic Programming.

1

1. Introduction

We consider the Conic Programming (CP) problem:

θD = sup
{

bT y
∣
∣ c − AT y ∈ K

}
(1)

where b ∈ Rm, c ∈ Rn, A ∈ Rm×n and K ⊆ Rn is a closed convex cone. For CP (1), its dual problem can
be formulated as follows:

θP = inf
{

cT x |Ax = b, x ∈ K∗
}

, (2)

where K∗ = { s ∈ Rn |xT s ≥ 0 (∀x ∈ K) } is the dual cone of K. We denote:

A =
{

c − AT y | y ∈ Rm
}

(3)

FD = A ∩K (4)

FP = {x |Ax = b } ∩ K∗. (5)

It is easy to see that for any pair of feasible solutions of CPs (1) and (2), it holds that

cT x − bT y = cT x − (Ax)T y = xT (c − AT y) ≥ 0,

where the last inequality is due to x is contained in K∗. This means that θP ≥ θD. In general, however,
the equality does not hold. See [7, 13] for such examples. In the numerical computation of CPs, problems
having positive dualty gap are very difficult to solve by the primal-dual interior-point methods; the
primal-dual interior-point methods try to reduce the duality gap to zero, which is impossible in this case.
In addition, even if the duality gap between CP and its dual is zero, the CP and/or its dual may not have
optimal solutions. The lack of optimal solutions also makes the numerical computation for CP problems
difficult.

For the case where a positive duality gap exists between (1) and (2), two approaches have been proposed
to close the duality gap by finding a new primal-dual pair of a given CP problem to compute θD. The
first one, called the Facial Reduction Algorithm (FRA), was proposed by Borwein and Wolkowicz [1, 2],
and later simplified by Pataki [6].

Below we breifly explain FRA. A detailed description of FRA together with its convergence proof will
be givein in Section 2.

A closed subset F of K is a face of K, denoted F EK, if for any x, y ∈ K, x + y ∈ F implies x, y ∈ F .
The sets ∅ and K are faces of K and the other faces are called proper faces. For C ⊆ K, we denote the
smallest face of K including C by face(C,K). It is easy to see that any face of a closed convex cone is
also a closed convex cone, which is the case we deal with throughout this paper. For a given face F of
K, we define the following CP:

θD(F) = sup
{

bT y
∣
∣ c − AT y ∈ F

}
. (6)

The minimal cone Kmin of CP (1) is defined by

Kmin := face(FD,K).

Note that Kmin could be empty, when CP (1) is infeasible, or equivalently, θD = −∞. It is easy to see
that if Kmin ⊆ F ⊆ K, then θD(Kmin) = θD(F) = θD(K) = θD (see Lemma 2.1).

Beginnig with K, FRA repeatedly finds smaller faces of K until it finds Kmin when CP (1) is feasible,
or detects infeasibility of CP (1). Once Kmin is found, then relint(Kmin ∩ A) 6= ∅, which means that the
duality gap between θ(Kmin) and its dual is zero, and that the dual has an optimal solution. This may
enhance the numerical stability of primal-dual interior-point methods applied to θ(Kmin)([14]).

The other approach was proposed by Luo et al. [5] and Sturm [11, 12], which is called the dual
regularization approach. In this paper, to make this approach clear, we call this the conic expansion
approach. The approach tries to close a duality gap between CP (1) and its dual by expanding the cone
K∗ in θP , and terminates in a finite many iterations. We will present the detail and some results proved
by Luo et al. [5] and Sturm [11, 12] in Section 3.

A contribution of this paper is that we establish a clear relationship between FRA and the conic
expansion approach. Specifically, we can apply FRA to K in such a way that each reduced cone is the
dual of the cone generated by the conic expansion approach (Theorem 3.4). Note that we can apply
FRA in a different way from the conic expansion approach; in fact, FRA will produce a finer sequence of
optimization problems than the conic expansion approach. We will show such an example in Section 3.

2

Another contribution is that we propose a variant of FRA which can be applied to a general conic
programming (1). Below we point out the difference of our FRA and FRAs proposed so far.

Borwein and Wolkowicz [1, 2] discussed FRA in a different setting. Their works were done in early
80’s, and a conic programming problem seemed to be not poplular as it is now. Their argument is
confined to establish duality theorem without any constraint qualification. Note that our algorithm is
not identical to their FRA, because their FRA needs an initial feasible solution, which we do not need
in our variant. Their FRA is closely related to the Extended Lagrange-Slater Dual (ELSD) derived from
a given SDP by Ramana [8]. The ELSD is an SDP and has polynomially many variables. Ramana [8]
first showed that the duality gap between the given SDP and its ELSD is zero without assuming any
constraint qualification. In Ramana et al. [9], they showed that the ELSD can be reformulated by the
minimal cone obtained by their FRA.

Pataki [6] proposed an FRA for a conic programming where the cone is nice. His interest seemed
to describe the primal-dual pair of problems having no duality gap by using FRA. For this purpose, he
needed the notion of niceness. In contrast, we propose to apply our FRA iteratively to find a primal-dual
pair of problems having no duality gap. As a result, we can deal with several smaller problems, instead
of one huge problem. In addition, we do not need the niceness assumption on our cones any more. To
show that our FRA works well for some basic conic programming, we provide some examples in Section
4

The remaining of this paper is constructed as follows. In Section 2, we introduce our FRA for general
closed convex cones, and prove the finite convergence of FRA. Section 3 is devoted to establish the
relationship between FRA and the conic expansion approach. Section 4 shows FRA working on Linear
Programming (LP), Second-Order Cone Programming (SOCP), and Semi-definite programming (SDP).
For SDP, we deal with an example of FRA for an SDP problem obtained by Lasserre’s SDP relaxation
[4]. In Section 5, we give some concluding remarks.

In this paper, we use the following formulas for convex sets extensively. The proofs of these formulas
are given in textbooks of convexity, e.g., Rockafellar [10]. For convex sets C1 and C2 ⊂ Rn,

relint(cl(C1)) = relint(C1), (7)

relint(C1 ⊕ C2) = relint(C1) ⊕ relint(C2), (8)

where relint, cl, and ⊕ stand for the relative interior, the closure, and the Minkowski sum, respectively.
If relint(C1) ∩ relint(C2) is non-empty, then

relint(C1 ∩ C2) = relint(C1) ∩ relint(C2). (9)

If K1 and K2 ⊆ Rn are convex cones, then

K∗∗
1 = cl(K1), (10)

K∗
1 ∩ K∗

2 = (K1 ⊕ K2)
∗. (11)

2. Facial reduction algorithms for general closed convex cones

We give a lemma on the feasible region of CP θD(Kmin).

Lemma 2.1. If CP (1) is feasible, then FD = A ∩ F for any face F of K containing Kmin.

Proof : We consider the case where CP (1) is feasible. By definition, FD ⊆ Kmin ⊆ F , which means the
right-hand side includes the left-hand side. The other inclusion is also obvious because FD = A ∩ K ⊇
A ∩ F . ¤

From this Lemma, it follows that θD(Kmin) = θD(F) = θD for each face F of K including Kmin. This
also holds for the case where CP (1) is infeasible. If FD = ∅, then FD = A ∩ K ⊇ A ∩ F in the case,
which implies that θD(F) = θD = −∞.

We denote H−
c =

{
x

∣
∣ cT x ≤ 0

}
. This is the half space defined by c when c 6= 0 which we do not

assume in general.
The key idea of FRA is to consider the following system for a face F ⊆ K:

w ∈ kerA ∩ H−
c ∩ F∗. (12)

FRA can be stated as follows.

3

Algorithm 2.2. FRA (Facial Reduction Algorithm)

Step 1: Set i = 0 and F0 = K.
Step 2: If kerA ∩ H−

c ∩ F∗
i ⊆ span(w1, . . . , wi), then stop. Fi = Kmin.

Step 3: Find wi+1 ∈ (kerA ∩ H−
c ∩ F∗

i) \ span(w1, . . . , wi).
Step 4: If cT wi+1 < 0, then stop. CP (1) is infeasible.
Step 5: Set Fi+1 = Fi ∩ {wi+1}

⊥ and i = i + 1, and go back to Step 2.

When kerA ∩H−
c ∩F∗

0 = {0} at the initial iteration, the algorithm stops because span(∅) = {0}, and
F0 is the minimal cone for CP (1).

The main effort of FRA is Step 3 where we find a nonzero solution wi+1 of (12) which is not written
as a linear combination of w1, . . . , wi. Finding such a solution is sometimes as difficult as solving the
original problem. However, there are several cases where we can find such solutions easily and/or directly.
In those cases, FRA efficiently shrinks the cone into the minimal cone, and as a result, we get robustness
of the problem. We will give such examples where FRA works well later in this paper. The forthcoming
paper [14] also shows that Lasserre’s SDP relaxation for polynomial optimization problems is such an
example where we can perform FRA systematically to reduce the size of SDP.

Below we show that the above algorithm is correct.

