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Introduction

Face recognition has gained much attention for decades [1–3]. Contrary to other pop-

ular biometrics, face recognition can be applied to uncooperative subjects in a non-

instructive manner. While (near)-frontal face recognition has gradually matured, face 

recognition in the wild is still challenging due to different unconstrained factors. In fact, 

the performance of a face recognition system heavily depends on the pose of input faces. 

Recent studies show that the performance of face verification with the same view, such 

as frontal–frontal or profile–profile, is really good. However, the performance dramati-

cally degrades when verifying faces in different views like frontal-profile [4].

Pose-invariant face recognition refers to the problem of identifying or verifying a per-

son by analyzing face images captured from different poses. In recent years, numerous 

pose-invariant face recognition methods have been proposed. In [5–13], the authors 

train deep neural networks on large-scale datasets to ease the effect of pose variation, 
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which leads to significant improvements in the performance of face recognition. In 

[14], Masi et al. propose a method to enrich the pose variation in the training dataset by 

rotating faces across 3D space. Beyond, in [15], Sagonas et al. propose a novel method 

to jointly learn both frontal view reconstruction and landmark localization by solving a 

constrained optimization problem. Kan et  al. [16] introduce stacked progressive auto-

encoders (SPAE), which can learn pose-robust features through a complicated deep neu-

ral network to transform profile faces to frontal ones. In [17], Hassner et al. introduce a 

straightforward approach to generate frontal faces from a simple 3D shape. Peng et al. 

[18] propose a new reconstruction loss for disentangled learning that encourages iden-

tity features of the same subject to be clustered together despite the pose variation.

Recently, generative adversarial networks (GANs) [19] have proved to be powerful 

to mimic data distribution. GANs have been successfully applied to many computer 

vision tasks such as image inpainting [18, 20, 21], style transfer [22, 23], image synthesis 

[24, 25], super-resolution [26] and so on. �ese successful applications have motivated 

researchers to apply GANs to pose-invariant feature disentanglement [4, 27], face com-

pletion [28] and face frontalization [4, 29–32]. In [28], Wang et al. propose a recurrent 

generative adversarial network (RGAN), which consists of a CompletionNet and a Dis-

criminationNet, for completing face and recovering the missing region automatically. 

Dual et  al. [32] propose a boosting GAN (BoostGAN) for face deocclusion and fron-

talization. BoostGAN can generate photorealistic frontal faces with identity preservation 

from occluded but profile ones. TP-GAN [29] uses a two-pathway GAN that simulta-

neously learns global structures and local information for photorealistic frontal view 

synthesis. Zhao et al. [33] propose a unified deep architecture containing a face frontali-

zation module and a discriminative learning module, which can be jointly learned in an 

end-to-end fashion. Zhang et al. [34] propose a geometry guided GAN to generate facial 

images with arbitrary expressions and poses conditioned on a set of facial landmarks. 

�ey embed a classifier into the GAN to facilitate image synthesis and perform facial 

expression recognition. In [27], Tran et al. propose DR-GAN that can take one or multi-

ple input images and produce one unified identity representation along with synthesized 

identity-preserved faces of various target poses. However, all methods mentioned above 

usually require a large amount of paired faces across different poses for training, which 

is overdemanding in real-world applications.

In [35], Deng et al. propose an adversarial UV map completion framework called UV-

GAN to solve pose-invariant face recognition without the need of extensive pose cover-

age in the training dataset. �e authors in [35] first fit a 3DMM [36] to 2D profile face 

and get an incomplete UV map, which is then fulfilled by a straightforward pix2pix [37, 

38]. �e generator architecture in pix2pix follows the general shape of U-Net [39] to 

add skip connections between encoder and decoder subnetworks in order to enhance 

the transfer of low-level information between input and output. One weakness of the 

original UV-GAN is the plain architecture of the generator, which is shown to be worse 

than residual networks [40]. Another weakness is that one U-Net block seems to be not 

enough to mix well low-level information in the encoder with high-level semantic fea-

tures in the decoder. In [41], Deng et al. use UV-GAN with similar architecture as in [35] 

to extract side information as well as subspaces, and combine UV-GAN with robust PCA 

for the face recognition task. He et  al. [42] introduce a framework for heterogeneous 
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face synthesis from near-infrared (NIR) to visible domain. �e framework consists of 

two adversarial generators to estimate a UV map and a facial texture map from an input 