Lemma 2.3. Let F be a closed convex cone such that relint(F)∩A is empty. Then there exists a nonzero
w ∈ ker A ∩ H−

c ∩ F∗ indicating

(i) if cT w < 0, then θD(F) = −∞.
(ii) if cT w = 0, then F ∩ {w}⊥ (F and F ∩ {w}⊥ ∩ A = F ∩A.

In proving the above lemma, the following theorem by Rockafellar [10] plays a crucial role.

Theorem 2.4. (Theorem 20.2 of [10]) Assume that C1 and C2 are nonempty convex sets and C1 is
polyhedral. Then the followings are equivalent:

(i) There exists a hyperplane H 6⊇ C2 which separates C1 and C2.
(ii) C1 ∩ relint(C2) = ∅.

Proof of Lemma 2.3 : Because A ∩ relint(F) = ∅, Theorem 2.4 with C1 = A and C2 = F implies the
existence of a separating hyperplane H which does not contain F , i.e., there exist a nonzero vector w̄

and a real number δ satisfying:

w̄T s ≤ δ ≤ w̄T f (∀s ∈ A, ∀f ∈ F), and ∃f̄ ∈ F such that w̄T f̄ > δ. (13)

The left inequality of the left expression gives w̄T (c − AT y) = cT w̄ − yT Aw̄ ≤ δ for any y ∈ Rm, from
which Aw̄ = 0 and cT w̄ ≤ δ follow. Because 0 ∈ F , we have δ ≤ 0 thus w̄ ∈ kerA ∩ H−

c .
We divide the proof of w̄ ∈ F∗ into two cases. If F = {0}, then F∗ = Rn, thus the relation is obvious.

When F 6= {0}, we claim that δ can be chosen to be 0. If this is true, looking at the right inequalty of
the left relation of (13) with δ = 0, we immediately see that w̄ ∈ F∗. To the contrary, suppose that there
exists f ∈ F such that w̄T f < 0. Since F is a nontrivial cone, we have δ = −∞, which contradicts the
fact that δ ≥ w̄T y for some y ∈ A.

Suppose that cT w̄ < 0 and θD(F) > −∞. Let ȳ a feasible solution of θD(F). It is easy to see:

0 ≤ w̄T (c − AT ȳ) = w̄T c − ȳT Aw̄ = cT w̄ < 0,

which is a contradiction. We have proved that when cT w̄ < 0, then θD(F) = −∞.
Next we assume that cT w̄ = 0. Because Aw̄ = 0, we have A ⊆ {w̄}⊥, and thus F ∩{w̄}⊥∩A = F ∩A.

Finally, the existence of f̄ in (13) with δ = 0 ensures F ∩ {w̄}⊥ (F . ¤

The following lemma provides a necessary condition to be the minimal cone.

Lemma 2.5. Let F be a face of K such that F ∩A = FD. If relint(F) ∩ A 6= ∅, then F = Kmin.

Proof : Note that by assumpiton, Kmin 6= ∅. Because F ∩ A = FD, we have F ⊇ Kmin. Now suppose
that Kmin (F . This means that Kmin ∩ relint(F) = ∅. On the other hand, we have relint(F) ∩ A =
relint(F ∩ A) = relint(FD). Since relint(FD) is nonempty, there exists a feasible solution in relint(F).
This contradicts the fact that Kmin ⊇ FD. ¤

4

In Algorithm 2.2, we have already given a criterion of the termination of FRA. We give other one in
the following lemma.

Lemma 2.6. Assume that Kmin 6= ∅, and let F ⊇ Kmin be a face of K. Then F = Kmin if and only if
F ⊆ (kerA ∩ H−

c ∩ F∗)⊥ = (kerA ∩ ker cT ∩ F∗)⊥.

Proof : Lemma 2.3 means that when Kmin 6= ∅, H−
c = ker cT .

For the if part, suppose that F) Kmin. Lemma 2.3 then implies that there exists a w ∈ kerA∩H−
c ∩F∗,

such that F ∩ {w}⊥ (F . This shows F 6⊆ (kerA ∩ H−
c ∩ F∗)⊥.

For the only-if part, suppose that F = Kmin, and that there exists a snonzero vector w ∈ ker A ∩
ker cT ∩ K∗

min and s ∈ Kmin such that sT w > 0. Then Kmin ∩ {w}⊥ (Kmin, because the former set does
not contain s. Furthermore, for any y ∈ Rm we have wT (c − AT y) = 0, and Kmin ∩ {w}⊥ ⊇ FD. This
contradicts the fact that Kmin is the minimal cone. ¤

The following theorem ensures that FRA terminates at a finite iteration.

Theorem 2.7. FRA stops in at most dim(kerA∩ker cT)+1 iterations by either: (i) detecting a certificate
of infeasibility at Step 4, or (ii) finding Kmin at Step 2.

Proof : Note that because wi+1 ∈ kerA ∩ ker cT at each iteration unless the infeasibility is detected, we
have {wi+1}

⊥ ⊇ A, and

Fi+1 ∩ A = Fi ∩ {wi+1}
⊥ ∩ A = Fi ∩ A = · · · = K ∩A = FD.

This means that Fi ⊇ Kmin for every i.
Assume that, at iteration i, relint(Fi)∩A = ∅. Otherwise it follows from Lemma 2.5 that Fi = Kmin.

Let wi+1 be an indicating vector of Lemma 2.3. We claim that wi+1 6∈ span(w1, . . . , wi). If cT wi+1 < 0,
then the claim is obvious because cT wj = 0 for j = 1, . . . , i. If cT wi+1 = 0, Lemma 2.3 implies that
Fi ∩ {wi+1}

⊥ (Fi. Suppose wi+1 ∈ span(w1, . . . , wi), then

{wi+1}
⊥ ⊇

i⋂

j=1

{wj}
⊥,

from which it follows that

Fi+1 = F0 ∩
i+1⋂

j=1

{wj}
⊥ = F0 ∩

i⋂

j=1

{wj}
⊥ ∩ {wi+1}

⊥

 = F0 ∩
i⋂

j=1

{wj}
⊥ = Fi.

This contradicts the fact that Fi+1 (Fi.
If ℓ∗ = dim(kerA ∩ ker cT), we have wi ∈ kerA ∩ ker cT ∩ F∗

i−1 for all i = 1, . . . , ℓ∗. Otherwise
FRA must detect the infeasibility of CP (1) and stop. Then at the Step 2 in the case of i = ℓ∗ + 1,
span(w1, . . . , w

∗
ℓ) = ker A ∩ ker cT , and FRA necessarily stops at Step 2. ¤

We make two remarks on FRA. First, if we know that θD(K) > −∞ in advance, then we can replace
H−

c by ker cT . Second, we have a possibility to choose a nonzero vector wi+1 in Step 3 such that
Fi+1 = Fi ∩ {wi+1}

⊥ = Fi. When Fi+1 = Fi, we call such an iteration void, and otherwise valid. FRA
generates a sequence of faces

K = F0 ⊇ F1 ⊇ · · · ⊇ Fℓ∗ = Kmin,

where ℓ∗ is the number of the iterations of FRA. On the other hand, let i∗ be the number of valid
iterations of FRA. Then counting only valid iterations, we obtain a sequence of faces

K = F0) F1) · · ·) Fi∗ = Kmin.

We obtain the following corollary on the number of valid iterations.

Corollary 2.8. The number of valid iterations of FRA is bounded by dim(kerA∩ ker cT) and the length
of the longest chain of faces in K.

We often encounter the CP (1) where K is written as a direct product of several convex cones. The
following lemma ensures that in that case, all the faces generated by FRA can be formulated as direct
products.

5

Lemma 2.9. Assume that the convex cone K in (1) is written as K = K1 × · · · × Kp, where K1, . . . ,Kp

are closed convex cones. If a face F of K is written as a direct product F1 × · · · × Fp, where each Fi is
a face of Ki for i = 1, . . . , p, then the face F ′ generated by FRA can be formulated as follows:

F ′ = (F1 ∩ {w1}
⊥) × · · · × (Fp ∩ {wp}

⊥),

where w = (w1, . . . , wp)
T ∈ kerA ∩ ker cT ∩ F∗. Moreover, each set Fi ∩ {wi}

⊥ is a face of Ki for each
i = 1, . . . , p.

Proof : Because F is written as a direct product, so is the dual F∗, and thus w = (w1, . . . , wp)
T ∈

kerA ∩ ker cT ∩ F∗ satisfies wi ∈ F∗
i for all i = 1, . . . , p. We obtain F ′ = F ∩ {w}⊥ by FRA. It is

clear that F ′ ⊇ (F1 ∩ {w1}
⊥) × · · · × (Fp ∩ {wp}

⊥). Hence it is sufficient to prove that F ′ ⊆ (F1 ∩
{w1}

⊥) × · · · × (Fp ∩ {wp}
⊥). For x = (x1, . . . , xp)

T ∈ F ′, we have xi ∈ Fi for all i = 1, . . . , p and
xT w =

∑p
i=1 xT

i wi = 0. It follows from xi ∈ Fi and wi ∈ F∗
i that xT

i wi = 0 for all i = 1, . . . , p, and thus
xi ∈ {wi}

⊥ for all i = 1, . . . , p. This shows that F ′ = (F1 ∩ {w1}
⊥) × · · · × (Fp ∩ {wp}

⊥).
Because Fi is a face of Ki, for x, y ∈ Fi ∩ {wi}

⊥, x + y ∈ Fi ∩ {wi}
⊥ implies that x, y ∈ Fi and

wT
i (x + y) = 0. It follows from x, y ∈ Fi and wi ∈ F∗

i that x, y ∈ {wi}
⊥. Therefore Fi ∩ {wi}

⊥ is a face
of Ki for all i = 1, . . . , p. ¤

From Lemma 2.9, we obtain the following fact.

Corollary 2.10. Let K be as in Lemma 2.9. Then, all faces F1, . . . ,Fℓ∗ generated by FRA are

Fi = Fi,1 × · · · × Fi,p

for all i = 1, . . . , ℓ∗. Moreover, Fi,j is a face of Ki for all i = 1, . . . , ℓ∗ and j = 1, . . . , p.

We give an example to see the behavior of FRA which we give in this paper.

Example 2.11. We denote K = cl(K1 ⊕K2), where K1 and K2 are defined as

K1 = {x ∈ R3 | x1 ≥
√

x2
2 + x2

3},

K2 = {x ∈ R3 | x2 ≥ 0, x1 = x3 = 0}.

Then their dual cones are

K∗
1 = K1 = {x ∈ R3 | x1 ≥

√

x2
2 + x2

3},

K∗
2 = {x ∈ R3 | x2 ≥ 0},

and it follows from (10) and (11) that K∗ = K∗
1 ∩ K∗

2. For CP (1), we set A = (1, 0, 1), c = (0, 0, 0)T .

We apply FRA into the CP (1). To this end, we first need to solve the system w1 ∈ ker A ∩ ker cT ∩ K∗.
Because ker A ∩ ker cT = {(λ1, λ2,−λ1)

T | λ1, λ2 ∈ R}, we have

ker A ∩ ker cT ∩ K∗ = {(λ1, 0,−λ1)
T | λ1 ≥ 0}.

We choose w1 = (1, 0,−1)T and then

F1 = {x ∈ R3 | x1 − x3 = 0, x1, x2 ≥ 0}

and

F∗
1 = {λ(1, 0,−1)T | λ ∈ R} ⊕ {x ∈ R3 | x1, x2 ≥ 0, x3 = 0}.

w2 ∈ kerA ∩ ker cT ∩ F∗
1 satisfies (w2)2 ≥ 0. Thus, we choose w2 = (0, 1, 0)T and then

F2 = {x ∈ R3 | x1 − x3 = 0, x1 ≥ 0, x2 = 0}.

Because dim(ker A∩ker cT) = 2, it follows from the second remark of Theorem 2.7 that F2 is the minimal
cone. We can also confirm it by Lemma 2.6. Indeed, the dual F∗

2 is

F∗
2 = {(λ1, λ2, λ3 − λ1)

T | λ1, λ2 ∈ R, λ3 ≥ 0}.

Because ker A ∩ ker cT ⊆ F∗
2 , w3 ∈ kerA ∩ ker cT ∩ F∗

2 satisfies w3 = (λ1, λ2,−λ1)
T for some λ1, λ2 ∈ R.

For any x = (x1, x2, x3)
T ∈ F2, we have xT w3 = (x1 −x3)λ1 +x2λ2 = 0 for any w3 ∈ kerA∩ker cT ∩F∗

2 ,
which implies F2 ⊆ (kerA ∩ ker cT ∩F∗

2)⊥. Therefore from Lemma 2.6, F2 is the minimal cone Kmin for
CP (1) and Kmin = K ∩ {w1}

⊥ ∩ {w2}
⊥.

6

It should be noted that in general, the minimal cone can be formulated as the intersection of K and
one supporting hyperplane if a convex cone K is nice. See [6] for the detail. However, because the cone K
in this example is not nice, the minimal cone for CP with the convex cone K may not be the intersection
of the convex cone K and one supporting hyperplane. Indeed, the minimal cone Kmin in this example
is the intersection of the convex cone K and two supporting hyperplanes. This point is the difference
between FRA for nice cone and FRA in this paper.

3. Relationship between FRA and the conic expansion approach

As we have already mentioned in Section 1, the conic expansion approach proposed by Luo et.al. [5]
and Sturm [11, 12] can also find a new primal-dual CP pair to compute the optimal value of CP (1).

In this section, we will introduce the conic expansion approach and restrict FRA in Section 2. We
establish a relationship between the conic expansion approach and the restricted FRA, and we give more
elementary proofs of some results on the conic expansion approach in Luo et.al. [5] and Sturm [11, 12]
by using the relationship.

For simplicity of notation, let B denote kerA∩ker cT for CP (1). We define the cone expansion operator
ΓB for a closed convex cone P as follows:

ΓB(P) := cl(P ⊕ span(B ∩ P)),

where ⊕ means the Minkowski sum. We remark that our presentation of the conic expansion looks
somewhat simpler than [5] where the closedness of cones are not assumed. Obviously, from the definition
of ΓB, we have ΓB(P) ⊇ P for any closed convex cone P. As ΓB maps a closed convex cone to a closed
convex cone, we can consider to apply ΓB repeatedly:

Γ0
B(P) := P

Γk
B(P) := ΓB(Γk−1

B (P)) for k = 1, 2,

Γ∞
B (P) := lim

j→∞
Γj
B(P).

Observe that when Γk+1
B (P) = Γk

B(P), then no more strict expansion occurs, i.e, Γj
B(P) = Γk

B(P) for
j ≥ k.

The following lemma gives a necessary and sufficient condition to be F = Kmin.

Lemma 3.1. Assume that CP (1) is feasible. Let F be a face of K including Kmin. Then ΓB(F∗) = F∗

if and only if F = Kmin.

Proof : Clearly, it follows from the definition of ΓB that ΓB(F∗) = F∗ if and only if span(B ∩F∗) ⊆ F∗.
Considering the duals of both cones, the inclusion is equivalent to F ⊆ (B ∩F∗)⊥. From Lemma 2.6, we
obtain the desired result. ¤

The following theorem shows the relationship between a face generated by FRA and cone by the conic
expansion approach.

Theorem 3.2. We assume that F is a nonempty face of K. For any w ∈ B ∩ F∗, the inclusion

(F ∩ {w}⊥)∗ ⊆ ΓB(F∗) (14)

holds, with equality if w ∈ relint(B ∩ F∗).

Proof : From the definition of ΓB and formulas (10) and (11), we have

ΓB(F∗) = cl(F∗ ⊕ span(B ∩ F∗)) = (F ∩ (B ∩ F∗)⊥)∗.

We obtain (B ∩ F∗)⊥ ⊆ {w}⊥ because w ∈ B ∩ F∗. This implies (14).
To show the the equality of if-part, we prove F∩{w}⊥ ⊆ F∩(B∩F∗)⊥ if w ∈ relint(B∩F∗). From the

assumption on w, for any y ∈ B ∩F∗, there exist z ∈ B ∩F∗ and 0 < λ < 1 such that w = λy + (1− λ)z.
For any x ∈ F ∩ {w}⊥, we have λ〈x, y〉 = 〈x,w〉 − (1 − λ)〈x, z〉 = −(1 − λ)〈x, z〉. Because y, z ∈ F∗,
〈x, y〉 = 0, and this implies x ∈ F ∩ (B ∩ F∗)⊥.

¤

Using Theorem 3.2, we restrict FRA in Algorithm 2.2 as follows:

7

Algorithm 3.3. FRA-CE (Facial Reduction Algorithm - Conic Expansion)

Step 1: Set i = 0 and F0 = K.
Step 2: If relint(B ∩ F∗

i) ⊆ span(w1, . . . , wi), then go to Step 5.
Step 3: Find wi+1 ∈ relint(B ∩ F∗

i) \ span(w1, . . . , wi).
Step 4: Set Fi+1 = Fi ∩ {wi+1}

⊥ and i = i + 1, and go back to Step 2.
Step 5: If relint(kerA ∩ H−

c ∩ F∗
i) ⊆ span(w1, . . . , wi), then stop and return Fi = Kmin

Step 6: Otherwise there exists w ∈ (kerA∩H−
c ∩F∗

i) \ span(w1, . . . , wi) such that cT w < 0, and thus CP
(1) is infeasible.

The following theorem ensures that FRA-CE can find the minimal cone Kmin for CP (1) or detects
the infeasibility of CP (1).

Theorem 3.4. The followings hold:

(i) All faces Fi generated by FRA-CE satisfy F∗
i = Γi

B(K∗).
(ii) If CP (1) is feasible, all faces Fi generated by FRA-CE satisfy

K = F0) F1) · · ·) Fī = Fī+1 = · · · = Fℓ̄ = Kmin, (15)

where ℓ̄ is the number of iterations of FRA-CE and is bounded by dim(kerA ∩ ker cT).
(iii) If CP (1) is infeasible, FRA-CE detects the infeasibility at the Step 6.