NIR face, and then generate a corresponding frontal visible face. Nevertheless, both 

generators in this framework are based on the general U-Net structure [23, 39]. Some 

efforts [43, 44] stack multiple U-Nets together, but skip connections are utilized only 

inside each single U-Net. Ibtehaz et al. [45] propose residual paths with additional con-

volutional layers in skip connections to reduce the semantic gap between encoder and 

decoder features. In [46], Oktay et al. introduce attention gates to implicitly learn to sup-

press irrelevant regions in an input image while highlighting salient features useful for a 

specific task. In [47], Tang et al. introduce coupled U-Nets architecture, where coupling 

connections are utilized to improve the information flow across U-Nets.

In this paper, we propose a new generative model architecture called Attention Res-

CUNet-GAN, where the generator is coupled U-Nets, and the backbone of each encoder 

is enhanced by residual network architecture. We use attention gates for skip connec-

tions within each U-Net to suppress irrelevant low-level information from encoders. 

We also use skip connections across two U-Nets to limit gradient vanishing and pro-

mote feature reuse. �e experiments on the popular benchmarks demonstrate that our 

Attention ResCUNet-GAN yields considerably better results than the original UV-GAN 

model.

�e rest of this paper is organized as follows. Details of our proposed method are pre-

sented in "Our proposed method" section. "Experiments and evaluation" section  pre-

sents our experimental results on the Multi-PIE dataset. Finally, the conclusion is made 

in "Conclusions and future work" section.

Our proposed method

Following [35], we use 3DDFA [48] to fitting 2D images to retrieve UV maps and 3D 

meshes. With a non-frontal face, the UV map generated by 3DDFA is always incomplete 

due to self-occlusion. Hence, we propose a new generative model architecture called 

Attention ResCUNet-GAN to improve the performance of the original UV-GAN [35] in 

filling up the missing contents of the UV map, which in turns helps to synthesize facial 

images of arbitrary poses. �e overall pipeline process to synthesize more faces of vari-

ous poses is depicted in Fig. 1.

3DDFA �tting

3D morphable model

Blanz and Vetter [49] introduce the 3D morphable model (3DMM) to recover the 3D 

face from a 2D image. Assuming that a 3D face scan with N vertexes can be represented 

as a 3N × 1 vector S = [x1, y1, z1, . . . , xN , yN , zN ]T ∈∈ R
3N , where [xi, yi, zi]

T are the 

object-centered Cartesian coordinates of the i-th vertex. Given a dataset of such 3D face 

scans, one would like to represent them as a smaller set of variables. �e authors in [49] 

propose to use a two-stage principle component analysis (PCA) to estimate the shape 

identity parameters along with expression parameters of the 3D faces. Suppose that, 

after the first stage, we keep first ns principal components and s1, s2, . . . , sns are the cor-

responding orthonormal basis, then a 3D face S can be represented as follows:
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where S̄ ∈ R
3N are the mean shape vector across the dataset of 3D face scans and 

α = [α1, . . . ,αns ] are the shape parameters.

In the second stage, a new PCA is trained on the offsets between expression scans and 

neutral scans. After this stage, the final shape a representation is follows:

where ei, i = 1, . . . , ne are the orthonormal basis of first ne principal components, and 

β = [β1, . . . ,βne ] are the expression parameters.

After the 3D face is constructed, a rigid transformation is applied on the shape 

from the barycentric coordinate to camera based world coordinate. Each 3D vertex 

v = [x, y, z]T is rotated and translated as follows:

where R ∈ R
3×3 and t = [tx, ty, tz]

T are the 3D rotation and translation components, 

respectively.

Finally, each 3D point can be projected into its 2D location in the image plane with 

scale orthographic projection:

(1)S = S̄ +

ns∑

i=1

siαi

(2)S = S̄ +

ns∑

i=1

siαi +

ne∑

i=1

eiβi,

(3)vcam = Rv + t,

(4)vp = f ∗ PR ∗ vcam + t2d ,

Fig. 1 A pipeline process of face synthesis. Using 3DDFA to obtain a 3D mesh and an incomplete UV map. 