(iv) Γk
B(K∗) = Γℓ̄

B(K∗) for all k ≥ ℓ̄.

Proof : We prove (i). In Algorithm 3.3, we have Fi+1 = Fi ∩ {wi}
⊥, where wi ∈ relint(B ∩ F∗

i).
Applying Theorem 3.2, we obtain F∗

i+1 = ΓB(F∗
i). Because this holds for all i = 0, 1, . . . , ℓ̄− 1, we obtain

F∗
i = Γi

B(K∗) for all i = 0, . . . , ℓ̄.
We prove (ii). If CP (1) is feasible, then from the remark of Theorem 2.7, we can replace H−

c by
ker cT . Because we have relint(B ∩ F∗

i) ⊆ B ∩ F∗
i , all faces which are generated by FRA-CE can be also

generated by FRA. In addition, because the final face Fℓ̄ satisfies relint(B ∩ F∗
ℓ̄
) ⊆ span(w1, . . . , wℓ̄), Fℓ̄

also satisfies the condition of termination of FRA in Step 2. Therefore from Theorem 2.7, the final face
Fℓ̄ is the minimal cone Kmin and it follows that ℓ̄ is bounded by dim(kerA ∩ ker cT).

We prove (15). We have already proved that FRA-CE finds the minimal cone if CP (1) is feasible.
Therefore there exists an ī ≤ ℓ̄ such that Fī = Kmin. Let ī be the minimum number such that Fī = Kmin.
Then for i < ī, because Fi 6= Kmin, it follows from Lemma 3.1 and Fi+1 = (ΓB(F∗

i)∗) that Fi+1 (Fi.
Because Fī and the final face Fℓ̄ are the minimal cone, it is clear that Fi = Kmin for all i = ī, . . . , ℓ̄.

We prove (iii). Then the final face Fℓ̄ generated by FRA-CE satisfies relint(B∩F∗
ℓ̄
) ⊆ span(w1, . . . , wℓ̄).

Because A ∩ Fℓ̄ ⊆ A ∩ K = FD, we have A ∩ Fℓ̄ = ∅. We apply Lemma 2.3. Suppose that w ∈ ker A ∩
H−

c ∩F∗
ℓ̄

satisfies (ii) of Lemma 2.3. Then we have w ∈ B∩F∗
ℓ̄
, which implies that w ∈ span(w1, . . . , wℓ̄).

From the proof of Theorem 2.7, this contradicts Fℓ̄ ∩{w}⊥ (Fℓ̄. Therefore, cT w < 0, and thus FRA-CE
detects the infeasibility of CP (1) at the Step 6.

We prove (iv). To this end, we prove that F∗
ℓ̄

= ΓB(F∗
ℓ̄
). If this holds, we have Γk

B(K∗) =

Γk−ℓ̄
B (Γℓ̄

B(K∗)) = Γk−ℓ̄
B (F∗

ℓ̄
) = F∗

ℓ̄
for all k ≥ ℓ̄. This implies that Γk

B(K∗) = Γℓ̄
B(K∗) for all k ≥ ℓ̄.

Clearly, F∗
ℓ̄
⊆ ΓB(F∗

ℓ̄
). Because Fℓ̄ is the final face, it satisfies relint(B ∩ F∗

ℓ̄
) ⊆ span(w1, . . . , wℓ̄),

and thus span(B ∩ F∗
ℓ̄
) ⊆ span(w1, . . . , wℓ̄). From the definition of the operator ΓB, it follows that

ΓB(F∗
ℓ̄
) ⊆ cl(F∗

ℓ̄
+span(w1, . . . , wℓ̄)). The right-hand side is equal to (Fℓ̄∩

⋂ℓ̄
i=1{wi}

⊥)∗ because of formula

(11). Because Fℓ̄ = K∩
⋂ℓ̄

i=1{wi}
⊥, we have cl(F∗

ℓ̄
+ span(w1, . . . , wℓ̄)) = (Fℓ̄ ∩

⋂ℓ̄
i=1{wi}

⊥)∗ = F∗
ℓ̄
, and

thus ΓB(F∗
ℓ̄
) ⊆ F∗

ℓ̄
. Therefore we obtain ΓB(F∗

ℓ̄
) = F∗

ℓ̄
. ¤

Comparing FRA-CE with FRA, we observe from Theorem 3.4 that if CP (1) is feasible, FRA can
generate a finer sequence of faces than FRA-CE. In addition, in the case where CP (1) is infeasible,
because FRA check the infeasibility in each iteration, FRA may be able to detect it in fewer iterations
than FRA-CE.

We conclude from Theorem 3.4 that the dual of face Fk generated by FRA-CE is the same as the
cone Γk

B(K∗) generated by the conic expansion approach for all k = 0, 1, . . . , ℓ̄. In addition, it follows

that Γk
B(K∗) = Γℓ̄

B(K∗) for all k ≥ ℓ̄. Therefore, we can deal with CP θD((Γk
B(K∗))∗) for all k = 0, 1, . . . ,.

From (i) and (iv) of Theorem 3.4 and Lemma 2.1, the following corollary follows.

8

Corollary 3.5. (Lemma 2.27 and 2.29 in [12]) We have Γk
B(K∗) = Γk∗

B (K∗) for any k ≥ k∗ := dim(B).
Moreover, the feasible region FD of CP (1) is equivalent to the feasible regions of CP θD((Γk

B(K∗))∗) for
all k = 0, 1,

We consider the following CP problem:

θD((Γ∞
B (K∗))∗) = sup

{
bT y

∣
∣ c − AT y ∈ (Γ∞

B (K∗))∗
}

.

From Corollary 3.5, Luo et.al. [5] and Sturm [11, 12] have concluded the following strong duality theorem
between CP θD((Γ∞

B (K∗))∗) and its dual. We give more elementary proof.

Theorem 3.6. (Corollary 2.32 in [12]) For CP θD((Γ∞
B (K∗))∗), it holds θD = θD((Γ∞

B (K∗))∗). Moreover,
the followings hold:

(i) If θD((Γ∞
B (K∗))∗) is −∞, its dual is either infeasible or unbounded.

(ii) If θD((Γ∞
B (K∗))∗) is finite, its dual is solvable and the duality gap between CP θD((Γ∞

B (K∗))∗)
and its dual is zero.

(iii) If θD((Γ∞
B (K∗))∗) is +∞, its dual is infeasible.

Proof : It follows from Corollary 3.5 that θD = θD((Γ∞
B (K∗))∗).

We prove (i). Then we have Fℓ̄ ∩ A = (Γℓ̄
B(K∗))∗ ∩ A = ∅. If its dual is feasible, it has a feasible

solution x̄ such that Ax̄ = b and x̄ ∈ Γ∞
B (K∗). From Lemma 2.3, there exists w ∈ kerA ∩ Γℓ̄

B(K∗) such

that cT w < 0. This is found at the Step 6. Because Γℓ̄
B(K∗) ⊆ Γ∞

B (K∗), for any α ≥ 0, x(α) = x̄ + αw is
a feasible solution of its dual of CP θD((Γ∞

B (K∗))∗), so that its dual is unbounded. Therefore, its dual of
CP θD((Γ∞

B (K∗))∗) is either infeasible or unbounded.
We prove (ii) and (iii). From the definition of the minimal cone Kmin, the set A ∩ relint(Kmin) is

nonempty. Then they are well-known that the duality gap is zero and that its dual has an optimal
solution if θD(Kmin) is less than +∞. They prove (ii) and (iii). ¤

Although Corollary 3.5 and Theorem 3.6 were proved in [12] from the properties of the operator ΓB, we
are successful in proving them by the relationship between FRA-CE and the conic expansion approach.

As we have already mentioned, FRA may be able to generate a finer sequence of faces than FRA-CE,
i.e. the conic expansion approach. We give such an example.

Example 3.7. We consider the following Polynomial Optimization Problem (POP):
{

inf x2y2

subject to (x, y) ∈ R2.
(16)

We apply Lasserre’s SDP relaxation [4] into POP (16). Then we obtain the following SOS problem:
{

sup η

subject to x2y2 − η = u2(x, y)T Xu2(x, y) ∀(x, y) ∈ R2, X ∈ S6
+,

(17)

where S6 is the set of 6 × 6 symmetric matrices, S6
+ is the set of 6 × 6 symmetric positive semidefinite

matrices and u2(x, y) = (1, x, y, x2, xy, y2)T . For α ∈ N2
4 := {α = (α1, α2) ∈ N2 | α1 + α2 ≤ 4}, we set

Eα ∈ S6 and real values bα as follows:

(Eα)β,γ =

{
1 β + γ = α,

0 otherwise,
for all β, γ ∈ N2

2,

bα =

{
1 α = (2, 2),
0 otherwise.

From SOS problem (17), we obtain the following SDP problem:

sup −E0 • X

subject to Eα • X = bα (α ∈ N2
4 \ {0}),

X ∈ S6
+.