Then a new generative model is applied to recover the self-occluded regions. The completed UV map is 

attached to the fitted 3D mesh to generate faces of arbitrary poses
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where f is the scale factor, Pr =

(

1 0 0

0 1 0

)

 is the orthographic projection matrix and t2d is 

the principal point that is set to the image center.

Suppose that the set of all the model parameters are denoted by p = [f ,R, t2d ,α,β].

3DDFA method

Method 3DDFA associates Cascaded Regression and a Convolutional Neural Network 

(CNN). Cascaded CNN can be formulated as:

where pk is the model parameters at the k-th iteration, which is updated by applying a 

CNN-based regressor Netk on the shape indexed feature Feat that depends on the input 

image I and the current parameters pk.

�e purpose of the CNN regressors is to predict the parameter update �p to shift the 

initial parameter p0 as close as possible to the ground truth pg . In term of objective func-

tion, [48] proposes to use the Optimized Weighted Parameter Distance Cost (OWPDC):

where w∗ is the optimized parameter importance vector.

Proposed network for UV map completion

�e proposed Attention ResCUNet-GAN consists of a generator (Fig. 2), two discrimi-

nators, and an identity preserving module (Fig. 3). �e global discriminator deals with 

the global structure of entire complete UV maps, while the local discriminator focuses 

on the local details of the face region.

(5)pk+1
= pk + Net

k(Feat(I ,pk)),

(6)
Eowpdc = (�p + p0 − pg )Tdiag(w∗)

(�p + p0 − pg ),

Fig. 2 Generator architecture. The generator of proposed Attention ResCUNet-GAN consists of coupled 

U-Nets. Skip connections within each U-Net are enhanced with attention gates before concatenation. The 

contextual information from the first U-Net decoder is weighted fused with attentive low-level feature maps 

of the second U-Net encoder before concatenation with the high-level coarse feature maps of the second 

U-Net decoder. An auxiliary loss is used to improve gradient flow during the training phase
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Generator network

An incomplete UV map is fed into Attention ResCUNet-GAN Generator, which acts as 

an auto-encoder to reconstruct missing regions. We use the following reconstruction 

loss as in [35]:

where IP is the input incomplete UV map, G(IP) is the output from the generator, and IF 

is the ground truth texture.

�e generator (Fig. 2) consists of coupled U-Nets [47]. A drawback of the UV-GAN’s 

generator is the plain convolutional backbone, which is shown to be rapidly degraded as 

the network depth increases [40]. �erefore, here we leverage the residual architecture 

in [40] to build a deeper backbone that is capable of extracting better high-level features 

without suffering from the degradation problem. Particularly, in terms of the backbone 

network for encoders, we use ResNet-50 [40] consisting of multiple bottleneck residual 

blocks, each of which is a stack of three successive layers with 1 × 1, 3 × 3, 1 × 1 con-

volutions. Batch normalization is used right after each convolution and before activa-

tion layers. We use skip connections within each U-Net to transfer low-level information 

from the encoder to high-level contextual features in the decoder. Attention gates [46] 

are used to suppress irrelevant low-level information from encoders. Figure 4 illustrates 

how a coarse feature map can guide another low-level feature map to ignore irrelevant 

information.

To combine features across two U-Nets, one can apply a direct depth-wise concatena-

tion of the coarse feature maps D_U1 , D_U2 extracted from the decoders of both U-Nets 

and the attentive information Ê_U2 extracted from an attention gate of the encoder of 

the second U-Net. In such a combination, the latest feature map D_U2 , which is thought 

(7)Lrec =
1

W ∗ H

W∑

i=1

H∑

j=1

|G(IPi,j) − IFi,j|,

Fig. 3 Discriminators and identity preserving module of proposed Attention ResCUNet-GAN. The global 

discriminator is responsible for the global structure of entire UV maps. The local discriminator focuses on 

the local facial details. The identity preserving module keeps the identity information unchanged during the 

modification of the generator
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to obtain more contextual information, would play the most crucial role regarding the 

contribution to the final output. However, such a direct concatenation always requires 

more memory. �us, before concatenating with D_U2 , here we apply fast normalized 

fusion [50] to combine D_U1 and Ê_U2 as follows:

where w1,w2 are learnable scalar weights that can be trained via normal back propaga-

tion algorithm and ǫ = 0.0001 is a small value to avoid numerical instability. Parameters 

are ensured to be positive by applying Relu activation after them.