(18)

To apply FRA into SDP (18), we need to convert SDP (18) into the form of CP (1). We define the
linear subspace L ⊆ S6 associated with SDP (18):

L =
{
X ∈ S6 | Eα • X = 0 for all α ∈ N2

4 \ {0}
}

.

9

In addition, let C ∈ S6 be a solution of the system Eα • C = bα for all α ∈ N2
4 \ {0}. For example, the

following C satisfies the system:

Cβ,γ =

{
1 β = γ = (1, 1)
0 otherwise.

Because this C is positive semidefinite, SDP (18) is feasible, and thus we can skip Step 4 in Algorithm
2.2 and replace H−

c by ker cT .
We define the set S = {C + X ∈ S6

+ | X ∈ L}. Then the set S is equivalent to the feasible region of
SDP (18). Let {Qi}

p
i=1 ⊆ S6 be a basis of the linear subspace L. We can reformulate the set S by using

the basis {Qi}
p
i=1:

S =

{

C + X ∈ S6

∣
∣
∣
∣
∣
X =

p
∑

i=1

λiQi for some λ1, . . . , λp ∈ R

}

.

Therefore we can rewrite SDP (18), equivalently:
{

sup C • E0 −
∑p

i=1 λi(E0 • Qi)
subject to C −

∑p
i=1 λiQi ∈ S6

+.
(19)

For SDP (19), the linear subspace corresponding to kerA ∩ ker cT in the system (12) is

{X | C • X = 0, Qi • X = 0 for all i = 1, . . . , p} .

Because {Qi}
p
i=1 is the basis of L, we can denote the linear subspace corresponding to ker A ∩ ker cT by

Eα:

X

∣
∣
∣
∣
∣
∣
∣

X =
∑

α∈N2

4\{0}

yαEα and y(2,2) = 0.

.

Therefore, the element W ∈ S6 of the system ker A ∩ ker cT can be written as follows:

W =
∑

α∈N2

4\{0}

yαEα =

0 y(1,1) y(1,0) y(0,1) y(2,0) y(0,2)

y(1,1) 0 y(2,1) y(1,2) y(3,1) y(1,3)

y(1,0) y(2,1) y(2,0) y(1,1) y(3,0) y(1,2)

y(0,1) y(1,2) y(1,1) y(0,2) y(2,1) y(0,3)

y(2,0) y(3,1) y(3,0) y(2,1) y(4,0) 0
y(0,2) y(1,3) y(1,2) y(0,3) 0 y(0,4)

for some y(1,0), y(0,1), . . . , y(0,4) ∈ R. The initial face F0 is S6
+ and so is the dual F∗

0 . Then for any

W 1 ∈ ker A ∩ ker cT ∩ F∗
0 , because the first and second diagonal elements of W are zero, all elements in

the first and second rows and columns are zero. Moreover, we obtain y(2,0) = y(0,2) = 0, and thus the
third and fourth rows and columns are also zero. Therefore, we obtain

W 1 =

 y(4,0)

y(0,4)

, (20)

where blanks stand for zero. The matrix W 1 with y(4,0) > 0 and y(0,4) > 0 is in the relative interior of

the set ker A ∩ ker cT ∩ F∗
0 and then the first face F1 is

F1 =

{

X

∣
∣
∣
∣
X =

(
X1 0
0T O2

)

for some X1 ∈ S4
+.

}

,

and the dual F∗
1 is

F∗
1 =

{

W

∣
∣
∣
∣
W =

(
W1 W ′

W ′T W ′′

)

for some W1 ∈ S4
+,W ′ ∈ R4×2 and W ′′ ∈ S2

}

.

10

For any W 2 ∈ kerA ∩ ker cT ∩ F∗
1 , we obtain

W 2 =

y(2,0) y(0,2)

y(3,1) y(1,3)

y(2,0) y(3,0)

y(0,2) y(0,3)

y(2,0) y(3,1) y(3,0) y(4,0)

y(0,2) y(1,3) y(0,3) y(0,4)

. (21)

It is clear that W 2 with y(2,0) > 0 and y(0,2) > 0 is in the relative interior of the set ker A ∩ ker cT ∩ F∗
1

and W 2 6∈ span(W 1), and then the second face F2 is

F2 =

{

X

∣
∣
∣
∣
X =

(
X2 0
0T O4

)

for some X2 ∈ S2
+.

}

,

and it is not difficult to verify that the second face F2 is the minimal cone for SDP (18) by Lemma 2.6.
From Theorem 3.2, F∗

1 and F∗
2 are equivalent to the cone ΓB(K∗) and Γ2

B(K∗), respectively because we
choose W i from relint(kerA ∩ ker cT ∩ F∗

i).
Although we see that F2 is the minimal cone for SDP (18) by Lemma 2.6, FRA does not terminate.

Indeed, W ∈ ker A ∩ ker cT ∩ F∗
2 satisfies

W =

y(1,0) y(0,1) y(2,0) y(0,2)

y(2,1) y(1,2) y(3,1) y(1,3)

y(1,0) y(2,1) y(2,0) y(3,0) y(1,2)

y(0,1) y(1,2) y(0,2) y(2,1) y(0,3)

y(2,0) y(3,1) y(3,0) y(2,1) y(4,0)

y(0,2) y(1,3) y(1,2) y(0,3) y(0,4)

. (22)

Clearly, W with y(1,0) 6= 0 is not included in span(W 1,W 2), so that FRA finds W 3 and generate the
third face F3, which is the same as the minimal cone Kmin. Although all faces generated after F2 are the
same as the minimal cone Kmin, FRA must find W i until kerA ∩ H−

c ∩ F∗
i ⊆ span(W 1, . . . ,W i). This

fact shows that if we add the condition Fi ⊆ (kerA ∩ ker cT ∩F∗
i)⊥ in the Step 2 of FRA, the algorithm

may terminate in fewer iterations than the original FRA and returns the minimal cone.
We next show that FRA can generate a finer sequence of faces for SDP (18) in this example. If we

choose W i from (B ∩F∗
i) \ relint(B ∩F∗

i), FRA may provide a different sequence of faces from FRA-CE,
i.e., the conic expansion approach. For example, if we choose W 1 with y(0,4) = 0 at (20), W 1 is not in

the relative interior of the set kerA ∩ ker cT ∩ F∗
0 and the first face G1 by FRA is

G1 =

{

X

∣
∣
∣
∣
X =

(
X1 0
0T 0

)

for some X1 ∈ S5
+.

}

,

and the dual G∗
1 is

G∗
1 =

{

W

∣
∣
∣
∣
W =

(
W1 W ′

W ′T W ′′

)

for some W1 ∈ S5
+,W ′ ∈ R5 and W ′′ ∈ R

}

.

For any W̃ 2 ∈ ker A ∩ ker cT ∩ G∗
1 , we obtain

W̃ 2 =

y(0,2)

y(1,3)

y(0,2) y(0,3)

y(4,0)

y(0,2) y(1,3) y(0,3) y(0,4)

.

If we choose W̃ 2 with y(0,2) > 0 and y(4,0) > 0, W̃ 2 is in the relative interior and we obtain the second
face G2:

G2 =

{

X

∣
∣
∣
∣
X =

(
X2 0
0T O3

)

for some X2 ∈ S3
+.

}

,

11

Also the dual of G∗
2 is

G∗
2 =

{

W

∣
∣
∣
∣
W =

(
W2 W ′

W ′T W ′′

)

for some W2 ∈ S3
+,W ′ ∈ R3×3 and W ′′ ∈ S3

}

.

For any W̃ 3 ∈ kerA ∩ ker cT ∩ G∗
2 , we obtain

W̃ 3 =

y(0,1) y(2,0) y(0,2)

y(1,2) y(3,1) y(1,3)

y(2,0) y(3,0) y(1,2)

y(0,1) y(1,2) y(0,2) y(0,3)

y(2,0) y(3,1) y(3,0) y(4,0)

y(0,2) y(1,3) y(1,2) y(0,3) y(0,4)

The matrix W̃ 3 with y(2,0) > 0 is in the relative interior of the set kerA ∩ ker cT ∩ G∗
2 and the third face

G3 generated by W̃ 3 is

G3 =

{

X

∣
∣
∣
∣
X =

(
X3 0
0T O4

)

for some X3 ∈ S2
+.

}

,

and is equivalent to the minimal cone for SDP (18). As we have already seen, FRA does not terminate

because ker A ∩ ker cT ∩ G∗
3 6⊆ span(W̃ 1, W̃ 2, W̃ 3) and we need to find W̃ i+1 ∈ (kerA ∩ ker cT ∩ G∗

i) \

span(W̃ 1, . . . , W̃ i) until kerA ∩ ker cT ∩ G∗
i ⊆ span(W̃ 1, . . . , W̃ i).

Figure 3.7 shows the relationships among faces Fi and Gi in this example. The dotted arrow means
the strict inclusion, i.e., G1 (F1 (G2. From this example, we can observe that FRA can provide a finer
sequence of faces than the conic expansion approach.