Global and  local discriminators  Global discriminator enforces maintaining the sur-

rounding context of the facial image. Meanwhile, the local discriminator focuses on the 

central face region to enforce better recovering local details such as eye, nose, mouth and 

so on. We keep the same architectures for the discriminators as described in [35]. �e 

following typical adversarial loss is used:

where pd(x), pd(y), pd(z) denote the distributions of incomplete UV maps x, complete 

UV maps y and the Gaussian noise z, respectively.

Identity preserving module  �e synthetic faces must not only be photorealistic but also 

preserve identity information, which plays a crucial role in generation-based face recog-

nition. To this end, the following identity loss [35] is used:

where F(.) denotes the embedding features extracted by the last layer before softmax in 

a pretrained CNN. Here in terms of embedding feature extractor, we use FaceNet pre-

trained on VGGFace2 dataset, which contains 3.31M face images of 9131 identities. �is 

feature extractor is frozen during training. �e identity preserving module in Eq.  (10) 

enforces the embedding features of faces in the UV map ground truth IF and the gener-

ated UV map G(IP) to be close to each other. �e dimension of the embedding features 

is 512.

(8)D̂_U1 =
w1 × D_U1 + w2 × Ê_U2

w1 + w2 + ǫ

(9)
Ladv =min

G
max
D

Ex pd(x),y pd(y)[log(D(x, y))]

+ Ex pd(x),z pd(z)[log(1 − D(G(x, z), y))],

(10)Lid =� F(IF ) − F(G(Ip)) �22,

Fig. 4 Attention gate (AG). The gating signal g is obtained from a coarse feature map in the decoder, which 

provides information to disambiguate irrelevant information in the low-level feature map x in the encoder. 

The concatenated features x and g are linearly mapped to a Fi-dimensional intermediate space. The attention 

mask θ guides the attention gate to capture only the important information x̂
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Final loss function  Overall, the total loss function is a weighted sum of the abovemen-

tioned losses:

where �1, �2, �3 are the weights that control the importance factors of different losses.

Moreover, a similar auxiliary loss is also applied to the intermediate output of the genera-

tor right after the end of the first U-Net decoder. �e auxiliary loss strengthens the gradient 

flow to the layers of the first U-Net so that the parameters in the first U-Net can be trained 

more efficiently. �erefore, the final loss can be expressed as follows:

where η is a parameter regulating the contribution of the auxiliary loss.

Experiments and evaluation

Datasets and settings

We train our Attention ResCUNet-GAN on the Multi-PIE dataset [51]. All subjects in 

this dataset were taken in 15 viewpoints, 19 illumination conditions, and many facial 

expressions. Totally, there are more than 750,000 images of 337 people.

For every subject with each illumination condition and facial expression, we feed 15 

facial images captured from 15 viewpoints to the 3DDFA model to retrieve separate 

incomplete UV maps. We then select the incomplete UV maps with yaw angles of 0◦ , 

−30◦,+30◦ and merge them using Poisson blending [52] (Fig.  5)  to create the corre-

sponding ground-truth UV map. In that way, we can ideally create 15 pairs of images for 

training the generator. Each of these pairs consists of an incomplete and a ground-truth 

UV map. However, in some cases, when the quality of an input facial image is not good 

enough, the 3DDFA model can not successfully detect the face landmarks; thus, the cor-

responding 3D mesh and incomplete UV map can not be created. �erefore, such cases 

are ignored in the training phase. All generated UV maps are rescaled to 256 × 256 to fit 

the input size of our ResCUNet-GAN.

In addition to the proposed Attention ResCUNet-GAN, we also try a normal Res-

CUNet-GAN that has a similar architecture but without any attention gates and fast 

normalized fusion. In this ResCUNet-GAN, the concatenation is applied to all skip con-

nections. Our networks are implemented in Pytorch. It takes three days for training each 

network on a server with two GPU RTX 2080Ti. We train each network for 100 epochs 

with a batch size of 16 and a learning rate of 10−4 . We empirically set the importance 

factors as follows: η = 0.3, �1 = �2 = 0.5, �3 = 0.01.

In order to evaluate the effectiveness of the proposed method, we conduct experi-

ments on pose-invariant face recognition on different benchmarks. Casia Web Face is a 

facial dataset that consists of 453,453 images over 10,575 identities. LFW (Labeled Faces 

in the Wild) is a well-known dataset for face verification in-the-wild. LFW contains 

more than 13,000 images of 1680 identities, and each identity has two or more images of 

various poses. CPLFW (Cross-Pose LFW) is an extended version of LFW, which is more 

difficult due to different illuminations, occlusions, and expressions. CFP dataset consists 

of 500 subjects, each of which has ten frontal and four profile images. �ere are two 

(11)Ltotal = Lrec + �1L
local
adv + �2L

global
adv + �3Lid ,

(12)Lfinal = Ltotal + ηLauxtotal ,
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evaluation protocols regarding the CFP dataset: frontal–frontal (FF) and frontal-profile 

(FP) face verification. Each of them has ten folders with 350 same-person pairs and 350 

different-person pairs.

Image reconstruction

We use two metrics to evaluate the quality of output from the Attention ResCUNet-

GAN. �e first metric is the structural similarity (SSIM), which is designed for meas-

uring the similarity between images. �e second one is the peak signal-to-noise ratio 

(PSNR), which is commonly used to measure the quality of reconstruction. Table  1 

shows that our method achieves better results than the original UV-GAN according to 

both metrics SSIM and PSNR.

Figures 6 and 7 show the results of UV map completion on the test data taken from the 

Multi-PIE, where the UV map ground truths are available. For frontal input faces, the 

results of different methods look similar to each other. However, for profile input faces, 

the results are quite different. UV-GAN produces the worst UV maps. Normal ResCU-

Net-GAN yields better results, and Attention ResCUNet-GAN gives the most realistic 

ones with a smooth texture. Note that the intermediate output obtained from the first 

U-Net of the Attention ResCUNet-GAN still yields better results than UV-GAN’s. �e 

results from some in-the-wild input images are shown in Fig. 8. One can see that Atten-

tion ResCUNet-GAN yields significantly better results than other ones, especially com-

pared to the original UV-GAN.

Fig. 5 The creation of ground-truth complete UV maps. Three facial images with yaw angles of 0◦ , 

−30◦ ,+30◦ are fed to the 3DDFA model to create three incomplete UV maps which are then merged by 

Poisson blending to generate the ground-truth complete UV map

Table 1 Performance comparison of di�erent methods on the Multi-PIE dataset

Model SSIM PSNR

UV-GAN [35] 0.61 13.67

Our ResCUNet-GAN (w/o attention gates and fast normalized 
fusion)

0.66 15.67

Our Attention ResCUNet-GAN 0.685 15.974
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In Figs. 9,  10 and 11, we show side-by-side synthetic images generated from the UV 

map reconstructed by UV-GAN and the proposed Attention ResCUNet-GAN, respec-

tively. One can see that our model yields qualitatively better results than the original 

UV-GAN, especially for profile and in-the-wild input images.

Fig. 6 Results with frontal input images. Incomplete UV maps are generated using 3DDFA. Next columns are 

ground truth UV maps, results of UV-GAN, results of normal ResCUNet-GAN, intermediate results of Attention 

ResCUNet-GAN (after the first U-Net) and final results of Attention ResCUNet-GAN (after the second U-Net), 

respectively. The most right block shows some synthetic images generated based on the final results of 

Attention ResCUNet-GAN

Fig. 7 Results with profile input images. Incomplete UV maps are generated using 3DDFA. Next columns are 

ground truth UV maps, results of UV-GAN, results of normal ResCUNet-GAN, intermediate results of Attention 

ResCUNet-GAN (after the first U-Net) and final results of Attention ResCUNet-GAN (after the second U-Net), 

respectively. The most right block shows some synthetic images generated based on the final results of 