Figure 1. Relationships among all faces generated by FRA for Example 3.7

4. Applications of FRA

In this section, we apply FRA and FRA-CE to several important conic programming problems to see
how they work.

Let L be a linear subspace of Rn. We denote I = {1, 2, . . . , n}. We often deal with the case where
K ⊆ Rn is a direct product of closed convex cones, i.e., K = K1 × · · · × Kq, where Ki ⊆ Rni . Here,
n =

∑q
i=1 ni. For w ∈ Rn, we write w = (w1, · · · , wq) where wi ∈ Rni . Then we define J(w,K) = { i ∈

I |wi ∈ relint(Ki) }. We have the following.

Lemma 4.1. If w̃ ∈ relint(L ∩ K), then J(w,K) ⊆ J(w̃,K) for all w ∈ L ∩ K.

12

Proof : Because w̃ ∈ relint(L ∩ K), for any w ∈ L ∩ K, there exist z ∈ L ∩ K and 0 < λ < 1 such
that w̃ = λw + (1 − λ)z. Then we have w̃i = λwi + (1 − λ)zi for all i = 1, . . . , q. For i ∈ J(w,K),
because wi ∈ relint(Ki) and 0 < λ < 1, it follows from Theorem 6.1 in [10] that w̃i ∈ relint(Ki), and thus
i ∈ J(w̃,K). ¤

4.1. FRA for LP. Let us consider Linear Programming (LP) problems:

{
sup bT y

subject to c − AT y ∈ Rn
+,

(23)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n and Rn
+ denotes the n-dimensional nonnegative orthant. It is well-

known that Rn
+ is self-dual, i.e., (Rn

+)∗ = Rn
+. We assume that LP (23) has a feasible solution. Then we

can skip the Step 4 in Algorithm 2.2 and replace H−
c by ker cT .

We will apply FRA onto LP (23) and show that the first face generated by FRA is the minimal cone
for LP if we can compute w ∈ relint(kerA ∩ ker cT ∩ Rn

+).

For LP, we have J(w, Rn
+) = {i ∈ I | wi > 0} for any w = (w1, . . . , wn)T ∈ L ∩ Rn

+.
The following lemma characterizes the relative interior of the set L by the maximality of index set

J(w, Rn
+).

Lemma 4.2. w̃ ∈ relint(L ∩ Rn
+) if and only if J(w, Rn

+) ⊆ J(w̃, Rn
+) for all w ∈ L ∩ Rn

+.

Proof : The only-if part is obvious from Lemma 4.1 with Ki = R+.
For if part, let δ < min{w̃j | j ∈ J(w̃, Rn

+)}. To prove w̃ ∈ relint(L ∩ Rn
+), we will show that

U(w̃, δ) ∩ span(L ∩ Rn
+) ⊆ L ∩ Rn

+, where U(w̃, δ) is the open ball with center w̃ and radius δ. For
x ∈ U(w̃, δ) ∩ span(L ∩ Rn

+), we have x ∈ span(L ∩ Rn
+) ⊆ L and then x = y − z for some y, z ∈ L ∩ Rn

+.
In addition, we have ‖w̃ − x‖2 < δ. From the inequality and J(y, Rn

+), J(z, Rn
+) ⊆ J(w̃, Rn

+), we obtain
yj = zj = 0 for all j ∈ I \ J(w̃, Rn

+). This implies that xj = 0 for all j ∈ I \ J(w̃, Rn
+). In addition, it

follows from ‖w̃ − x‖2 < δ that |wj − xj | < δ for all j ∈ J(w̃, Rn
+). From these inequalities, we obtain

xj > 0 for all j ∈ J(w̃, Rn
+), and thus x ∈ Rn

+. From x ∈ L and x ∈ Rn
+, it follows that x ∈ L∩Rn

+, which
implies that w̃ is in the relative interior of the set L ∩ Rn

+. This completes the proof. ¤

Theorem 4.3. For LP (23), we choose w̃ ∈ relint(kerA ∩ ker cT ∩ Rn
+). Then F1 = {x ∈ Rn | xj ≥

0 (j ∈ I \ J(w̃, Rn
+)), xj = 0 (j ∈ J(w̃, Rn

+))}. Moreover, F1 is the minimal cone for LP (23).

Proof : From Lemma 2.9, the first face F1 by FRA is

F1 = (R+ ∩ {w1}
⊥) × · · · × (R+ ∩ {wn}

⊥).

Let F1,j = R+ ∩ {wj}
⊥ for all j = 1, . . . , n. Then if j ∈ J(w̃, Rn

+), F1,j is R+ ∩ {w̃j}
⊥ = {0}. Otherwise,

F1,j = R+. This implies that F1 = {x ∈ Rn | xj ≥ 0 (j ∈ I \ J(w̃, Rn
+)), xj = 0 (j ∈ J(w̃, Rn

+))}.
We prove that F1 is the minimal cone. The dual F∗

1 is

F∗
1 = {w ∈ Rn | wj ≥ 0 (j ∈ I \ J(w̃, Rn

+)), wj ∈ R (j ∈ J(w̃, Rn
+))}

Let w′ ∈ kerA ∩ ker cT ∩ F∗
1 . If w′

j > 0 for some j ∈ I \ J(w̃, Rn
+), it contradicts the maximality of

J(w̃, Rn
+) in Lemma 4.2. Indeed, for sufficiently small δ > 0, ŵ := (1 − δ)w̃ + δw′ ∈ ker A ∩ ker cT ∩ Rn

+

and J(ŵ, Rn
+) 6⊆ J(w̃, Rn

+). Therefore, w′
j = 0 for all j ∈ I \ J(w̃, Rn

+) and we have F1 ⊆ (F∗
1)⊥ ⊆

(kerA ∩ ker cT ∩ F∗
1)⊥. From Lemma 2.6, it follows that F1 is the minimal cone for LP (23). ¤

This theorem shows that the first face by FRA-CE applied to LP is the minimal cone. A similar
situation is also observed by Pataki [6]. Notice that, since FRA has more flexibility in choosing w, the
first face of FRA is not necessarily the minimal cone.

13

4.2. FRA for Second-Order Cone Programming. In this subsection, we consider FRA for Second-
Order Cone Programming (SOCP) problems. In [7], Polik and Terlaky focused on the explicit description
of the minimal cone Kmin of SOCP and proposed to solve a conic programming problem whose size is
slightly larger than the original SOCP.

We will show that we can reformulate SOCP into a simple SOCP by using solutions w ∈ relint(kerA∩
ker cT ∩ F∗) if we can compute them. Specially, we will prove that in the case where SOCP has one
second-order cone K, the first face F1 = K∩{w}⊥ is the minimal cone Kmin and SOCP replaced by Kmin

is reformulated as a Linear Program (LP) problem if we can choose w ∈ relint(kerA∩ker cT ∩ (K∗ \{0})).
We first consider FRA for Second-Order Cone Programming (SOCP) problems with a single second-

order cone and deal with the following SOCP:
{

sup bT y

subject to s = c − AT y ∈ Kn,
(24)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n and Kn = {s = (s0, s1)
T ∈ R × Rn−1 | s0 ≥ ‖s1‖2 :=

√

sT
1 s1}. We

assume that SOCP (24) has a feasible solution. Then we can skip the Step 4 in Algorithm 2.2 and replace
H−

c by ker cT .
We remark that Kn is also self-dual with respet to the standard inner product. For Kn, we define:

int(Kn) = {x = (x0, x1)
T ∈ R × Rn−1 | x0 > ‖x1‖2},

bd(Kn) = {x = (x0, x1)
T ∈ R × Rn−1 | x0 = ‖x1‖2, x 6= 0}.

Any face of Kn is one of the followings: (i) Kn, (ii) cone(u) := {λu | λ ≥ 0}, where u ∈ bd(K∗
n), (iii)

{0}, and (iv) ∅. The following theorem means that FRA-CE finds the minimal cone of (24) in the first
iteration.

Theorem 4.4. Let w = (w0, w1)
T ∈ relint(kerA ∩ ker cT ∩ K∗

n).

(i) If w ∈ int(K∗
n), F1 = Kmin = {0}.

(ii) If w ∈ bd(K∗
n), F1 = Kmin = cone(u), where u = (w0,−w1)

T .
(iii) Otherwise F1 = Kmin = Kn.

Proof : We only prove that if w ∈ bd(K∗
n), then cone(u) is Kmin. The other relationships are just

straightfoward calculations, and we omit the proof.
Now suppose that Kmin = {0}, although F1 = cone(u). Then there exists w̃ ∈ ker A∩ker cT ∩cone(u)∗

such that F1 ∩ {w̃}⊥ = {0}. If w̃T u = 0, then cone(u) is not reduced to {0}, so we assume w̃T u > 0.
Then for sufficiently small δ > 0, z := δw̃ + (1 − δ)w ∈ ker A ∩ ker cT ∩ int(K∗

n) and J(z,K∗
n) = {1}. In

contrast, we have J(w,K∗
n) = ∅ because relint(K∗

n) = int(K∗
n). This contradicts Lemma 4.1 with q = 1

and L = kerA ∩ ker cT . ¤

Next, we consider SOCP with multiple second order cones:
{

sup bT y

subject to ci − AT
i y ∈ Kni

(i = 1, . . . , q),
(25)

where n = n1 + · · · + nq, ci ∈ Rni , Ai ∈ Rm×ni for all i = 1, . . . , q, and b ∈ Rm. We assume that SOCP
(25) is feasible. A, c and K denote the matrix (A1, . . . , Aq), the vector (cT

1 , . . . , cT
q)T and the convex cone

Kn1
× · · · × Knq

, respectively. We remark that the dual of K is itself.