Attention ResCUNet-GAN

Fig. 8 Results with in-the-wild input images. Incomplete UV maps are generated using 3DDFA. The ground 

truth UV maps are unavailable. The next columns are the results of UV-GAN, results of normal ResCUNet-GAN, 

intermediate results of Attention ResCUNet-GAN (after the first U-Net), and final results of Attention 

ResCUNet-GAN (after the second U-Net), respectively. The right block shows some synthetic images 

generated based on the final results of Attention ResCUNet-GAN
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�e facial images in the Multi-PIE dataset are not diverse enough to reflect the real 

data distribution. �us, in-the-wild faces occluded by strange things or with too much 

makeup can lead to some failures of the model, as illustrated in Fig. 12. 

Attention map visualization

�e attention coefficients of the proposed Attention ResCUNet-GAN are visualized in 

Fig. 13. �ese attention coefficients are obtained in the attention gate of the AFC node 

that takes S9 as input (see Fig. 2). One can see that the attention maps try to ignore the 

visible face regions, focusing only on the missing regions of incomplete UV maps.

Pose invariance face recognition

We compare our methods with UV-GAN on the Multi-PIE dataset in the face verifica-

tion task. We take facial images from different pose ranged from 0◦ to 75◦ and frontalize 

them using UV-GAN and our methods. We then use a face detector [53] to crop the 

central faces from the generated complete UV maps and push the cropped faces through 

ArcFace [54] to verify if the synthetic frontal face and the ground truth one belong to 

the same subject or not. �e verification results are shown on Table 2. One can see that 

the verification accuracy falls down along with the increase of pose. Nevertheless, our 

proposed ResCUNet-GANs (and even ResUNet-GAN with one U-Net block) always 

produces better frontal faces in term of preserving identity. Attention ResCUNet-GAN 

outperforms other methods by orders of magnitude on all profile poses. Surprisingly, 

for frontal faces, Attention ResCUNet-GAN yields little degraded results than normal 

ResCUNet-GAN. �e reason may be that the useful information, which is necessary for 

the recognition task, in frontal images is almost comprehensive. Hence, a complicated 

transformer with attention gates and fast normalized fusion might unintendedly dimin-

ish some useful information and leads to the degradation in the verification accuracy.

In the next experiment, we train a face recognition model on the CASIA dataset and 

evaluate its performance in the face verification task on other different datasets. Firstly, 

we train a face deep feature extractor with ResNet-101 backbone and arcface [54] loss on 

the CASIA dataset augmented by using Attention ResCUNet-GAN. For each identity in 

CASIA, we generate different profile faces from the frontal one, ranging from −80
◦ to 

Fig. 9 Synthetic images for frontal input images. The left block corresponds to the result of UV-GAN. The 

right block corresponds to the final result of Attention ResCUNet-GAN (after the second U-Net)
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80
◦ with the step of 20◦ . For each identity, we synthesize approximately 300 frontal and 

profile images. We train the network with a batch size of 128 for 30 epochs. �e learned 

model is then used for the verification task on the LFW, CPLFW and CFP datasets. Note 

that for the CFP dataset, we consider two verification types: frontal–frontal means to 

verify two frontal faces, and frontal-profile means to verify a frontal face and a profile 

one. We use k-fold cross-validation to evaluate the face verification task. Particularly, 

each dataset will be divided into 10 groups ( k = 10 ). Each group is considered as a test 

set in turn, while the remaining groups are used to tune the best verification threshold. 

In total, we have ten runs for each face verification dataset. �e mean accuracy and the 

standard deviation over ten runs are reported. Tables 3 and 4 show that data augmen-

tation using the proposed Attention ResCUNet-GAN improves the performance of the 

recognition model. Note that the LFW dataset does not pay much attention to cross-

pose face verification, and most faces in this dataset are nearly frontal. �erefore, a heavy 

facial pose augmentation using generative networks for training the recognition model is 

probably not really necessary. In fact, the verification performance on the LFW dataset 

over ten runs slightly fluctuates when we apply the proposed generative model for data 

augmentation. �e standard deviation of accuracy increases from 0.032 to 0.391 (see 

Fig. 10 Synthetic images for profile input images. The left block corresponds to the result of UV-GAN. The 

right block corresponds to the final result of Attention ResCUNet-GAN (after the second U-Net)

Fig. 11 Synthetic images for in-the-wild input images. The left block corresponds to the result of UV-GAN. 