Let w = (w1, . . . , wq)
T ∈ ker A∩ker cT ∩(K∗

n1
×· · ·×K∗

nq
). Because SOCP (25) is feasible, from Lemma

2.9, all faces generated by FRA are also written as a direct product of Kni
, cone(ui) and {0}. This fact

shows that some of the cones Kni
may change from second-order cones into nonnegative cones, and thus

the computational cost for solving SOCP (25) may decrease if one can compute wi ∈ ker A∩ker cT ∩F∗
i−1

for all i = 1, . . . , ℓ∗.
From the remarks of Theorem 2.7, we see that FRA-CE for SOCP (25) requires at most 2q iterations.

However, we can easily see that the maximum iteration number is bounded by 2q − 1.

Let Z be the direct product of q − 2 sets {0}, i.e., Z =

q−2
︷ ︸︸ ︷

{0} × · · · × {0}. Without loss of generality, we
consider the following two cases at the 2q − 2 iteration.

(i) F2q−2 = Z × {0} × Knq
.

14

(ii) F2q−2 = Z × cone(uq−1) × cone(uq).

In the first case, Theorem 4.4 implies that the next face F2q−1 is the minimal cone. In the second case,
Theorem 4.3 shows that the next face F2q−1 is the minimal cone. Therefore, we have the following.

Corollary 4.5. FRA-CE terminates in at most 2q − 1 iterations for SOCP (25).

4.3. An example of FRA for an SDP problem. From Theorem 3.6 in Section 3, we have observed
that FRA and the conic expansion approach provide a primal-dual pair of CP whose duality gap is zero
and whose dual has an optimal solution. This means that in order to compute the optimal value of CP
(1), it is effective to apply the interior-point methods for CP replaced by the minimal cone Kmin.

In this section, we apply FRA to an ill-conditional SDP problem and show that it produces a simpler
problem which can be solved by a usual SDP solver. This indicates the usefulness of FRA to remove
numerical difficulty of some SDP problems.

We consider the following POP:
{

inf x

subject to x ≥ 0, x2 − 1 ≥ 0.
(26)

The optimal value is 1 and the optimal solution is x = 1. We apply Lasserre’s SDP relaxation to POP
(26). Then for r ≥ 1, we obtain the following SOS problems:

sup p

subject to x − p = ur(x)T Xur(x) + xur−1(x)T Y ur−1(x)
+(x2 − 1)ur−1(x)T Zur−1(x) (∀x ∈ R),

X ∈ Sr+1
+ , Y, Z ∈ Sr

+,

(27)

where uk(x) = (1, x, . . . , xk)T .
For k = 0, 1, . . . , 2r, we set matrices Ek ∈ Sr+1 and Fk ∈ Sr to be

(Ek)α,β =

{
1 α + β = k,

0 o.w.
for all 0 ≤ α, β ≤ r,

(Fk)α,β =

{
1 α + β = k,

0 o.w.
for all 0 ≤ α, β ≤ r − 1.

Note that F2r−1 and F2r are r × r zero matrices.
Using Ek and Fk, we can rewrite (27) as follows:

sup −E0 • X − F0 • Z

subject to E1 • X + F0 • Y − F1 • Z = 1,

Ei • X + Fi−1 • Y + (Fi−2 − Fi) • Z = 0, (i = 2, . . . , 2r − 2)
E2r−1 • X + F2r−2 • Y + F2r−3 • Z = 0,

E2r • X + F2r−2 • Z = 0,

(X,Y, Z) ∈ Sr+1
+ × Sr

+ × Sr
+.

(28)

In [15], it is shown that this problem is numerically very ill-conditioned; the general SDP solvers report
wrong optimal value 1, as opposed to the optimal value 0. In fact, [15] shows that it is impossible to
calculate the optimal value of (27) if we use a usual floating point precision, and proposed to use the
multi-precision SDP solver SDPA-GMP [3].

To apply FRA to SDP (28), we need to compute the set ker A∩H−
c for SDP (28). However, (X,Y, Z) =

(Or+1, F0, Or) is a feasible solution of SDP (28), and thus we can skip Step 4 in Algorithm 2.2 and replace
H−

c by ker cT . By applying a similar way to Example 3.7, we can denote the linear subspace corresponding
to kerA by Ek and Fk:

(W1,W2,W3)

∣
∣
∣
∣
∣
∣

W1 =
∑2r

i=1 yiEi,

W2 =
∑2r−1

i=1 yiFi−1,

W3 = −y1F1 +
∑2r

i=2 yi(Fi−2 − Fi),

for some y1, . . . , y2r ∈ R

.

Also ker cT in the system (12) is corresponding to {(W1,W2,W3) | C1 •W1 + C2 •W2 + C3 •W3 = 0},
where (C1, C2, C3) satisfies the linear equalities in SDP (28). For example, (Or+1, F0, Or) satisfies the

15

linear equalities, and thus, (W1,W2,W3) ∈ kerA satisfies y1 = 0. Therefore, the element W ∈ Sr+1 ×
Sr × Sr of the set ker A ∩ ker cT can be written as follows:

W = (W1, W2,W3),

W1 =

2r∑

i=2

yiEi =

0 0 y2 . . . yr

0 y2 y3 . . . yr+1

y2 y3 y4 . . . yr+2

...
...

...
. . .

...
yr yr+1 yr+2 · · · y2r

,

W2 =
2r−1∑

i=2

yiFi−1 =

0 y2 . . . yr

y2 y3 . . . yr+1

...
...

. . .
...

yr−1 yr · · · y2r−1

,

W3 =

2r−2∑

i=2

yi(Fi−2 − Fi) + y2r−1F2r−3 + y2rF2r−2

=

y2 y3 . . . yr+1 − yr−1

y3 y4 − y2 . . . yr+2 − yr

...
...

. . .
...

yr+1 − yr−1 yr+2 − yr · · · y2r − y2r−2

for some y1, . . . , y2r ∈ R. We observe that the matrix W1 is the Hankel matrix, i.e., (W1)i,j = (W1)i−1,j+1

for all 0 ≤ i, j ≤ r. The other matrices are also the Hankel matrices.
The following lemma is useful to analyze elements of the set ker A ∩ ker cT ∩ F∗ for all faces F of

K = Sr+1
+ × Sr

+ × Sr
+.

Lemma 4.6. For s0, s1, . . . , s2r ∈ R, we consider an (r + 1) × (r + 1) Hankel matrix S = (si+j)0≤i,j≤r.
Let q ∈ {0, . . . , r} be fixed. If s0 = 0 and Sq = (si+j)0≤i,j≤q is positive semidefinite, then sp = 0 for all
p = 1, . . . , 2q − 1.

Proof : From s0 = 0 and the positive semidefiniteness of Sq, it follows that sp = 0 for all p = 1, . . . , q.
So, it is sufficient to prove that sp = 0 for all p = q + 1, . . . , 2q − 1. We prove it by induction on p. We
assume that sp = 0 for all p = q + 1, . . . , k for some k ∈ {q + 1, . . . , 2q − 2} and will show that sk+1 = 0.

If k is even, then sk = (Sq) k
2

, k
2

= 0 and thus (Sq) k
2

,p = 0 for all p = 0, . . . , q. From the assumption

on k, it follows that q+3
2 ≤ k

2 + 1 ≤ q. This implies that 0 = (Sq) k
2

, k
2
+1 = sk+1. If k is odd, then

sk−1 = (Sq) k−1

2
, k−1

2

= 0 and thus (Sq) k−1

2
,p = 0 for all p = 0, . . . , q. From the assumption on k, it follows

that q
2 + 2 ≤ k+3

2 ≤ q + 1
2 . This implies that 0 = (Sq) k−1

2
, k+3

2

= sk+1. This completes the proof. ¤

We are ready to apply FRA to SDP (28). The initial face F0 of Sr+1
+ × Sr

+ × Sr
+ is Sr+1

+ × Sr
+ × Sr

+

and the dual F∗
0 is also Sr+1

+ × Sr
+ × Sr

+. Then for any W 1 ∈ kerA ∩ ker cT ∩ F∗
0 , it follows from Lemma

4.6 that yi = 0 for all i = 2, . . . , 2r − 1. Hence, for any W 1 ∈ ker A ∩ ker cT ∩ F∗
0 , we obtain

W 1 = (W1, Or,W3),W1 =

(
Or 0
0T y2r

)

,W3 =

(
Or−1 0
0T y2r

)

.

Then the following W 1 satisfies W 1 ∈ relint(kerA ∩ ker cT ∩ F∗
0):

W 1 = (W1, Or,W3),W1 =

(
Or 0
0T 1

)

,W3 =

(
Or−1 0
0T 1

)

.

From this W 1, the first face F1 by FRA is

F1 = F0 ∩ {W 1}⊥ =

(X,Y, Z)

∣
∣
∣
∣
∣
∣

X =

(
X ′ 0
0T 0

)

, Z =

(
Z ′ 0
0T 0

)

for some X ′, Y ∈ Sr
+, Z ′ ∈ Sr−1

+

.

16

To find W 2, we need to construct the dual of face F1. It is

F∗
1 =

(W1,W2, W3)

∣
∣
∣
∣
∣
∣

W1 =

(
W ′

1 w′
1

w′
1
T

w′′
1

)

,W2 ∈ Sr
+,W3 =

(
W ′

3 w′
3

w′
3
T

w′′
3

)

for some W ′
1 ∈ Sr

+,W ′
3 ∈ Sr−1

+ , w′
1 ∈ Rr, w′

3 ∈ Rr−1, w′′
1 , w′′

3 ∈ R

.

Then for any W ∈ kerA ∩ ker cT ∩ F∗
1 , we obtain

W = (W1,W2,W3),W1 =

Or 0 0
0T 0 y2r−1

0T y2r−1 y2r

 ,W2 =

(
Or−1 0
0T y2r−1

)

,W3 =

Or 0 0
0T 0 y2r−1

0T y2r−1 y2r

 .

The following W 2 satisfies W 2 ∈ relint(kerA ∩ ker cT ∩ F∗
1):

W 2 = (Or+1,W2, Or),W2 =

(
Or 0
0T 1

)

.

The second face F2 generated by W 2 is

F2 =

(X,Y, Z)

∣
∣
∣
∣
∣
∣

X =

(
X ′ 0
0T 0

)

, Y =

(
Y ′ 0
0T 0

)

, Z =

(
Z ′ 0
0T 0

)

for some X ′ ∈ Sr
+, Y ′, Z ′ ∈ Sr−1

+

.

Also the dual of F2 is

F∗
2 =

(W1,W2,W3)

∣
∣
∣
∣
∣
∣

W1 =

(
W ′

1 w′
1

w′
1
T

w′′
1

)

,W2 =

(
W ′

2 w′
2

w′
2
T

w′′
2

)

,W3 =

(
W ′

3 w′
3

w′
3
T

w′′
3

)

for some W ′
1 ∈ Sr

+,W ′
2,W

′
3 ∈ Sr−1

+ , w′
1 ∈ Rr, w′

2, w
′
3 ∈ Rr−1, w′′

1 , w′′
2 , w′′

3 ∈ R

.

By repeating FRA for SDP (28), we obtain the following result:

Theorem 4.7. For SDP (28), the faces generated by FRA are as follows:

F2i+1 =

(X,Y, Z)

∣
∣
∣
∣
∣
∣

X =

(
X ′ 0
0T Oi+1

)

, Y =

(
Y ′ 0
0T Oi

)

, Z =

(
Z ′ 0
0T Oi+1

)

for some X ′, Y ′ ∈ Sr−i
+ , Z ′ ∈ Sr−i−1

+

,

F2i+2 =

(X,Y, Z)

∣
∣
∣
∣
∣
∣

X =

(
X ′ 0
0T Oi+1

)

, Y =

(
Y ′ 0
0T Oi+1

)

, Z =

(
Z ′ 0
0T Oi+1

)

for some X ′ ∈ Sr−i
+ , Y ′, Z ′ ∈ Sr−i−1

+

for all i = 0, . . . , r − 2. Thus, we obtain the minimal cone Kmin for (28):

Kmin = F2r−1 =

{

(X,Y,Or)

∣
∣
∣
∣
X =

(
X00 0
0T Or

)

, Y =

(
Y00 0
0T Or−1

)

for some X00, Y00 ∈ R+

}

.

From Theorem 4.7, SDP (28) is equivalent to a simpler SDP:
{

sup −X00

subject to X00 ≥ 0, Y00 ≥ 0, Y00 = 1.
(29)

From SDP (29) and Theorem 3.6, it follows that the optimal value of SDP (28) is 0 and the optimal
solution (X,Y, Z) of SDP (28) is (Or+1, F0, Or).

Comparing SDP (28) with SDP (29), it is clear that the feasible region of SDP (29) has an interior
point and its dual has an optimal solution. In constrast, it is proved in [15] that SDP (28) does not have
any interior points and that the dual optimal solution does not exist. Moreover, we observe from SDP
(29) that the size of SDP (28) becomes small by applying FRA. These observations show that one should
solve SDP (29) rather than SDP (28) to compute the optimal value.

In this example, we can compute w ∈ relint(kerA ∩ ker cT ∩ F∗), so that we can express the minimal
cone explicitly. In general, however, it is necessary to solve the systems wi+1 ∈ kerA ∩ ker cT ∩ F∗

i for
all i = 0, 1, . . . , ℓ∗ and their computations are comparable to solving the original SDP (28), and thus
applications of FRA into SDP problems is not always effective.

17

5. Concluding remarks

We have proposed a facial reduction algorithm for conic programming having general convex cones,
and established the relationship between the FRA and the conic expansion approach proposed by Luo et
al. [5] and Sturm [11, 12]. In particular, FRA-CE is just equivalent with their approach.

In contrast to taking span and the Minkowski sum in the conic expansion approach, our algorithm is
more concrete and can be numerically computable.

In general, finding a nonzero solution of (12) is as difficult as solving the original problem itself.
However, the examples in this paper show the applicability of our algorithm, and our viewpoint is that
our FRA can be used in several contexts. In fact in the forthcoming paper [14], we will show our FRA
can be applied to SDP relaxation of polynomial optimization problems to reduce the size of the SDP
problms to be solved.

Acknowledgements

The first author was supported by Grant-in-Aid for JSPS Fellow 20003236. The second author was
partially supported by Grant-in-Aid for Scientific Research (C) 19560063.

References

[1] J. M. Borwein and H. Wolkowicz. Facial reduction for a cone-convex programming problem. Journal of the Australian

Mathematical Society, Vol. 30, pp. 369–380, 1981.
[2] J. M. Borwein and H. Wolkowicz. Regularizing the abstract convex program. JOURNAL OF MATHEMATICAL

ANALYSIS AND APPLICATIONS, Vol. 83, pp. 495–530, 1981.
[3] K. Fujisawa, M. Fukuda, K. Kobayashi, M. Kojima, K. Nakata, M. Nakata, and M. Yamashita. Sdpa (semidefinite

programming algorithm) user’s manual — version 7.0.5. Technical report, Department of Mathematical and Computer
Sciences, Tokyo Institute of Technology, 2008.

[4] J. B. Lasserre. Global optimization with polynomials and the problems of moments. SIAM Journal on Optimization,

Vol. 11, pp. 796–817, 2001.
[5] Z.-Q. Luo, J. F. Sturm, and S. Zhang. Duality results for conic convex programming. Technical Report ECONOMET-

RIC INSTITUTE REPORT NO. 9719/A, Econometric Institute, Erasmus University Rotterdam, April 1997.
[6] G. Pataki. A simple derivation of a facial reduction algorithm and extended dual systems. Technical report, Department

of Statistics and OR, University of North Carolina at Chapel Hill, 1996.
[7] I. Pólik and T. Terlaky. Exact duality for optimization over symmetric cones. Technical Report AdvOL-Report NO.

2007/10, Advanced Optimization Laboratory, McMaster University, 2007.

[8] M. V. Ramana. An exact duality theory for semidefinite programming and its complexity implications. Mathematical

Programming, Vol. 77, pp. 129–162, 1997.
[9] M. V. Ramana, L. Tuncel, and H. Wolkowicz. Strong duality for semidefinite programming. SIAM Journal on Opti-

mization, Vol. 7, No. 3, pp. 641–662, 1997.
[10] R. T. Rockafellar. Convex Analysis. PRINCETON LANDMARKS IN MATHEMATICS AND PHYSICS, 1970.
[11] J. F. Sturm. Primal-Dual Interior Point Approach to Semidefinite Programming. PhD thesis, Erasmus University

Rotterdam, September 1997.

[12] J. F. Sturm. Theory and algorithms of semidefinite programming. In H. Frenk, K. Roos, T. Terlaky, and S. Zhang,
editors, HIGH PERFORMANCE OPTIMIZATION, pp. 1–194. Kluwer Academic Publishers, 2000.

[13] M. J. Todd. Semidefinite optimization. Acta Numerica, Vol. 10, pp. 515–560, 2001.
[14] H. Waki and M. Muramatsu. A facial reduction algorithm for semidefinite programming problems in polynomial

optimization problems. In preparation.

[15] H. Waki, M. Nakata, and M. Muramatsu. Strange behaviors of interior-point methods for solving semidefinite pro-
gramming problems in polynomial optimization. Technical report, Department of Computer Science, The University
of Electro-Communications, 2008.