The right block corresponds to the final result of Attention ResCUNet-GAN (after the second U-Net)
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Table 3). However, in overall, using Attention ResCUNet-GAN still helps to improve the 

average cross-validation accuracy. In contrast to the LFW dataset, the CPLFW dataset 

has lots of positive face pairs with different poses to enlarge intra-class variance. In this 

case, our model results in more stable improvements, where the standard deviation of 

accuracy is almost the same as if the data augmentation is not used.

Fig. 12 Some failed cases when the input facial images are “abnormal” with respect to the training data. The 

top row shows the input images, the second row contains incomplete UV map and the third row displays the 

completed UV maps generated by our Attention ResCUNet-GAN

Table 2 Veri�cation results on di�erent poses on the Multi-PIE dataset

Model 0
◦

±15
◦

±30
◦

±45
◦

±60
◦

±75
◦

UV-GAN [3] 0.688 0.655 0.631 0.605 0.553 0.512

Our ResCUNet-GAN (w/o attention 
gates and fast normalized fusion)

0.983 0.840 0.801 0.761 0.732 0.705

Our Attention ResCUNet-GAN 0.955 0.874 0.837 0.794 0.768 0.742

Table 3 Veri�cation accuracy (%) comparison on the LFW and CPLFW datasets

Model LFW CPLFW

HUMAN-individual 97.27 81.21

CASIA-sm-augUVGAN [35] 99.22 –

CASIA-arcface 99.43 ± 0.032 90.30 ± 1.797

CASIA-arcface-augAttentionResCUNetGAN 99.47 ± 0.391 90.45 ± 1.812
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Fig. 13 Attention map visualization. The first column contains UV maps generated by 3DDFA network, the 

second column contains generated UV maps overlaid by attention masks, and the last column illustrates 

attention coefficients only

Table 4 Veri�cation accuracy (%) comparison on the CFP dataset

Model Frontal–frontal Frontal-pro�le

CASIA-center [35] 98.34 ± 0.44 87.77 ± 2.39

CASIA-Sphere [35] 98.64 ± 0.24 84.39 ± 2.59

CASIA-sm [35] 98.59 ± 0.21 87.74 ± 1.07

CASIA-sm-aug1 [35] 98.25 ± 0.42 90.14 ± 1.53

CASIA-sm-augUV-GAN [35] 98.83 ± 0.27 93.09 ± 1.72

 Profile2Frontal – 93.55 ± 1.67

 Frontal2Profile – 93.72 ± 1.59

 Template2Template – 94.05 ± 1.73

CASIA-arcface-augAttentionResCUNetGAN 99.47 ± 0.29 97.0 ± 0.82
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�e CFP dataset focuses on the pose variation in terms of extreme pose where many 

details of faces are occluded (see Fig. 14). One can see from Table 4, our Attention Res-

CUNetGAN considerably improves the performance of the face recognition model, 

especially for the frontal-profile subtask. 

Conclusions and future work

In this paper, we introduce a novel generative model called Attention ResCUNet-GAN 

to generate complete facial UV maps, which allows us to synthesize various faces of 

arbitrary poses and improve pose-invariant face recognition performance. We lever-

age the residual connections in ResNet, intra-block and extra-block feature fusion in 

coupled UNets to enhance the generator. �e skip connections within each U-Net are 

amplified with attention gates, while the contextual feature maps from two U-Nets 

are fused with trainable scalar weights. We jointly train global and local adversarial 

losses with identity preserving loss. �e experiments show that the proposed Atten-

tion ResCUNet-GAN outperforms the original UV-GAN by order of magnitude in 

terms of both reconstruction metrics and the performance on the pose-invariant face 

verification task.

In future work, we would like to exploit some recent efficient backbones such as 

EfficientNet [55] to improve the performance of the proposed approach. More com-

plex short-cut connections [45, 56] can also be utilized to improve gradient flow and 

stimulate feature reuse within the network.
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